HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmcexi Structured version   Visualization version   GIF version

Theorem nmcexi 30061
Description: Lemma for nmcopexi 30062 and nmcfnexi 30086. The norm of a continuous linear Hilbert space operator or functional exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by Mario Carneiro, 17-Nov-2013.) (Proof shortened by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmcex.1 𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1)
nmcex.2 (𝑆𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}, ℝ*, < )
nmcex.3 (𝑥 ∈ ℋ → (𝑁‘(𝑇𝑥)) ∈ ℝ)
nmcex.4 (𝑁‘(𝑇‘0)) = 0
nmcex.5 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → ((𝑦 / 2) · (𝑁‘(𝑇𝑥))) = (𝑁‘(𝑇‘((𝑦 / 2) · 𝑥))))
Assertion
Ref Expression
nmcexi (𝑆𝑇) ∈ ℝ
Distinct variable groups:   𝑥,𝑚,𝑦,𝑧,𝑁   𝑇,𝑚,𝑥,𝑦,𝑧
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑧,𝑚)

Proof of Theorem nmcexi
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nmcex.2 . . 3 (𝑆𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}, ℝ*, < )
2 nmcex.3 . . . . . . . . 9 (𝑥 ∈ ℋ → (𝑁‘(𝑇𝑥)) ∈ ℝ)
3 eleq1 2818 . . . . . . . . 9 (𝑚 = (𝑁‘(𝑇𝑥)) → (𝑚 ∈ ℝ ↔ (𝑁‘(𝑇𝑥)) ∈ ℝ))
42, 3syl5ibrcom 250 . . . . . . . 8 (𝑥 ∈ ℋ → (𝑚 = (𝑁‘(𝑇𝑥)) → 𝑚 ∈ ℝ))
54imp 410 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑚 = (𝑁‘(𝑇𝑥))) → 𝑚 ∈ ℝ)
65adantrl 716 . . . . . 6 ((𝑥 ∈ ℋ ∧ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))) → 𝑚 ∈ ℝ)
76rexlimiva 3190 . . . . 5 (∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥))) → 𝑚 ∈ ℝ)
87abssi 3969 . . . 4 {𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))} ⊆ ℝ
9 ax-hv0cl 29038 . . . . . . 7 0 ∈ ℋ
10 norm0 29163 . . . . . . . . 9 (norm‘0) = 0
11 0le1 11320 . . . . . . . . 9 0 ≤ 1
1210, 11eqbrtri 5060 . . . . . . . 8 (norm‘0) ≤ 1
13 nmcex.4 . . . . . . . . 9 (𝑁‘(𝑇‘0)) = 0
1413eqcomi 2745 . . . . . . . 8 0 = (𝑁‘(𝑇‘0))
1512, 14pm3.2i 474 . . . . . . 7 ((norm‘0) ≤ 1 ∧ 0 = (𝑁‘(𝑇‘0)))
16 fveq2 6695 . . . . . . . . . 10 (𝑥 = 0 → (norm𝑥) = (norm‘0))
1716breq1d 5049 . . . . . . . . 9 (𝑥 = 0 → ((norm𝑥) ≤ 1 ↔ (norm‘0) ≤ 1))
18 2fveq3 6700 . . . . . . . . . 10 (𝑥 = 0 → (𝑁‘(𝑇𝑥)) = (𝑁‘(𝑇‘0)))
1918eqeq2d 2747 . . . . . . . . 9 (𝑥 = 0 → (0 = (𝑁‘(𝑇𝑥)) ↔ 0 = (𝑁‘(𝑇‘0))))
2017, 19anbi12d 634 . . . . . . . 8 (𝑥 = 0 → (((norm𝑥) ≤ 1 ∧ 0 = (𝑁‘(𝑇𝑥))) ↔ ((norm‘0) ≤ 1 ∧ 0 = (𝑁‘(𝑇‘0)))))
2120rspcev 3527 . . . . . . 7 ((0 ∈ ℋ ∧ ((norm‘0) ≤ 1 ∧ 0 = (𝑁‘(𝑇‘0)))) → ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 0 = (𝑁‘(𝑇𝑥))))
229, 15, 21mp2an 692 . . . . . 6 𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 0 = (𝑁‘(𝑇𝑥)))
23 c0ex 10792 . . . . . . 7 0 ∈ V
24 eqeq1 2740 . . . . . . . . 9 (𝑚 = 0 → (𝑚 = (𝑁‘(𝑇𝑥)) ↔ 0 = (𝑁‘(𝑇𝑥))))
2524anbi2d 632 . . . . . . . 8 (𝑚 = 0 → (((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥))) ↔ ((norm𝑥) ≤ 1 ∧ 0 = (𝑁‘(𝑇𝑥)))))
2625rexbidv 3206 . . . . . . 7 (𝑚 = 0 → (∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥))) ↔ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 0 = (𝑁‘(𝑇𝑥)))))
2723, 26elab 3576 . . . . . 6 (0 ∈ {𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))} ↔ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 0 = (𝑁‘(𝑇𝑥))))
2822, 27mpbir 234 . . . . 5 0 ∈ {𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}
2928ne0ii 4238 . . . 4 {𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))} ≠ ∅
30 nmcex.1 . . . . 5 𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1)
31 2rp 12556 . . . . . . . . . 10 2 ∈ ℝ+
32 rpdivcl 12576 . . . . . . . . . 10 ((2 ∈ ℝ+𝑦 ∈ ℝ+) → (2 / 𝑦) ∈ ℝ+)
3331, 32mpan 690 . . . . . . . . 9 (𝑦 ∈ ℝ+ → (2 / 𝑦) ∈ ℝ+)
3433rpred 12593 . . . . . . . 8 (𝑦 ∈ ℝ+ → (2 / 𝑦) ∈ ℝ)
3534adantr 484 . . . . . . 7 ((𝑦 ∈ ℝ+ ∧ ∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1)) → (2 / 𝑦) ∈ ℝ)
36 rpre 12559 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
3736adantr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → 𝑦 ∈ ℝ)
3837rehalfcld 12042 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (𝑦 / 2) ∈ ℝ)
3938recnd 10826 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (𝑦 / 2) ∈ ℂ)
40 simprl 771 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → 𝑥 ∈ ℋ)
41 hvmulcl 29048 . . . . . . . . . . . . . . . . . . 19 (((𝑦 / 2) ∈ ℂ ∧ 𝑥 ∈ ℋ) → ((𝑦 / 2) · 𝑥) ∈ ℋ)
4239, 40, 41syl2anc 587 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((𝑦 / 2) · 𝑥) ∈ ℋ)
43 normcl 29160 . . . . . . . . . . . . . . . . . 18 (((𝑦 / 2) · 𝑥) ∈ ℋ → (norm‘((𝑦 / 2) · 𝑥)) ∈ ℝ)
4442, 43syl 17 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm‘((𝑦 / 2) · 𝑥)) ∈ ℝ)
45 simprr 773 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm𝑥) ≤ 1)
46 normcl 29160 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℝ)
4746ad2antrl 728 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm𝑥) ∈ ℝ)
48 1red 10799 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → 1 ∈ ℝ)
49 rphalfcl 12578 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℝ+ → (𝑦 / 2) ∈ ℝ+)
5049adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (𝑦 / 2) ∈ ℝ+)
5147, 48, 50lemul2d 12637 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((norm𝑥) ≤ 1 ↔ ((𝑦 / 2) · (norm𝑥)) ≤ ((𝑦 / 2) · 1)))
5245, 51mpbid 235 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((𝑦 / 2) · (norm𝑥)) ≤ ((𝑦 / 2) · 1))
53 rpcn 12561 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℂ)
54 norm-iii 29175 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 / 2) ∈ ℂ ∧ 𝑥 ∈ ℋ) → (norm‘((𝑦 / 2) · 𝑥)) = ((abs‘(𝑦 / 2)) · (norm𝑥)))
5553, 54sylan 583 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → (norm‘((𝑦 / 2) · 𝑥)) = ((abs‘(𝑦 / 2)) · (norm𝑥)))
56 rpre 12559 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℝ)
57 rpge0 12564 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 / 2) ∈ ℝ+ → 0 ≤ (𝑦 / 2))
5856, 57absidd 14951 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 / 2) ∈ ℝ+ → (abs‘(𝑦 / 2)) = (𝑦 / 2))
5958oveq1d 7206 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 / 2) ∈ ℝ+ → ((abs‘(𝑦 / 2)) · (norm𝑥)) = ((𝑦 / 2) · (norm𝑥)))
6059adantr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → ((abs‘(𝑦 / 2)) · (norm𝑥)) = ((𝑦 / 2) · (norm𝑥)))
6155, 60eqtr2d 2772 . . . . . . . . . . . . . . . . . . 19 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → ((𝑦 / 2) · (norm𝑥)) = (norm‘((𝑦 / 2) · 𝑥)))
6250, 40, 61syl2anc 587 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((𝑦 / 2) · (norm𝑥)) = (norm‘((𝑦 / 2) · 𝑥)))
6339mulid1d 10815 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((𝑦 / 2) · 1) = (𝑦 / 2))
6452, 62, 633brtr3d 5070 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm‘((𝑦 / 2) · 𝑥)) ≤ (𝑦 / 2))
65 rphalflt 12580 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℝ+ → (𝑦 / 2) < 𝑦)
6665adantr 484 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (𝑦 / 2) < 𝑦)
6744, 38, 37, 64, 66lelttrd 10955 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm‘((𝑦 / 2) · 𝑥)) < 𝑦)
68 fveq2 6695 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = ((𝑦 / 2) · 𝑥) → (norm𝑧) = (norm‘((𝑦 / 2) · 𝑥)))
6968breq1d 5049 . . . . . . . . . . . . . . . . . . 19 (𝑧 = ((𝑦 / 2) · 𝑥) → ((norm𝑧) < 𝑦 ↔ (norm‘((𝑦 / 2) · 𝑥)) < 𝑦))
70 2fveq3 6700 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = ((𝑦 / 2) · 𝑥) → (𝑁‘(𝑇𝑧)) = (𝑁‘(𝑇‘((𝑦 / 2) · 𝑥))))
7170breq1d 5049 . . . . . . . . . . . . . . . . . . 19 (𝑧 = ((𝑦 / 2) · 𝑥) → ((𝑁‘(𝑇𝑧)) < 1 ↔ (𝑁‘(𝑇‘((𝑦 / 2) · 𝑥))) < 1))
7269, 71imbi12d 348 . . . . . . . . . . . . . . . . . 18 (𝑧 = ((𝑦 / 2) · 𝑥) → (((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1) ↔ ((norm‘((𝑦 / 2) · 𝑥)) < 𝑦 → (𝑁‘(𝑇‘((𝑦 / 2) · 𝑥))) < 1)))
7372rspcv 3522 . . . . . . . . . . . . . . . . 17 (((𝑦 / 2) · 𝑥) ∈ ℋ → (∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1) → ((norm‘((𝑦 / 2) · 𝑥)) < 𝑦 → (𝑁‘(𝑇‘((𝑦 / 2) · 𝑥))) < 1)))
7442, 73syl 17 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1) → ((norm‘((𝑦 / 2) · 𝑥)) < 𝑦 → (𝑁‘(𝑇‘((𝑦 / 2) · 𝑥))) < 1)))
7567, 74mpid 44 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1) → (𝑁‘(𝑇‘((𝑦 / 2) · 𝑥))) < 1))
762ad2antrl 728 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (𝑁‘(𝑇𝑥)) ∈ ℝ)
7776, 48, 50ltmuldiv2d 12641 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (((𝑦 / 2) · (𝑁‘(𝑇𝑥))) < 1 ↔ (𝑁‘(𝑇𝑥)) < (1 / (𝑦 / 2))))
7850rprecred 12604 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (1 / (𝑦 / 2)) ∈ ℝ)
79 ltle 10886 . . . . . . . . . . . . . . . . . 18 (((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ (1 / (𝑦 / 2)) ∈ ℝ) → ((𝑁‘(𝑇𝑥)) < (1 / (𝑦 / 2)) → (𝑁‘(𝑇𝑥)) ≤ (1 / (𝑦 / 2))))
8076, 78, 79syl2anc 587 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((𝑁‘(𝑇𝑥)) < (1 / (𝑦 / 2)) → (𝑁‘(𝑇𝑥)) ≤ (1 / (𝑦 / 2))))
8177, 80sylbid 243 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (((𝑦 / 2) · (𝑁‘(𝑇𝑥))) < 1 → (𝑁‘(𝑇𝑥)) ≤ (1 / (𝑦 / 2))))
82 nmcex.5 . . . . . . . . . . . . . . . . . 18 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → ((𝑦 / 2) · (𝑁‘(𝑇𝑥))) = (𝑁‘(𝑇‘((𝑦 / 2) · 𝑥))))
8350, 40, 82syl2anc 587 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((𝑦 / 2) · (𝑁‘(𝑇𝑥))) = (𝑁‘(𝑇‘((𝑦 / 2) · 𝑥))))
8483breq1d 5049 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (((𝑦 / 2) · (𝑁‘(𝑇𝑥))) < 1 ↔ (𝑁‘(𝑇‘((𝑦 / 2) · 𝑥))) < 1))
85 rpcn 12561 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ+𝑦 ∈ ℂ)
86 rpne0 12567 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ+𝑦 ≠ 0)
87 2cn 11870 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℂ
88 2ne0 11899 . . . . . . . . . . . . . . . . . . . 20 2 ≠ 0
89 recdiv 11503 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (1 / (𝑦 / 2)) = (2 / 𝑦))
9087, 88, 89mpanr12 705 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (1 / (𝑦 / 2)) = (2 / 𝑦))
9185, 86, 90syl2anc 587 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℝ+ → (1 / (𝑦 / 2)) = (2 / 𝑦))
9291adantr 484 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (1 / (𝑦 / 2)) = (2 / 𝑦))
9392breq2d 5051 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((𝑁‘(𝑇𝑥)) ≤ (1 / (𝑦 / 2)) ↔ (𝑁‘(𝑇𝑥)) ≤ (2 / 𝑦)))
9481, 84, 933imtr3d 296 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((𝑁‘(𝑇‘((𝑦 / 2) · 𝑥))) < 1 → (𝑁‘(𝑇𝑥)) ≤ (2 / 𝑦)))
9575, 94syld 47 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1) → (𝑁‘(𝑇𝑥)) ≤ (2 / 𝑦)))
9695imp 410 . . . . . . . . . . . . 13 (((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) ∧ ∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1)) → (𝑁‘(𝑇𝑥)) ≤ (2 / 𝑦))
9796an32s 652 . . . . . . . . . . . 12 (((𝑦 ∈ ℝ+ ∧ ∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1)) ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (𝑁‘(𝑇𝑥)) ≤ (2 / 𝑦))
9897anassrs 471 . . . . . . . . . . 11 ((((𝑦 ∈ ℝ+ ∧ ∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (𝑁‘(𝑇𝑥)) ≤ (2 / 𝑦))
99 breq1 5042 . . . . . . . . . . 11 (𝑛 = (𝑁‘(𝑇𝑥)) → (𝑛 ≤ (2 / 𝑦) ↔ (𝑁‘(𝑇𝑥)) ≤ (2 / 𝑦)))
10098, 99syl5ibrcom 250 . . . . . . . . . 10 ((((𝑦 ∈ ℝ+ ∧ ∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (𝑛 = (𝑁‘(𝑇𝑥)) → 𝑛 ≤ (2 / 𝑦)))
101100expimpd 457 . . . . . . . . 9 (((𝑦 ∈ ℝ+ ∧ ∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1)) ∧ 𝑥 ∈ ℋ) → (((norm𝑥) ≤ 1 ∧ 𝑛 = (𝑁‘(𝑇𝑥))) → 𝑛 ≤ (2 / 𝑦)))
102101rexlimdva 3193 . . . . . . . 8 ((𝑦 ∈ ℝ+ ∧ ∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1)) → (∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑛 = (𝑁‘(𝑇𝑥))) → 𝑛 ≤ (2 / 𝑦)))
103102alrimiv 1935 . . . . . . 7 ((𝑦 ∈ ℝ+ ∧ ∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1)) → ∀𝑛(∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑛 = (𝑁‘(𝑇𝑥))) → 𝑛 ≤ (2 / 𝑦)))
104 eqeq1 2740 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑚 = (𝑁‘(𝑇𝑥)) ↔ 𝑛 = (𝑁‘(𝑇𝑥))))
105104anbi2d 632 . . . . . . . . . . 11 (𝑚 = 𝑛 → (((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥))) ↔ ((norm𝑥) ≤ 1 ∧ 𝑛 = (𝑁‘(𝑇𝑥)))))
106105rexbidv 3206 . . . . . . . . . 10 (𝑚 = 𝑛 → (∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥))) ↔ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑛 = (𝑁‘(𝑇𝑥)))))
107106ralab 3595 . . . . . . . . 9 (∀𝑛 ∈ {𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}𝑛𝑧 ↔ ∀𝑛(∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑛 = (𝑁‘(𝑇𝑥))) → 𝑛𝑧))
108 breq2 5043 . . . . . . . . . . 11 (𝑧 = (2 / 𝑦) → (𝑛𝑧𝑛 ≤ (2 / 𝑦)))
109108imbi2d 344 . . . . . . . . . 10 (𝑧 = (2 / 𝑦) → ((∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑛 = (𝑁‘(𝑇𝑥))) → 𝑛𝑧) ↔ (∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑛 = (𝑁‘(𝑇𝑥))) → 𝑛 ≤ (2 / 𝑦))))
110109albidv 1928 . . . . . . . . 9 (𝑧 = (2 / 𝑦) → (∀𝑛(∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑛 = (𝑁‘(𝑇𝑥))) → 𝑛𝑧) ↔ ∀𝑛(∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑛 = (𝑁‘(𝑇𝑥))) → 𝑛 ≤ (2 / 𝑦))))
111107, 110syl5bb 286 . . . . . . . 8 (𝑧 = (2 / 𝑦) → (∀𝑛 ∈ {𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}𝑛𝑧 ↔ ∀𝑛(∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑛 = (𝑁‘(𝑇𝑥))) → 𝑛 ≤ (2 / 𝑦))))
112111rspcev 3527 . . . . . . 7 (((2 / 𝑦) ∈ ℝ ∧ ∀𝑛(∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑛 = (𝑁‘(𝑇𝑥))) → 𝑛 ≤ (2 / 𝑦))) → ∃𝑧 ∈ ℝ ∀𝑛 ∈ {𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}𝑛𝑧)
11335, 103, 112syl2anc 587 . . . . . 6 ((𝑦 ∈ ℝ+ ∧ ∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1)) → ∃𝑧 ∈ ℝ ∀𝑛 ∈ {𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}𝑛𝑧)
114113rexlimiva 3190 . . . . 5 (∃𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1) → ∃𝑧 ∈ ℝ ∀𝑛 ∈ {𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}𝑛𝑧)
11530, 114ax-mp 5 . . . 4 𝑧 ∈ ℝ ∀𝑛 ∈ {𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}𝑛𝑧
116 supxrre 12882 . . . 4 (({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))} ⊆ ℝ ∧ {𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))} ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑛 ∈ {𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}𝑛𝑧) → sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}, ℝ*, < ) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}, ℝ, < ))
1178, 29, 115, 116mp3an 1463 . . 3 sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}, ℝ*, < ) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}, ℝ, < )
1181, 117eqtri 2759 . 2 (𝑆𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}, ℝ, < )
119 suprcl 11757 . . 3 (({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))} ⊆ ℝ ∧ {𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))} ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑛 ∈ {𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}𝑛𝑧) → sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}, ℝ, < ) ∈ ℝ)
1208, 29, 115, 119mp3an 1463 . 2 sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}, ℝ, < ) ∈ ℝ
121118, 120eqeltri 2827 1 (𝑆𝑇) ∈ ℝ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wal 1541   = wceq 1543  wcel 2112  {cab 2714  wne 2932  wral 3051  wrex 3052  wss 3853  c0 4223   class class class wbr 5039  cfv 6358  (class class class)co 7191  supcsup 9034  cc 10692  cr 10693  0cc0 10694  1c1 10695   · cmul 10699  *cxr 10831   < clt 10832  cle 10833   / cdiv 11454  2c2 11850  +crp 12551  abscabs 14762  chba 28954   · csm 28956  normcno 28958  0c0v 28959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772  ax-hv0cl 29038  ax-hfvmul 29040  ax-hvmul0 29045  ax-hfi 29114  ax-his1 29117  ax-his3 29119  ax-his4 29120
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-sup 9036  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-n0 12056  df-z 12142  df-uz 12404  df-rp 12552  df-seq 13540  df-exp 13601  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-hnorm 29003
This theorem is referenced by:  nmcopexi  30062  nmcfnexi  30086
  Copyright terms: Public domain W3C validator