HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmcexi Structured version   Visualization version   GIF version

Theorem nmcexi 30968
Description: Lemma for nmcopexi 30969 and nmcfnexi 30993. The norm of a continuous linear Hilbert space operator or functional exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by Mario Carneiro, 17-Nov-2013.) (Proof shortened by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmcex.1 𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1)
nmcex.2 (𝑆𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}, ℝ*, < )
nmcex.3 (𝑥 ∈ ℋ → (𝑁‘(𝑇𝑥)) ∈ ℝ)
nmcex.4 (𝑁‘(𝑇‘0)) = 0
nmcex.5 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → ((𝑦 / 2) · (𝑁‘(𝑇𝑥))) = (𝑁‘(𝑇‘((𝑦 / 2) · 𝑥))))
Assertion
Ref Expression
nmcexi (𝑆𝑇) ∈ ℝ
Distinct variable groups:   𝑥,𝑚,𝑦,𝑧,𝑁   𝑇,𝑚,𝑥,𝑦,𝑧
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑧,𝑚)

Proof of Theorem nmcexi
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nmcex.2 . . 3 (𝑆𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}, ℝ*, < )
2 nmcex.3 . . . . . . . . 9 (𝑥 ∈ ℋ → (𝑁‘(𝑇𝑥)) ∈ ℝ)
3 eleq1 2825 . . . . . . . . 9 (𝑚 = (𝑁‘(𝑇𝑥)) → (𝑚 ∈ ℝ ↔ (𝑁‘(𝑇𝑥)) ∈ ℝ))
42, 3syl5ibrcom 246 . . . . . . . 8 (𝑥 ∈ ℋ → (𝑚 = (𝑁‘(𝑇𝑥)) → 𝑚 ∈ ℝ))
54imp 407 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑚 = (𝑁‘(𝑇𝑥))) → 𝑚 ∈ ℝ)
65adantrl 714 . . . . . 6 ((𝑥 ∈ ℋ ∧ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))) → 𝑚 ∈ ℝ)
76rexlimiva 3144 . . . . 5 (∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥))) → 𝑚 ∈ ℝ)
87abssi 4027 . . . 4 {𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))} ⊆ ℝ
9 ax-hv0cl 29945 . . . . . . 7 0 ∈ ℋ
10 norm0 30070 . . . . . . . . 9 (norm‘0) = 0
11 0le1 11678 . . . . . . . . 9 0 ≤ 1
1210, 11eqbrtri 5126 . . . . . . . 8 (norm‘0) ≤ 1
13 nmcex.4 . . . . . . . . 9 (𝑁‘(𝑇‘0)) = 0
1413eqcomi 2745 . . . . . . . 8 0 = (𝑁‘(𝑇‘0))
1512, 14pm3.2i 471 . . . . . . 7 ((norm‘0) ≤ 1 ∧ 0 = (𝑁‘(𝑇‘0)))
16 fveq2 6842 . . . . . . . . . 10 (𝑥 = 0 → (norm𝑥) = (norm‘0))
1716breq1d 5115 . . . . . . . . 9 (𝑥 = 0 → ((norm𝑥) ≤ 1 ↔ (norm‘0) ≤ 1))
18 2fveq3 6847 . . . . . . . . . 10 (𝑥 = 0 → (𝑁‘(𝑇𝑥)) = (𝑁‘(𝑇‘0)))
1918eqeq2d 2747 . . . . . . . . 9 (𝑥 = 0 → (0 = (𝑁‘(𝑇𝑥)) ↔ 0 = (𝑁‘(𝑇‘0))))
2017, 19anbi12d 631 . . . . . . . 8 (𝑥 = 0 → (((norm𝑥) ≤ 1 ∧ 0 = (𝑁‘(𝑇𝑥))) ↔ ((norm‘0) ≤ 1 ∧ 0 = (𝑁‘(𝑇‘0)))))
2120rspcev 3581 . . . . . . 7 ((0 ∈ ℋ ∧ ((norm‘0) ≤ 1 ∧ 0 = (𝑁‘(𝑇‘0)))) → ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 0 = (𝑁‘(𝑇𝑥))))
229, 15, 21mp2an 690 . . . . . 6 𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 0 = (𝑁‘(𝑇𝑥)))
23 c0ex 11149 . . . . . . 7 0 ∈ V
24 eqeq1 2740 . . . . . . . . 9 (𝑚 = 0 → (𝑚 = (𝑁‘(𝑇𝑥)) ↔ 0 = (𝑁‘(𝑇𝑥))))
2524anbi2d 629 . . . . . . . 8 (𝑚 = 0 → (((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥))) ↔ ((norm𝑥) ≤ 1 ∧ 0 = (𝑁‘(𝑇𝑥)))))
2625rexbidv 3175 . . . . . . 7 (𝑚 = 0 → (∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥))) ↔ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 0 = (𝑁‘(𝑇𝑥)))))
2723, 26elab 3630 . . . . . 6 (0 ∈ {𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))} ↔ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 0 = (𝑁‘(𝑇𝑥))))
2822, 27mpbir 230 . . . . 5 0 ∈ {𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}
2928ne0ii 4297 . . . 4 {𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))} ≠ ∅
30 nmcex.1 . . . . 5 𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1)
31 2rp 12920 . . . . . . . . . 10 2 ∈ ℝ+
32 rpdivcl 12940 . . . . . . . . . 10 ((2 ∈ ℝ+𝑦 ∈ ℝ+) → (2 / 𝑦) ∈ ℝ+)
3331, 32mpan 688 . . . . . . . . 9 (𝑦 ∈ ℝ+ → (2 / 𝑦) ∈ ℝ+)
3433rpred 12957 . . . . . . . 8 (𝑦 ∈ ℝ+ → (2 / 𝑦) ∈ ℝ)
3534adantr 481 . . . . . . 7 ((𝑦 ∈ ℝ+ ∧ ∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1)) → (2 / 𝑦) ∈ ℝ)
36 rpre 12923 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
3736adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → 𝑦 ∈ ℝ)
3837rehalfcld 12400 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (𝑦 / 2) ∈ ℝ)
3938recnd 11183 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (𝑦 / 2) ∈ ℂ)
40 simprl 769 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → 𝑥 ∈ ℋ)
41 hvmulcl 29955 . . . . . . . . . . . . . . . . . . 19 (((𝑦 / 2) ∈ ℂ ∧ 𝑥 ∈ ℋ) → ((𝑦 / 2) · 𝑥) ∈ ℋ)
4239, 40, 41syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((𝑦 / 2) · 𝑥) ∈ ℋ)
43 normcl 30067 . . . . . . . . . . . . . . . . . 18 (((𝑦 / 2) · 𝑥) ∈ ℋ → (norm‘((𝑦 / 2) · 𝑥)) ∈ ℝ)
4442, 43syl 17 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm‘((𝑦 / 2) · 𝑥)) ∈ ℝ)
45 simprr 771 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm𝑥) ≤ 1)
46 normcl 30067 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℝ)
4746ad2antrl 726 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm𝑥) ∈ ℝ)
48 1red 11156 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → 1 ∈ ℝ)
49 rphalfcl 12942 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℝ+ → (𝑦 / 2) ∈ ℝ+)
5049adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (𝑦 / 2) ∈ ℝ+)
5147, 48, 50lemul2d 13001 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((norm𝑥) ≤ 1 ↔ ((𝑦 / 2) · (norm𝑥)) ≤ ((𝑦 / 2) · 1)))
5245, 51mpbid 231 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((𝑦 / 2) · (norm𝑥)) ≤ ((𝑦 / 2) · 1))
53 rpcn 12925 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℂ)
54 norm-iii 30082 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 / 2) ∈ ℂ ∧ 𝑥 ∈ ℋ) → (norm‘((𝑦 / 2) · 𝑥)) = ((abs‘(𝑦 / 2)) · (norm𝑥)))
5553, 54sylan 580 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → (norm‘((𝑦 / 2) · 𝑥)) = ((abs‘(𝑦 / 2)) · (norm𝑥)))
56 rpre 12923 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℝ)
57 rpge0 12928 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 / 2) ∈ ℝ+ → 0 ≤ (𝑦 / 2))
5856, 57absidd 15307 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 / 2) ∈ ℝ+ → (abs‘(𝑦 / 2)) = (𝑦 / 2))
5958oveq1d 7372 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 / 2) ∈ ℝ+ → ((abs‘(𝑦 / 2)) · (norm𝑥)) = ((𝑦 / 2) · (norm𝑥)))
6059adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → ((abs‘(𝑦 / 2)) · (norm𝑥)) = ((𝑦 / 2) · (norm𝑥)))
6155, 60eqtr2d 2777 . . . . . . . . . . . . . . . . . . 19 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → ((𝑦 / 2) · (norm𝑥)) = (norm‘((𝑦 / 2) · 𝑥)))
6250, 40, 61syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((𝑦 / 2) · (norm𝑥)) = (norm‘((𝑦 / 2) · 𝑥)))
6339mulid1d 11172 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((𝑦 / 2) · 1) = (𝑦 / 2))
6452, 62, 633brtr3d 5136 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm‘((𝑦 / 2) · 𝑥)) ≤ (𝑦 / 2))
65 rphalflt 12944 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℝ+ → (𝑦 / 2) < 𝑦)
6665adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (𝑦 / 2) < 𝑦)
6744, 38, 37, 64, 66lelttrd 11313 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm‘((𝑦 / 2) · 𝑥)) < 𝑦)
68 fveq2 6842 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = ((𝑦 / 2) · 𝑥) → (norm𝑧) = (norm‘((𝑦 / 2) · 𝑥)))
6968breq1d 5115 . . . . . . . . . . . . . . . . . . 19 (𝑧 = ((𝑦 / 2) · 𝑥) → ((norm𝑧) < 𝑦 ↔ (norm‘((𝑦 / 2) · 𝑥)) < 𝑦))
70 2fveq3 6847 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = ((𝑦 / 2) · 𝑥) → (𝑁‘(𝑇𝑧)) = (𝑁‘(𝑇‘((𝑦 / 2) · 𝑥))))
7170breq1d 5115 . . . . . . . . . . . . . . . . . . 19 (𝑧 = ((𝑦 / 2) · 𝑥) → ((𝑁‘(𝑇𝑧)) < 1 ↔ (𝑁‘(𝑇‘((𝑦 / 2) · 𝑥))) < 1))
7269, 71imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑧 = ((𝑦 / 2) · 𝑥) → (((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1) ↔ ((norm‘((𝑦 / 2) · 𝑥)) < 𝑦 → (𝑁‘(𝑇‘((𝑦 / 2) · 𝑥))) < 1)))
7372rspcv 3577 . . . . . . . . . . . . . . . . 17 (((𝑦 / 2) · 𝑥) ∈ ℋ → (∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1) → ((norm‘((𝑦 / 2) · 𝑥)) < 𝑦 → (𝑁‘(𝑇‘((𝑦 / 2) · 𝑥))) < 1)))
7442, 73syl 17 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1) → ((norm‘((𝑦 / 2) · 𝑥)) < 𝑦 → (𝑁‘(𝑇‘((𝑦 / 2) · 𝑥))) < 1)))
7567, 74mpid 44 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1) → (𝑁‘(𝑇‘((𝑦 / 2) · 𝑥))) < 1))
762ad2antrl 726 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (𝑁‘(𝑇𝑥)) ∈ ℝ)
7776, 48, 50ltmuldiv2d 13005 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (((𝑦 / 2) · (𝑁‘(𝑇𝑥))) < 1 ↔ (𝑁‘(𝑇𝑥)) < (1 / (𝑦 / 2))))
7850rprecred 12968 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (1 / (𝑦 / 2)) ∈ ℝ)
79 ltle 11243 . . . . . . . . . . . . . . . . . 18 (((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ (1 / (𝑦 / 2)) ∈ ℝ) → ((𝑁‘(𝑇𝑥)) < (1 / (𝑦 / 2)) → (𝑁‘(𝑇𝑥)) ≤ (1 / (𝑦 / 2))))
8076, 78, 79syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((𝑁‘(𝑇𝑥)) < (1 / (𝑦 / 2)) → (𝑁‘(𝑇𝑥)) ≤ (1 / (𝑦 / 2))))
8177, 80sylbid 239 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (((𝑦 / 2) · (𝑁‘(𝑇𝑥))) < 1 → (𝑁‘(𝑇𝑥)) ≤ (1 / (𝑦 / 2))))
82 nmcex.5 . . . . . . . . . . . . . . . . . 18 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → ((𝑦 / 2) · (𝑁‘(𝑇𝑥))) = (𝑁‘(𝑇‘((𝑦 / 2) · 𝑥))))
8350, 40, 82syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((𝑦 / 2) · (𝑁‘(𝑇𝑥))) = (𝑁‘(𝑇‘((𝑦 / 2) · 𝑥))))
8483breq1d 5115 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (((𝑦 / 2) · (𝑁‘(𝑇𝑥))) < 1 ↔ (𝑁‘(𝑇‘((𝑦 / 2) · 𝑥))) < 1))
85 rpcn 12925 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ+𝑦 ∈ ℂ)
86 rpne0 12931 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ+𝑦 ≠ 0)
87 2cn 12228 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℂ
88 2ne0 12257 . . . . . . . . . . . . . . . . . . . 20 2 ≠ 0
89 recdiv 11861 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (1 / (𝑦 / 2)) = (2 / 𝑦))
9087, 88, 89mpanr12 703 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (1 / (𝑦 / 2)) = (2 / 𝑦))
9185, 86, 90syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℝ+ → (1 / (𝑦 / 2)) = (2 / 𝑦))
9291adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (1 / (𝑦 / 2)) = (2 / 𝑦))
9392breq2d 5117 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((𝑁‘(𝑇𝑥)) ≤ (1 / (𝑦 / 2)) ↔ (𝑁‘(𝑇𝑥)) ≤ (2 / 𝑦)))
9481, 84, 933imtr3d 292 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((𝑁‘(𝑇‘((𝑦 / 2) · 𝑥))) < 1 → (𝑁‘(𝑇𝑥)) ≤ (2 / 𝑦)))
9575, 94syld 47 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1) → (𝑁‘(𝑇𝑥)) ≤ (2 / 𝑦)))
9695imp 407 . . . . . . . . . . . . 13 (((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) ∧ ∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1)) → (𝑁‘(𝑇𝑥)) ≤ (2 / 𝑦))
9796an32s 650 . . . . . . . . . . . 12 (((𝑦 ∈ ℝ+ ∧ ∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1)) ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (𝑁‘(𝑇𝑥)) ≤ (2 / 𝑦))
9897anassrs 468 . . . . . . . . . . 11 ((((𝑦 ∈ ℝ+ ∧ ∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (𝑁‘(𝑇𝑥)) ≤ (2 / 𝑦))
99 breq1 5108 . . . . . . . . . . 11 (𝑛 = (𝑁‘(𝑇𝑥)) → (𝑛 ≤ (2 / 𝑦) ↔ (𝑁‘(𝑇𝑥)) ≤ (2 / 𝑦)))
10098, 99syl5ibrcom 246 . . . . . . . . . 10 ((((𝑦 ∈ ℝ+ ∧ ∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (𝑛 = (𝑁‘(𝑇𝑥)) → 𝑛 ≤ (2 / 𝑦)))
101100expimpd 454 . . . . . . . . 9 (((𝑦 ∈ ℝ+ ∧ ∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1)) ∧ 𝑥 ∈ ℋ) → (((norm𝑥) ≤ 1 ∧ 𝑛 = (𝑁‘(𝑇𝑥))) → 𝑛 ≤ (2 / 𝑦)))
102101rexlimdva 3152 . . . . . . . 8 ((𝑦 ∈ ℝ+ ∧ ∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1)) → (∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑛 = (𝑁‘(𝑇𝑥))) → 𝑛 ≤ (2 / 𝑦)))
103102alrimiv 1930 . . . . . . 7 ((𝑦 ∈ ℝ+ ∧ ∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1)) → ∀𝑛(∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑛 = (𝑁‘(𝑇𝑥))) → 𝑛 ≤ (2 / 𝑦)))
104 eqeq1 2740 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑚 = (𝑁‘(𝑇𝑥)) ↔ 𝑛 = (𝑁‘(𝑇𝑥))))
105104anbi2d 629 . . . . . . . . . . 11 (𝑚 = 𝑛 → (((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥))) ↔ ((norm𝑥) ≤ 1 ∧ 𝑛 = (𝑁‘(𝑇𝑥)))))
106105rexbidv 3175 . . . . . . . . . 10 (𝑚 = 𝑛 → (∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥))) ↔ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑛 = (𝑁‘(𝑇𝑥)))))
107106ralab 3649 . . . . . . . . 9 (∀𝑛 ∈ {𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}𝑛𝑧 ↔ ∀𝑛(∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑛 = (𝑁‘(𝑇𝑥))) → 𝑛𝑧))
108 breq2 5109 . . . . . . . . . . 11 (𝑧 = (2 / 𝑦) → (𝑛𝑧𝑛 ≤ (2 / 𝑦)))
109108imbi2d 340 . . . . . . . . . 10 (𝑧 = (2 / 𝑦) → ((∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑛 = (𝑁‘(𝑇𝑥))) → 𝑛𝑧) ↔ (∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑛 = (𝑁‘(𝑇𝑥))) → 𝑛 ≤ (2 / 𝑦))))
110109albidv 1923 . . . . . . . . 9 (𝑧 = (2 / 𝑦) → (∀𝑛(∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑛 = (𝑁‘(𝑇𝑥))) → 𝑛𝑧) ↔ ∀𝑛(∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑛 = (𝑁‘(𝑇𝑥))) → 𝑛 ≤ (2 / 𝑦))))
111107, 110bitrid 282 . . . . . . . 8 (𝑧 = (2 / 𝑦) → (∀𝑛 ∈ {𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}𝑛𝑧 ↔ ∀𝑛(∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑛 = (𝑁‘(𝑇𝑥))) → 𝑛 ≤ (2 / 𝑦))))
112111rspcev 3581 . . . . . . 7 (((2 / 𝑦) ∈ ℝ ∧ ∀𝑛(∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑛 = (𝑁‘(𝑇𝑥))) → 𝑛 ≤ (2 / 𝑦))) → ∃𝑧 ∈ ℝ ∀𝑛 ∈ {𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}𝑛𝑧)
11335, 103, 112syl2anc 584 . . . . . 6 ((𝑦 ∈ ℝ+ ∧ ∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1)) → ∃𝑧 ∈ ℝ ∀𝑛 ∈ {𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}𝑛𝑧)
114113rexlimiva 3144 . . . . 5 (∃𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1) → ∃𝑧 ∈ ℝ ∀𝑛 ∈ {𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}𝑛𝑧)
11530, 114ax-mp 5 . . . 4 𝑧 ∈ ℝ ∀𝑛 ∈ {𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}𝑛𝑧
116 supxrre 13246 . . . 4 (({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))} ⊆ ℝ ∧ {𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))} ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑛 ∈ {𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}𝑛𝑧) → sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}, ℝ*, < ) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}, ℝ, < ))
1178, 29, 115, 116mp3an 1461 . . 3 sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}, ℝ*, < ) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}, ℝ, < )
1181, 117eqtri 2764 . 2 (𝑆𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}, ℝ, < )
119 suprcl 12115 . . 3 (({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))} ⊆ ℝ ∧ {𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))} ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑛 ∈ {𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}𝑛𝑧) → sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}, ℝ, < ) ∈ ℝ)
1208, 29, 115, 119mp3an 1461 . 2 sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}, ℝ, < ) ∈ ℝ
121118, 120eqeltri 2834 1 (𝑆𝑇) ∈ ℝ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1539   = wceq 1541  wcel 2106  {cab 2713  wne 2943  wral 3064  wrex 3073  wss 3910  c0 4282   class class class wbr 5105  cfv 6496  (class class class)co 7357  supcsup 9376  cc 11049  cr 11050  0cc0 11051  1c1 11052   · cmul 11056  *cxr 11188   < clt 11189  cle 11190   / cdiv 11812  2c2 12208  +crp 12915  abscabs 15119  chba 29861   · csm 29863  normcno 29865  0c0v 29866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-hv0cl 29945  ax-hfvmul 29947  ax-hvmul0 29952  ax-hfi 30021  ax-his1 30024  ax-his3 30026  ax-his4 30027
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-hnorm 29910
This theorem is referenced by:  nmcopexi  30969  nmcfnexi  30993
  Copyright terms: Public domain W3C validator