Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmcexi Structured version   Visualization version   GIF version

Theorem nmcexi 29813
 Description: Lemma for nmcopexi 29814 and nmcfnexi 29838. The norm of a continuous linear Hilbert space operator or functional exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by Mario Carneiro, 17-Nov-2013.) (Proof shortened by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmcex.1 𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1)
nmcex.2 (𝑆𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}, ℝ*, < )
nmcex.3 (𝑥 ∈ ℋ → (𝑁‘(𝑇𝑥)) ∈ ℝ)
nmcex.4 (𝑁‘(𝑇‘0)) = 0
nmcex.5 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → ((𝑦 / 2) · (𝑁‘(𝑇𝑥))) = (𝑁‘(𝑇‘((𝑦 / 2) · 𝑥))))
Assertion
Ref Expression
nmcexi (𝑆𝑇) ∈ ℝ
Distinct variable groups:   𝑥,𝑚,𝑦,𝑧,𝑁   𝑇,𝑚,𝑥,𝑦,𝑧
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑧,𝑚)

Proof of Theorem nmcexi
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nmcex.2 . . 3 (𝑆𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}, ℝ*, < )
2 nmcex.3 . . . . . . . . 9 (𝑥 ∈ ℋ → (𝑁‘(𝑇𝑥)) ∈ ℝ)
3 eleq1 2880 . . . . . . . . 9 (𝑚 = (𝑁‘(𝑇𝑥)) → (𝑚 ∈ ℝ ↔ (𝑁‘(𝑇𝑥)) ∈ ℝ))
42, 3syl5ibrcom 250 . . . . . . . 8 (𝑥 ∈ ℋ → (𝑚 = (𝑁‘(𝑇𝑥)) → 𝑚 ∈ ℝ))
54imp 410 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑚 = (𝑁‘(𝑇𝑥))) → 𝑚 ∈ ℝ)
65adantrl 715 . . . . . 6 ((𝑥 ∈ ℋ ∧ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))) → 𝑚 ∈ ℝ)
76rexlimiva 3243 . . . . 5 (∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥))) → 𝑚 ∈ ℝ)
87abssi 4000 . . . 4 {𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))} ⊆ ℝ
9 ax-hv0cl 28790 . . . . . . 7 0 ∈ ℋ
10 norm0 28915 . . . . . . . . 9 (norm‘0) = 0
11 0le1 11156 . . . . . . . . 9 0 ≤ 1
1210, 11eqbrtri 5054 . . . . . . . 8 (norm‘0) ≤ 1
13 nmcex.4 . . . . . . . . 9 (𝑁‘(𝑇‘0)) = 0
1413eqcomi 2810 . . . . . . . 8 0 = (𝑁‘(𝑇‘0))
1512, 14pm3.2i 474 . . . . . . 7 ((norm‘0) ≤ 1 ∧ 0 = (𝑁‘(𝑇‘0)))
16 fveq2 6649 . . . . . . . . . 10 (𝑥 = 0 → (norm𝑥) = (norm‘0))
1716breq1d 5043 . . . . . . . . 9 (𝑥 = 0 → ((norm𝑥) ≤ 1 ↔ (norm‘0) ≤ 1))
18 2fveq3 6654 . . . . . . . . . 10 (𝑥 = 0 → (𝑁‘(𝑇𝑥)) = (𝑁‘(𝑇‘0)))
1918eqeq2d 2812 . . . . . . . . 9 (𝑥 = 0 → (0 = (𝑁‘(𝑇𝑥)) ↔ 0 = (𝑁‘(𝑇‘0))))
2017, 19anbi12d 633 . . . . . . . 8 (𝑥 = 0 → (((norm𝑥) ≤ 1 ∧ 0 = (𝑁‘(𝑇𝑥))) ↔ ((norm‘0) ≤ 1 ∧ 0 = (𝑁‘(𝑇‘0)))))
2120rspcev 3574 . . . . . . 7 ((0 ∈ ℋ ∧ ((norm‘0) ≤ 1 ∧ 0 = (𝑁‘(𝑇‘0)))) → ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 0 = (𝑁‘(𝑇𝑥))))
229, 15, 21mp2an 691 . . . . . 6 𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 0 = (𝑁‘(𝑇𝑥)))
23 c0ex 10628 . . . . . . 7 0 ∈ V
24 eqeq1 2805 . . . . . . . . 9 (𝑚 = 0 → (𝑚 = (𝑁‘(𝑇𝑥)) ↔ 0 = (𝑁‘(𝑇𝑥))))
2524anbi2d 631 . . . . . . . 8 (𝑚 = 0 → (((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥))) ↔ ((norm𝑥) ≤ 1 ∧ 0 = (𝑁‘(𝑇𝑥)))))
2625rexbidv 3259 . . . . . . 7 (𝑚 = 0 → (∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥))) ↔ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 0 = (𝑁‘(𝑇𝑥)))))
2723, 26elab 3618 . . . . . 6 (0 ∈ {𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))} ↔ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 0 = (𝑁‘(𝑇𝑥))))
2822, 27mpbir 234 . . . . 5 0 ∈ {𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}
2928ne0ii 4256 . . . 4 {𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))} ≠ ∅
30 nmcex.1 . . . . 5 𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1)
31 2rp 12386 . . . . . . . . . 10 2 ∈ ℝ+
32 rpdivcl 12406 . . . . . . . . . 10 ((2 ∈ ℝ+𝑦 ∈ ℝ+) → (2 / 𝑦) ∈ ℝ+)
3331, 32mpan 689 . . . . . . . . 9 (𝑦 ∈ ℝ+ → (2 / 𝑦) ∈ ℝ+)
3433rpred 12423 . . . . . . . 8 (𝑦 ∈ ℝ+ → (2 / 𝑦) ∈ ℝ)
3534adantr 484 . . . . . . 7 ((𝑦 ∈ ℝ+ ∧ ∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1)) → (2 / 𝑦) ∈ ℝ)
36 rpre 12389 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
3736adantr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → 𝑦 ∈ ℝ)
3837rehalfcld 11876 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (𝑦 / 2) ∈ ℝ)
3938recnd 10662 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (𝑦 / 2) ∈ ℂ)
40 simprl 770 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → 𝑥 ∈ ℋ)
41 hvmulcl 28800 . . . . . . . . . . . . . . . . . . 19 (((𝑦 / 2) ∈ ℂ ∧ 𝑥 ∈ ℋ) → ((𝑦 / 2) · 𝑥) ∈ ℋ)
4239, 40, 41syl2anc 587 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((𝑦 / 2) · 𝑥) ∈ ℋ)
43 normcl 28912 . . . . . . . . . . . . . . . . . 18 (((𝑦 / 2) · 𝑥) ∈ ℋ → (norm‘((𝑦 / 2) · 𝑥)) ∈ ℝ)
4442, 43syl 17 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm‘((𝑦 / 2) · 𝑥)) ∈ ℝ)
45 simprr 772 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm𝑥) ≤ 1)
46 normcl 28912 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℝ)
4746ad2antrl 727 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm𝑥) ∈ ℝ)
48 1red 10635 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → 1 ∈ ℝ)
49 rphalfcl 12408 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℝ+ → (𝑦 / 2) ∈ ℝ+)
5049adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (𝑦 / 2) ∈ ℝ+)
5147, 48, 50lemul2d 12467 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((norm𝑥) ≤ 1 ↔ ((𝑦 / 2) · (norm𝑥)) ≤ ((𝑦 / 2) · 1)))
5245, 51mpbid 235 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((𝑦 / 2) · (norm𝑥)) ≤ ((𝑦 / 2) · 1))
53 rpcn 12391 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℂ)
54 norm-iii 28927 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 / 2) ∈ ℂ ∧ 𝑥 ∈ ℋ) → (norm‘((𝑦 / 2) · 𝑥)) = ((abs‘(𝑦 / 2)) · (norm𝑥)))
5553, 54sylan 583 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → (norm‘((𝑦 / 2) · 𝑥)) = ((abs‘(𝑦 / 2)) · (norm𝑥)))
56 rpre 12389 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℝ)
57 rpge0 12394 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 / 2) ∈ ℝ+ → 0 ≤ (𝑦 / 2))
5856, 57absidd 14778 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 / 2) ∈ ℝ+ → (abs‘(𝑦 / 2)) = (𝑦 / 2))
5958oveq1d 7154 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 / 2) ∈ ℝ+ → ((abs‘(𝑦 / 2)) · (norm𝑥)) = ((𝑦 / 2) · (norm𝑥)))
6059adantr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → ((abs‘(𝑦 / 2)) · (norm𝑥)) = ((𝑦 / 2) · (norm𝑥)))
6155, 60eqtr2d 2837 . . . . . . . . . . . . . . . . . . 19 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → ((𝑦 / 2) · (norm𝑥)) = (norm‘((𝑦 / 2) · 𝑥)))
6250, 40, 61syl2anc 587 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((𝑦 / 2) · (norm𝑥)) = (norm‘((𝑦 / 2) · 𝑥)))
6339mulid1d 10651 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((𝑦 / 2) · 1) = (𝑦 / 2))
6452, 62, 633brtr3d 5064 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm‘((𝑦 / 2) · 𝑥)) ≤ (𝑦 / 2))
65 rphalflt 12410 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℝ+ → (𝑦 / 2) < 𝑦)
6665adantr 484 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (𝑦 / 2) < 𝑦)
6744, 38, 37, 64, 66lelttrd 10791 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm‘((𝑦 / 2) · 𝑥)) < 𝑦)
68 fveq2 6649 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = ((𝑦 / 2) · 𝑥) → (norm𝑧) = (norm‘((𝑦 / 2) · 𝑥)))
6968breq1d 5043 . . . . . . . . . . . . . . . . . . 19 (𝑧 = ((𝑦 / 2) · 𝑥) → ((norm𝑧) < 𝑦 ↔ (norm‘((𝑦 / 2) · 𝑥)) < 𝑦))
70 2fveq3 6654 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = ((𝑦 / 2) · 𝑥) → (𝑁‘(𝑇𝑧)) = (𝑁‘(𝑇‘((𝑦 / 2) · 𝑥))))
7170breq1d 5043 . . . . . . . . . . . . . . . . . . 19 (𝑧 = ((𝑦 / 2) · 𝑥) → ((𝑁‘(𝑇𝑧)) < 1 ↔ (𝑁‘(𝑇‘((𝑦 / 2) · 𝑥))) < 1))
7269, 71imbi12d 348 . . . . . . . . . . . . . . . . . 18 (𝑧 = ((𝑦 / 2) · 𝑥) → (((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1) ↔ ((norm‘((𝑦 / 2) · 𝑥)) < 𝑦 → (𝑁‘(𝑇‘((𝑦 / 2) · 𝑥))) < 1)))
7372rspcv 3569 . . . . . . . . . . . . . . . . 17 (((𝑦 / 2) · 𝑥) ∈ ℋ → (∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1) → ((norm‘((𝑦 / 2) · 𝑥)) < 𝑦 → (𝑁‘(𝑇‘((𝑦 / 2) · 𝑥))) < 1)))
7442, 73syl 17 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1) → ((norm‘((𝑦 / 2) · 𝑥)) < 𝑦 → (𝑁‘(𝑇‘((𝑦 / 2) · 𝑥))) < 1)))
7567, 74mpid 44 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1) → (𝑁‘(𝑇‘((𝑦 / 2) · 𝑥))) < 1))
762ad2antrl 727 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (𝑁‘(𝑇𝑥)) ∈ ℝ)
7776, 48, 50ltmuldiv2d 12471 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (((𝑦 / 2) · (𝑁‘(𝑇𝑥))) < 1 ↔ (𝑁‘(𝑇𝑥)) < (1 / (𝑦 / 2))))
7850rprecred 12434 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (1 / (𝑦 / 2)) ∈ ℝ)
79 ltle 10722 . . . . . . . . . . . . . . . . . 18 (((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ (1 / (𝑦 / 2)) ∈ ℝ) → ((𝑁‘(𝑇𝑥)) < (1 / (𝑦 / 2)) → (𝑁‘(𝑇𝑥)) ≤ (1 / (𝑦 / 2))))
8076, 78, 79syl2anc 587 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((𝑁‘(𝑇𝑥)) < (1 / (𝑦 / 2)) → (𝑁‘(𝑇𝑥)) ≤ (1 / (𝑦 / 2))))
8177, 80sylbid 243 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (((𝑦 / 2) · (𝑁‘(𝑇𝑥))) < 1 → (𝑁‘(𝑇𝑥)) ≤ (1 / (𝑦 / 2))))
82 nmcex.5 . . . . . . . . . . . . . . . . . 18 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → ((𝑦 / 2) · (𝑁‘(𝑇𝑥))) = (𝑁‘(𝑇‘((𝑦 / 2) · 𝑥))))
8350, 40, 82syl2anc 587 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((𝑦 / 2) · (𝑁‘(𝑇𝑥))) = (𝑁‘(𝑇‘((𝑦 / 2) · 𝑥))))
8483breq1d 5043 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (((𝑦 / 2) · (𝑁‘(𝑇𝑥))) < 1 ↔ (𝑁‘(𝑇‘((𝑦 / 2) · 𝑥))) < 1))
85 rpcn 12391 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ+𝑦 ∈ ℂ)
86 rpne0 12397 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ+𝑦 ≠ 0)
87 2cn 11704 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℂ
88 2ne0 11733 . . . . . . . . . . . . . . . . . . . 20 2 ≠ 0
89 recdiv 11339 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (1 / (𝑦 / 2)) = (2 / 𝑦))
9087, 88, 89mpanr12 704 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (1 / (𝑦 / 2)) = (2 / 𝑦))
9185, 86, 90syl2anc 587 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℝ+ → (1 / (𝑦 / 2)) = (2 / 𝑦))
9291adantr 484 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (1 / (𝑦 / 2)) = (2 / 𝑦))
9392breq2d 5045 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((𝑁‘(𝑇𝑥)) ≤ (1 / (𝑦 / 2)) ↔ (𝑁‘(𝑇𝑥)) ≤ (2 / 𝑦)))
9481, 84, 933imtr3d 296 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((𝑁‘(𝑇‘((𝑦 / 2) · 𝑥))) < 1 → (𝑁‘(𝑇𝑥)) ≤ (2 / 𝑦)))
9575, 94syld 47 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1) → (𝑁‘(𝑇𝑥)) ≤ (2 / 𝑦)))
9695imp 410 . . . . . . . . . . . . 13 (((𝑦 ∈ ℝ+ ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) ∧ ∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1)) → (𝑁‘(𝑇𝑥)) ≤ (2 / 𝑦))
9796an32s 651 . . . . . . . . . . . 12 (((𝑦 ∈ ℝ+ ∧ ∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1)) ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (𝑁‘(𝑇𝑥)) ≤ (2 / 𝑦))
9897anassrs 471 . . . . . . . . . . 11 ((((𝑦 ∈ ℝ+ ∧ ∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (𝑁‘(𝑇𝑥)) ≤ (2 / 𝑦))
99 breq1 5036 . . . . . . . . . . 11 (𝑛 = (𝑁‘(𝑇𝑥)) → (𝑛 ≤ (2 / 𝑦) ↔ (𝑁‘(𝑇𝑥)) ≤ (2 / 𝑦)))
10098, 99syl5ibrcom 250 . . . . . . . . . 10 ((((𝑦 ∈ ℝ+ ∧ ∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (𝑛 = (𝑁‘(𝑇𝑥)) → 𝑛 ≤ (2 / 𝑦)))
101100expimpd 457 . . . . . . . . 9 (((𝑦 ∈ ℝ+ ∧ ∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1)) ∧ 𝑥 ∈ ℋ) → (((norm𝑥) ≤ 1 ∧ 𝑛 = (𝑁‘(𝑇𝑥))) → 𝑛 ≤ (2 / 𝑦)))
102101rexlimdva 3246 . . . . . . . 8 ((𝑦 ∈ ℝ+ ∧ ∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1)) → (∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑛 = (𝑁‘(𝑇𝑥))) → 𝑛 ≤ (2 / 𝑦)))
103102alrimiv 1928 . . . . . . 7 ((𝑦 ∈ ℝ+ ∧ ∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1)) → ∀𝑛(∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑛 = (𝑁‘(𝑇𝑥))) → 𝑛 ≤ (2 / 𝑦)))
104 eqeq1 2805 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑚 = (𝑁‘(𝑇𝑥)) ↔ 𝑛 = (𝑁‘(𝑇𝑥))))
105104anbi2d 631 . . . . . . . . . . 11 (𝑚 = 𝑛 → (((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥))) ↔ ((norm𝑥) ≤ 1 ∧ 𝑛 = (𝑁‘(𝑇𝑥)))))
106105rexbidv 3259 . . . . . . . . . 10 (𝑚 = 𝑛 → (∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥))) ↔ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑛 = (𝑁‘(𝑇𝑥)))))
107106ralab 3635 . . . . . . . . 9 (∀𝑛 ∈ {𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}𝑛𝑧 ↔ ∀𝑛(∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑛 = (𝑁‘(𝑇𝑥))) → 𝑛𝑧))
108 breq2 5037 . . . . . . . . . . 11 (𝑧 = (2 / 𝑦) → (𝑛𝑧𝑛 ≤ (2 / 𝑦)))
109108imbi2d 344 . . . . . . . . . 10 (𝑧 = (2 / 𝑦) → ((∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑛 = (𝑁‘(𝑇𝑥))) → 𝑛𝑧) ↔ (∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑛 = (𝑁‘(𝑇𝑥))) → 𝑛 ≤ (2 / 𝑦))))
110109albidv 1921 . . . . . . . . 9 (𝑧 = (2 / 𝑦) → (∀𝑛(∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑛 = (𝑁‘(𝑇𝑥))) → 𝑛𝑧) ↔ ∀𝑛(∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑛 = (𝑁‘(𝑇𝑥))) → 𝑛 ≤ (2 / 𝑦))))
111107, 110syl5bb 286 . . . . . . . 8 (𝑧 = (2 / 𝑦) → (∀𝑛 ∈ {𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}𝑛𝑧 ↔ ∀𝑛(∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑛 = (𝑁‘(𝑇𝑥))) → 𝑛 ≤ (2 / 𝑦))))
112111rspcev 3574 . . . . . . 7 (((2 / 𝑦) ∈ ℝ ∧ ∀𝑛(∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑛 = (𝑁‘(𝑇𝑥))) → 𝑛 ≤ (2 / 𝑦))) → ∃𝑧 ∈ ℝ ∀𝑛 ∈ {𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}𝑛𝑧)
11335, 103, 112syl2anc 587 . . . . . 6 ((𝑦 ∈ ℝ+ ∧ ∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1)) → ∃𝑧 ∈ ℝ ∀𝑛 ∈ {𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}𝑛𝑧)
114113rexlimiva 3243 . . . . 5 (∃𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (𝑁‘(𝑇𝑧)) < 1) → ∃𝑧 ∈ ℝ ∀𝑛 ∈ {𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}𝑛𝑧)
11530, 114ax-mp 5 . . . 4 𝑧 ∈ ℝ ∀𝑛 ∈ {𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}𝑛𝑧
116 supxrre 12712 . . . 4 (({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))} ⊆ ℝ ∧ {𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))} ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑛 ∈ {𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}𝑛𝑧) → sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}, ℝ*, < ) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}, ℝ, < ))
1178, 29, 115, 116mp3an 1458 . . 3 sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}, ℝ*, < ) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}, ℝ, < )
1181, 117eqtri 2824 . 2 (𝑆𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}, ℝ, < )
119 suprcl 11592 . . 3 (({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))} ⊆ ℝ ∧ {𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))} ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑛 ∈ {𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}𝑛𝑧) → sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}, ℝ, < ) ∈ ℝ)
1208, 29, 115, 119mp3an 1458 . 2 sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇𝑥)))}, ℝ, < ) ∈ ℝ
121118, 120eqeltri 2889 1 (𝑆𝑇) ∈ ℝ
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399  ∀wal 1536   = wceq 1538   ∈ wcel 2112  {cab 2779   ≠ wne 2990  ∀wral 3109  ∃wrex 3110   ⊆ wss 3884  ∅c0 4246   class class class wbr 5033  ‘cfv 6328  (class class class)co 7139  supcsup 8892  ℂcc 10528  ℝcr 10529  0cc0 10530  1c1 10531   · cmul 10535  ℝ*cxr 10667   < clt 10668   ≤ cle 10669   / cdiv 11290  2c2 11684  ℝ+crp 12381  abscabs 14589   ℋchba 28706   ·ℎ csm 28708  normℎcno 28710  0ℎc0v 28711 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-hv0cl 28790  ax-hfvmul 28792  ax-hvmul0 28797  ax-hfi 28866  ax-his1 28869  ax-his3 28871  ax-his4 28872 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-seq 13369  df-exp 13430  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-hnorm 28755 This theorem is referenced by:  nmcopexi  29814  nmcfnexi  29838
 Copyright terms: Public domain W3C validator