Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itg2addnc Structured version   Visualization version   GIF version

Theorem itg2addnc 37668
Description: Alternate proof of itg2add 25660 using the "buffer zone" definition from the first lemma, in which every simple function in the set is divided into to by dividing its buffer by a third and finding the largest allowable function locked to a grid laid out in increments of the new, smaller buffer up to the original simple function. The measurability of this function follows from that of the augend, and subtracting it from the original simple function yields another simple function by i1fsub 25609, which is allowable by the fact that the grid must have a mark between one third and two thirds the original buffer. This has two advantages over the current approach: first, eliminating ax-cc 10388, and second, weakening the measurability hypothesis to only the augend. (Contributed by Brendan Leahy, 31-Oct-2017.) (Revised by Brendan Leahy, 13-Mar-2018.)
Hypotheses
Ref Expression
itg2addnc.f1 (𝜑𝐹 ∈ MblFn)
itg2addnc.f2 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2addnc.f3 (𝜑 → (∫2𝐹) ∈ ℝ)
itg2addnc.g2 (𝜑𝐺:ℝ⟶(0[,)+∞))
itg2addnc.g3 (𝜑 → (∫2𝐺) ∈ ℝ)
Assertion
Ref Expression
itg2addnc (𝜑 → (∫2‘(𝐹f + 𝐺)) = ((∫2𝐹) + (∫2𝐺)))

Proof of Theorem itg2addnc
Dummy variables 𝑡 𝑠 𝑢 𝑥 𝑦 𝑧 𝑓 𝑔 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprr 772 . . . . . . 7 ((𝑓 ∈ dom ∫1 ∧ (∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))) → 𝑥 = (∫1𝑓))
2 itg1cl 25586 . . . . . . . 8 (𝑓 ∈ dom ∫1 → (∫1𝑓) ∈ ℝ)
32adantr 480 . . . . . . 7 ((𝑓 ∈ dom ∫1 ∧ (∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))) → (∫1𝑓) ∈ ℝ)
41, 3eqeltrd 2828 . . . . . 6 ((𝑓 ∈ dom ∫1 ∧ (∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))) → 𝑥 ∈ ℝ)
54rexlimiva 3126 . . . . 5 (∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓)) → 𝑥 ∈ ℝ)
65abssi 4033 . . . 4 {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ⊆ ℝ
76a1i 11 . . 3 (𝜑 → {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ⊆ ℝ)
8 i1f0 25588 . . . . . 6 (ℝ × {0}) ∈ dom ∫1
9 3nn 12265 . . . . . . . 8 3 ∈ ℕ
10 nnrp 12963 . . . . . . . 8 (3 ∈ ℕ → 3 ∈ ℝ+)
11 ne0i 4304 . . . . . . . 8 (3 ∈ ℝ+ → ℝ+ ≠ ∅)
129, 10, 11mp2b 10 . . . . . . 7 + ≠ ∅
13 itg2addnc.f2 . . . . . . . . . . . . 13 (𝜑𝐹:ℝ⟶(0[,)+∞))
1413ffvelcdmda 7056 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ℝ) → (𝐹𝑧) ∈ (0[,)+∞))
15 elrege0 13415 . . . . . . . . . . . 12 ((𝐹𝑧) ∈ (0[,)+∞) ↔ ((𝐹𝑧) ∈ ℝ ∧ 0 ≤ (𝐹𝑧)))
1614, 15sylib 218 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℝ) → ((𝐹𝑧) ∈ ℝ ∧ 0 ≤ (𝐹𝑧)))
1716simprd 495 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℝ) → 0 ≤ (𝐹𝑧))
1817ralrimiva 3125 . . . . . . . . 9 (𝜑 → ∀𝑧 ∈ ℝ 0 ≤ (𝐹𝑧))
19 reex 11159 . . . . . . . . . . 11 ℝ ∈ V
2019a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ∈ V)
21 c0ex 11168 . . . . . . . . . . 11 0 ∈ V
2221a1i 11 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℝ) → 0 ∈ V)
23 eqidd 2730 . . . . . . . . . 10 (𝜑 → (𝑧 ∈ ℝ ↦ 0) = (𝑧 ∈ ℝ ↦ 0))
2413feqmptd 6929 . . . . . . . . . 10 (𝜑𝐹 = (𝑧 ∈ ℝ ↦ (𝐹𝑧)))
2520, 22, 14, 23, 24ofrfval2 7674 . . . . . . . . 9 (𝜑 → ((𝑧 ∈ ℝ ↦ 0) ∘r𝐹 ↔ ∀𝑧 ∈ ℝ 0 ≤ (𝐹𝑧)))
2618, 25mpbird 257 . . . . . . . 8 (𝜑 → (𝑧 ∈ ℝ ↦ 0) ∘r𝐹)
2726ralrimivw 3129 . . . . . . 7 (𝜑 → ∀𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0) ∘r𝐹)
28 r19.2z 4458 . . . . . . 7 ((ℝ+ ≠ ∅ ∧ ∀𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0) ∘r𝐹) → ∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0) ∘r𝐹)
2912, 27, 28sylancr 587 . . . . . 6 (𝜑 → ∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0) ∘r𝐹)
30 fveq2 6858 . . . . . . . . . 10 (𝑓 = (ℝ × {0}) → (∫1𝑓) = (∫1‘(ℝ × {0})))
31 itg10 25589 . . . . . . . . . 10 (∫1‘(ℝ × {0})) = 0
3230, 31eqtr2di 2781 . . . . . . . . 9 (𝑓 = (ℝ × {0}) → 0 = (∫1𝑓))
3332biantrud 531 . . . . . . . 8 (𝑓 = (ℝ × {0}) → (∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ↔ (∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ∧ 0 = (∫1𝑓))))
34 fveq1 6857 . . . . . . . . . . . . 13 (𝑓 = (ℝ × {0}) → (𝑓𝑧) = ((ℝ × {0})‘𝑧))
3521fvconst2 7178 . . . . . . . . . . . . 13 (𝑧 ∈ ℝ → ((ℝ × {0})‘𝑧) = 0)
3634, 35sylan9eq 2784 . . . . . . . . . . . 12 ((𝑓 = (ℝ × {0}) ∧ 𝑧 ∈ ℝ) → (𝑓𝑧) = 0)
3736iftrued 4496 . . . . . . . . . . 11 ((𝑓 = (ℝ × {0}) ∧ 𝑧 ∈ ℝ) → if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) = 0)
3837mpteq2dva 5200 . . . . . . . . . 10 (𝑓 = (ℝ × {0}) → (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) = (𝑧 ∈ ℝ ↦ 0))
3938breq1d 5117 . . . . . . . . 9 (𝑓 = (ℝ × {0}) → ((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ↔ (𝑧 ∈ ℝ ↦ 0) ∘r𝐹))
4039rexbidv 3157 . . . . . . . 8 (𝑓 = (ℝ × {0}) → (∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ↔ ∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0) ∘r𝐹))
4133, 40bitr3d 281 . . . . . . 7 (𝑓 = (ℝ × {0}) → ((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ∧ 0 = (∫1𝑓)) ↔ ∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0) ∘r𝐹))
4241rspcev 3588 . . . . . 6 (((ℝ × {0}) ∈ dom ∫1 ∧ ∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0) ∘r𝐹) → ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ∧ 0 = (∫1𝑓)))
438, 29, 42sylancr 587 . . . . 5 (𝜑 → ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ∧ 0 = (∫1𝑓)))
44 eqeq1 2733 . . . . . . . 8 (𝑥 = 0 → (𝑥 = (∫1𝑓) ↔ 0 = (∫1𝑓)))
4544anbi2d 630 . . . . . . 7 (𝑥 = 0 → ((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓)) ↔ (∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ∧ 0 = (∫1𝑓))))
4645rexbidv 3157 . . . . . 6 (𝑥 = 0 → (∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓)) ↔ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ∧ 0 = (∫1𝑓))))
4721, 46elab 3646 . . . . 5 (0 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ↔ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ∧ 0 = (∫1𝑓)))
4843, 47sylibr 234 . . . 4 (𝜑 → 0 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))})
4948ne0d 4305 . . 3 (𝜑 → {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ≠ ∅)
50 icossicc 13397 . . . . . . 7 (0[,)+∞) ⊆ (0[,]+∞)
51 fss 6704 . . . . . . 7 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → 𝐹:ℝ⟶(0[,]+∞))
5250, 51mpan2 691 . . . . . 6 (𝐹:ℝ⟶(0[,)+∞) → 𝐹:ℝ⟶(0[,]+∞))
53 eqid 2729 . . . . . . 7 {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} = {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}
5453itg2addnclem 37665 . . . . . 6 (𝐹:ℝ⟶(0[,]+∞) → (∫2𝐹) = sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ))
5513, 52, 543syl 18 . . . . 5 (𝜑 → (∫2𝐹) = sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ))
56 itg2addnc.f3 . . . . 5 (𝜑 → (∫2𝐹) ∈ ℝ)
5755, 56eqeltrrd 2829 . . . 4 (𝜑 → sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) ∈ ℝ)
58 ressxr 11218 . . . . . . 7 ℝ ⊆ ℝ*
596, 58sstri 3956 . . . . . 6 {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ⊆ ℝ*
60 supxrub 13284 . . . . . 6 (({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ⊆ ℝ*𝑏 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}) → 𝑏 ≤ sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ))
6159, 60mpan 690 . . . . 5 (𝑏 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} → 𝑏 ≤ sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ))
6261rgen 3046 . . . 4 𝑏 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}𝑏 ≤ sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < )
63 brralrspcev 5167 . . . 4 ((sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) ∈ ℝ ∧ ∀𝑏 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}𝑏 ≤ sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < )) → ∃𝑎 ∈ ℝ ∀𝑏 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}𝑏𝑎)
6457, 62, 63sylancl 586 . . 3 (𝜑 → ∃𝑎 ∈ ℝ ∀𝑏 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}𝑏𝑎)
65 simprr 772 . . . . . . 7 ((𝑔 ∈ dom ∫1 ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))) → 𝑥 = (∫1𝑔))
66 itg1cl 25586 . . . . . . . 8 (𝑔 ∈ dom ∫1 → (∫1𝑔) ∈ ℝ)
6766adantr 480 . . . . . . 7 ((𝑔 ∈ dom ∫1 ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))) → (∫1𝑔) ∈ ℝ)
6865, 67eqeltrd 2828 . . . . . 6 ((𝑔 ∈ dom ∫1 ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))) → 𝑥 ∈ ℝ)
6968rexlimiva 3126 . . . . 5 (∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔)) → 𝑥 ∈ ℝ)
7069abssi 4033 . . . 4 {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))} ⊆ ℝ
7170a1i 11 . . 3 (𝜑 → {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))} ⊆ ℝ)
72 itg2addnc.g2 . . . . . . . . . . . . 13 (𝜑𝐺:ℝ⟶(0[,)+∞))
7372ffvelcdmda 7056 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ℝ) → (𝐺𝑧) ∈ (0[,)+∞))
74 elrege0 13415 . . . . . . . . . . . 12 ((𝐺𝑧) ∈ (0[,)+∞) ↔ ((𝐺𝑧) ∈ ℝ ∧ 0 ≤ (𝐺𝑧)))
7573, 74sylib 218 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℝ) → ((𝐺𝑧) ∈ ℝ ∧ 0 ≤ (𝐺𝑧)))
7675simprd 495 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℝ) → 0 ≤ (𝐺𝑧))
7776ralrimiva 3125 . . . . . . . . 9 (𝜑 → ∀𝑧 ∈ ℝ 0 ≤ (𝐺𝑧))
7872feqmptd 6929 . . . . . . . . . 10 (𝜑𝐺 = (𝑧 ∈ ℝ ↦ (𝐺𝑧)))
7920, 22, 73, 23, 78ofrfval2 7674 . . . . . . . . 9 (𝜑 → ((𝑧 ∈ ℝ ↦ 0) ∘r𝐺 ↔ ∀𝑧 ∈ ℝ 0 ≤ (𝐺𝑧)))
8077, 79mpbird 257 . . . . . . . 8 (𝜑 → (𝑧 ∈ ℝ ↦ 0) ∘r𝐺)
8180ralrimivw 3129 . . . . . . 7 (𝜑 → ∀𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0) ∘r𝐺)
82 r19.2z 4458 . . . . . . 7 ((ℝ+ ≠ ∅ ∧ ∀𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0) ∘r𝐺) → ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0) ∘r𝐺)
8312, 81, 82sylancr 587 . . . . . 6 (𝜑 → ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0) ∘r𝐺)
84 fveq2 6858 . . . . . . . . . 10 (𝑔 = (ℝ × {0}) → (∫1𝑔) = (∫1‘(ℝ × {0})))
8584, 31eqtr2di 2781 . . . . . . . . 9 (𝑔 = (ℝ × {0}) → 0 = (∫1𝑔))
8685biantrud 531 . . . . . . . 8 (𝑔 = (ℝ × {0}) → (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺 ↔ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺 ∧ 0 = (∫1𝑔))))
87 fveq1 6857 . . . . . . . . . . . . 13 (𝑔 = (ℝ × {0}) → (𝑔𝑧) = ((ℝ × {0})‘𝑧))
8887, 35sylan9eq 2784 . . . . . . . . . . . 12 ((𝑔 = (ℝ × {0}) ∧ 𝑧 ∈ ℝ) → (𝑔𝑧) = 0)
8988iftrued 4496 . . . . . . . . . . 11 ((𝑔 = (ℝ × {0}) ∧ 𝑧 ∈ ℝ) → if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) = 0)
9089mpteq2dva 5200 . . . . . . . . . 10 (𝑔 = (ℝ × {0}) → (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) = (𝑧 ∈ ℝ ↦ 0))
9190breq1d 5117 . . . . . . . . 9 (𝑔 = (ℝ × {0}) → ((𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺 ↔ (𝑧 ∈ ℝ ↦ 0) ∘r𝐺))
9291rexbidv 3157 . . . . . . . 8 (𝑔 = (ℝ × {0}) → (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺 ↔ ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0) ∘r𝐺))
9386, 92bitr3d 281 . . . . . . 7 (𝑔 = (ℝ × {0}) → ((∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺 ∧ 0 = (∫1𝑔)) ↔ ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0) ∘r𝐺))
9493rspcev 3588 . . . . . 6 (((ℝ × {0}) ∈ dom ∫1 ∧ ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0) ∘r𝐺) → ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺 ∧ 0 = (∫1𝑔)))
958, 83, 94sylancr 587 . . . . 5 (𝜑 → ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺 ∧ 0 = (∫1𝑔)))
96 eqeq1 2733 . . . . . . . 8 (𝑥 = 0 → (𝑥 = (∫1𝑔) ↔ 0 = (∫1𝑔)))
9796anbi2d 630 . . . . . . 7 (𝑥 = 0 → ((∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔)) ↔ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺 ∧ 0 = (∫1𝑔))))
9897rexbidv 3157 . . . . . 6 (𝑥 = 0 → (∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔)) ↔ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺 ∧ 0 = (∫1𝑔))))
9921, 98elab 3646 . . . . 5 (0 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))} ↔ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺 ∧ 0 = (∫1𝑔)))
10095, 99sylibr 234 . . . 4 (𝜑 → 0 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))})
101100ne0d 4305 . . 3 (𝜑 → {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))} ≠ ∅)
102 fss 6704 . . . . . . 7 ((𝐺:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → 𝐺:ℝ⟶(0[,]+∞))
10350, 102mpan2 691 . . . . . 6 (𝐺:ℝ⟶(0[,)+∞) → 𝐺:ℝ⟶(0[,]+∞))
104 eqid 2729 . . . . . . 7 {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))} = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}
105104itg2addnclem 37665 . . . . . 6 (𝐺:ℝ⟶(0[,]+∞) → (∫2𝐺) = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < ))
10672, 103, 1053syl 18 . . . . 5 (𝜑 → (∫2𝐺) = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < ))
107 itg2addnc.g3 . . . . 5 (𝜑 → (∫2𝐺) ∈ ℝ)
108106, 107eqeltrrd 2829 . . . 4 (𝜑 → sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < ) ∈ ℝ)
10970, 58sstri 3956 . . . . . 6 {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))} ⊆ ℝ*
110 supxrub 13284 . . . . . 6 (({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))} ⊆ ℝ*𝑏 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}) → 𝑏 ≤ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < ))
111109, 110mpan 690 . . . . 5 (𝑏 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))} → 𝑏 ≤ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < ))
112111rgen 3046 . . . 4 𝑏 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑏 ≤ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < )
113 brralrspcev 5167 . . . 4 ((sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < ) ∈ ℝ ∧ ∀𝑏 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑏 ≤ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < )) → ∃𝑎 ∈ ℝ ∀𝑏 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑏𝑎)
114108, 112, 113sylancl 586 . . 3 (𝜑 → ∃𝑎 ∈ ℝ ∀𝑏 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑏𝑎)
115 eqid 2729 . . 3 {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)} = {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}
1167, 49, 64, 71, 101, 114, 115supadd 12151 . 2 (𝜑 → (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ, < )) = sup({𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}, ℝ, < ))
117 supxrre 13287 . . . . 5 (({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ⊆ ℝ ∧ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ≠ ∅ ∧ ∃𝑎 ∈ ℝ ∀𝑏 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}𝑏𝑎) → sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) = sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ, < ))
1187, 49, 64, 117syl3anc 1373 . . . 4 (𝜑 → sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) = sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ, < ))
11955, 118eqtrd 2764 . . 3 (𝜑 → (∫2𝐹) = sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ, < ))
120 supxrre 13287 . . . . 5 (({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))} ⊆ ℝ ∧ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))} ≠ ∅ ∧ ∃𝑎 ∈ ℝ ∀𝑏 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑏𝑎) → sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < ) = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ, < ))
12171, 101, 114, 120syl3anc 1373 . . . 4 (𝜑 → sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < ) = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ, < ))
122106, 121eqtrd 2764 . . 3 (𝜑 → (∫2𝐺) = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ, < ))
123119, 122oveq12d 7405 . 2 (𝜑 → ((∫2𝐹) + (∫2𝐺)) = (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ, < )))
124 ge0addcl 13421 . . . . . . 7 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 + 𝑦) ∈ (0[,)+∞))
12550, 124sselid 3944 . . . . . 6 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 + 𝑦) ∈ (0[,]+∞))
126125adantl 481 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) ∈ (0[,]+∞))
127 inidm 4190 . . . . 5 (ℝ ∩ ℝ) = ℝ
128126, 13, 72, 20, 20, 127off 7671 . . . 4 (𝜑 → (𝐹f + 𝐺):ℝ⟶(0[,]+∞))
129 eqid 2729 . . . . 5 {𝑠 ∣ ∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺) ∧ 𝑠 = (∫1))} = {𝑠 ∣ ∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺) ∧ 𝑠 = (∫1))}
130129itg2addnclem 37665 . . . 4 ((𝐹f + 𝐺):ℝ⟶(0[,]+∞) → (∫2‘(𝐹f + 𝐺)) = sup({𝑠 ∣ ∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺) ∧ 𝑠 = (∫1))}, ℝ*, < ))
131128, 130syl 17 . . 3 (𝜑 → (∫2‘(𝐹f + 𝐺)) = sup({𝑠 ∣ ∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺) ∧ 𝑠 = (∫1))}, ℝ*, < ))
132 itg2addnc.f1 . . . . . . . 8 (𝜑𝐹 ∈ MblFn)
133132, 13, 56, 72, 107itg2addnclem3 37667 . . . . . . 7 (𝜑 → (∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺) ∧ 𝑠 = (∫1)) → ∃𝑡𝑢(∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢))))
134 simpl 482 . . . . . . . . . . . . . 14 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → 𝑓 ∈ dom ∫1)
135 simpr 484 . . . . . . . . . . . . . 14 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → 𝑔 ∈ dom ∫1)
136134, 135i1fadd 25596 . . . . . . . . . . . . 13 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (𝑓f + 𝑔) ∈ dom ∫1)
137136ad3antlr 731 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ ((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔)))) ∧ 𝑠 = (𝑡 + 𝑢)) → (𝑓f + 𝑔) ∈ dom ∫1)
138 reeanv 3209 . . . . . . . . . . . . . . . . 17 (∃𝑐 ∈ ℝ+𝑑 ∈ ℝ+ ((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺) ↔ (∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ∧ ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺))
139138biimpri 228 . . . . . . . . . . . . . . . 16 ((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ∧ ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺) → ∃𝑐 ∈ ℝ+𝑑 ∈ ℝ+ ((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺))
140139ad2ant2r 747 . . . . . . . . . . . . . . 15 (((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))) → ∃𝑐 ∈ ℝ+𝑑 ∈ ℝ+ ((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺))
141 ifcl 4534 . . . . . . . . . . . . . . . . . . 19 ((𝑐 ∈ ℝ+𝑑 ∈ ℝ+) → if(𝑐𝑑, 𝑐, 𝑑) ∈ ℝ+)
142141ad2antlr 727 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺)) → if(𝑐𝑑, 𝑐, 𝑑) ∈ ℝ+)
143 breq1 5110 . . . . . . . . . . . . . . . . . . . . . . . 24 (0 = if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) → (0 ≤ (𝐹𝑧) ↔ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ≤ (𝐹𝑧)))
144143anbi1d 631 . . . . . . . . . . . . . . . . . . . . . . 23 (0 = if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) → ((0 ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) ↔ (if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧))))
145144imbi1d 341 . . . . . . . . . . . . . . . . . . . . . 22 (0 = if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) → (((0 ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))) ↔ ((if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧)))))
146 breq1 5110 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑓𝑧) + 𝑐) = if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) → (((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ↔ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ≤ (𝐹𝑧)))
147146anbi1d 631 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑓𝑧) + 𝑐) = if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) → ((((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) ↔ (if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧))))
148147imbi1d 341 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑓𝑧) + 𝑐) = if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) → (((((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))) ↔ ((if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧)))))
149 breq1 5110 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 = if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) → (0 ≤ (𝐺𝑧) ↔ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)))
150149anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . 24 (0 = if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) → ((0 ≤ (𝐹𝑧) ∧ 0 ≤ (𝐺𝑧)) ↔ (0 ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧))))
151150imbi1d 341 . . . . . . . . . . . . . . . . . . . . . . 23 (0 = if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) → (((0 ≤ (𝐹𝑧) ∧ 0 ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))) ↔ ((0 ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧)))))
152 breq1 5110 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑔𝑧) + 𝑑) = if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) → (((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧) ↔ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)))
153152anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑔𝑧) + 𝑑) = if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) → ((0 ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) ↔ (0 ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧))))
154153imbi1d 341 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑔𝑧) + 𝑑) = if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) → (((0 ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))) ↔ ((0 ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧)))))
155 oveq12 7396 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑓𝑧) = 0 ∧ (𝑔𝑧) = 0) → ((𝑓𝑧) + (𝑔𝑧)) = (0 + 0))
156 00id 11349 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (0 + 0) = 0
157155, 156eqtrdi 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑓𝑧) = 0 ∧ (𝑔𝑧) = 0) → ((𝑓𝑧) + (𝑔𝑧)) = 0)
158157iftrued 4496 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑓𝑧) = 0 ∧ (𝑔𝑧) = 0) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) = 0)
159158adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) ∧ (𝑔𝑧) = 0) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) = 0)
160 simpll 766 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝜑)
16115simplbi 497 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹𝑧) ∈ (0[,)+∞) → (𝐹𝑧) ∈ ℝ)
16214, 161syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑧 ∈ ℝ) → (𝐹𝑧) ∈ ℝ)
16374simplbi 497 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐺𝑧) ∈ (0[,)+∞) → (𝐺𝑧) ∈ ℝ)
16473, 163syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑧 ∈ ℝ) → (𝐺𝑧) ∈ ℝ)
165162, 164, 17, 76addge0d 11754 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑧 ∈ ℝ) → 0 ≤ ((𝐹𝑧) + (𝐺𝑧)))
166160, 165sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → 0 ≤ ((𝐹𝑧) + (𝐺𝑧)))
167166ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) ∧ (𝑔𝑧) = 0) → 0 ≤ ((𝐹𝑧) + (𝐺𝑧)))
168159, 167eqbrtrd 5129 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) ∧ (𝑔𝑧) = 0) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧)))
169168a1d 25 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) ∧ (𝑔𝑧) = 0) → ((0 ≤ (𝐹𝑧) ∧ 0 ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
170166ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → 0 ≤ ((𝐹𝑧) + (𝐺𝑧)))
171 oveq1 7394 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑓𝑧) = 0 → ((𝑓𝑧) + (𝑔𝑧)) = (0 + (𝑔𝑧)))
172 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑔 ∈ dom ∫1)
173 i1ff 25577 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑔 ∈ dom ∫1𝑔:ℝ⟶ℝ)
174173ffvelcdmda 7056 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑔 ∈ dom ∫1𝑧 ∈ ℝ) → (𝑔𝑧) ∈ ℝ)
175172, 174sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝑔𝑧) ∈ ℝ)
176175recnd 11202 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝑔𝑧) ∈ ℂ)
177176addlidd 11375 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (0 + (𝑔𝑧)) = (𝑔𝑧))
178171, 177sylan9eqr 2786 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) → ((𝑓𝑧) + (𝑔𝑧)) = (𝑔𝑧))
179178oveq1d 7402 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) → (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)) = ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)))
180179adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)) = ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)))
181141rpred 12995 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑐 ∈ ℝ+𝑑 ∈ ℝ+) → if(𝑐𝑑, 𝑐, 𝑑) ∈ ℝ)
182181ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → if(𝑐𝑑, 𝑐, 𝑑) ∈ ℝ)
183175, 182readdcld 11203 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ∈ ℝ)
184183adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ∈ ℝ)
185160, 164sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝐺𝑧) ∈ ℝ)
186185adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → (𝐺𝑧) ∈ ℝ)
187160, 162sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝐹𝑧) ∈ ℝ)
188187, 185readdcld 11203 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝐹𝑧) + (𝐺𝑧)) ∈ ℝ)
189188adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → ((𝐹𝑧) + (𝐺𝑧)) ∈ ℝ)
190 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → 𝑑 ∈ ℝ+)
191190rpred 12995 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → 𝑑 ∈ ℝ)
192 rpre 12960 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑐 ∈ ℝ+𝑐 ∈ ℝ)
193 rpre 12960 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑑 ∈ ℝ+𝑑 ∈ ℝ)
194 min2 13150 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → if(𝑐𝑑, 𝑐, 𝑑) ≤ 𝑑)
195192, 193, 194syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑐 ∈ ℝ+𝑑 ∈ ℝ+) → if(𝑐𝑑, 𝑐, 𝑑) ≤ 𝑑)
196195ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → if(𝑐𝑑, 𝑐, 𝑑) ≤ 𝑑)
197182, 191, 175, 196leadd2dd 11793 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝑔𝑧) + 𝑑))
198175, 191readdcld 11203 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝑔𝑧) + 𝑑) ∈ ℝ)
199 letr 11268 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ∈ ℝ ∧ ((𝑔𝑧) + 𝑑) ∈ ℝ ∧ (𝐺𝑧) ∈ ℝ) → ((((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝑔𝑧) + 𝑑) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ (𝐺𝑧)))
200183, 198, 185, 199syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝑔𝑧) + 𝑑) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ (𝐺𝑧)))
201197, 200mpand 695 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧) → ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ (𝐺𝑧)))
202201imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ (𝐺𝑧))
203164, 162addge02d 11767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ ℝ) → (0 ≤ (𝐹𝑧) ↔ (𝐺𝑧) ≤ ((𝐹𝑧) + (𝐺𝑧))))
20417, 203mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑧 ∈ ℝ) → (𝐺𝑧) ≤ ((𝐹𝑧) + (𝐺𝑧)))
205160, 204sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝐺𝑧) ≤ ((𝐹𝑧) + (𝐺𝑧)))
206205adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → (𝐺𝑧) ≤ ((𝐹𝑧) + (𝐺𝑧)))
207184, 186, 189, 202, 206letrd 11331 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝐹𝑧) + (𝐺𝑧)))
208207adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝐹𝑧) + (𝐺𝑧)))
209180, 208eqbrtrd 5129 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝐹𝑧) + (𝐺𝑧)))
210 breq1 5110 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (0 = if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) → (0 ≤ ((𝐹𝑧) + (𝐺𝑧)) ↔ if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
211 breq1 5110 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)) = if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) → ((((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝐹𝑧) + (𝐺𝑧)) ↔ if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
212210, 211ifboth 4528 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((0 ≤ ((𝐹𝑧) + (𝐺𝑧)) ∧ (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝐹𝑧) + (𝐺𝑧))) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧)))
213170, 209, 212syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧)))
214213ex 412 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) → (((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
215214adantld 490 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) → ((0 ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
216215adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) ∧ ¬ (𝑔𝑧) = 0) → ((0 ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
217151, 154, 169, 216ifbothda 4527 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) → ((0 ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
218149anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . 24 (0 = if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) → ((((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ 0 ≤ (𝐺𝑧)) ↔ (((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧))))
219218imbi1d 341 . . . . . . . . . . . . . . . . . . . . . . 23 (0 = if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) → (((((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ 0 ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))) ↔ ((((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧)))))
220152anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑔𝑧) + 𝑑) = if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) → ((((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) ↔ (((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧))))
221220imbi1d 341 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑔𝑧) + 𝑑) = if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) → (((((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))) ↔ ((((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧)))))
222166ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑔𝑧) = 0) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → 0 ≤ ((𝐹𝑧) + (𝐺𝑧)))
223 oveq2 7395 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑔𝑧) = 0 → ((𝑓𝑧) + (𝑔𝑧)) = ((𝑓𝑧) + 0))
224 simplrl 776 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑓 ∈ dom ∫1)
225 i1ff 25577 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑓 ∈ dom ∫1𝑓:ℝ⟶ℝ)
226225ffvelcdmda 7056 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑓 ∈ dom ∫1𝑧 ∈ ℝ) → (𝑓𝑧) ∈ ℝ)
227224, 226sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝑓𝑧) ∈ ℝ)
228227recnd 11202 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝑓𝑧) ∈ ℂ)
229228addridd 11374 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝑓𝑧) + 0) = (𝑓𝑧))
230223, 229sylan9eqr 2786 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑔𝑧) = 0) → ((𝑓𝑧) + (𝑔𝑧)) = (𝑓𝑧))
231230oveq1d 7402 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑔𝑧) = 0) → (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)) = ((𝑓𝑧) + if(𝑐𝑑, 𝑐, 𝑑)))
232231adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑔𝑧) = 0) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)) = ((𝑓𝑧) + if(𝑐𝑑, 𝑐, 𝑑)))
233227, 182readdcld 11203 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝑓𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ∈ ℝ)
234233adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → ((𝑓𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ∈ ℝ)
235187adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → (𝐹𝑧) ∈ ℝ)
236188adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → ((𝐹𝑧) + (𝐺𝑧)) ∈ ℝ)
237 simplrl 776 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → 𝑐 ∈ ℝ+)
238237rpred 12995 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → 𝑐 ∈ ℝ)
239 min1 13149 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → if(𝑐𝑑, 𝑐, 𝑑) ≤ 𝑐)
240192, 193, 239syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑐 ∈ ℝ+𝑑 ∈ ℝ+) → if(𝑐𝑑, 𝑐, 𝑑) ≤ 𝑐)
241240ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → if(𝑐𝑑, 𝑐, 𝑑) ≤ 𝑐)
242182, 238, 227, 241leadd2dd 11793 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝑓𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝑓𝑧) + 𝑐))
243227, 238readdcld 11203 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝑓𝑧) + 𝑐) ∈ ℝ)
244 letr 11268 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝑓𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ∈ ℝ ∧ ((𝑓𝑧) + 𝑐) ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ) → ((((𝑓𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝑓𝑧) + 𝑐) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → ((𝑓𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ (𝐹𝑧)))
245233, 243, 187, 244syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((((𝑓𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝑓𝑧) + 𝑐) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → ((𝑓𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ (𝐹𝑧)))
246242, 245mpand 695 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) → ((𝑓𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ (𝐹𝑧)))
247246imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → ((𝑓𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ (𝐹𝑧))
248162, 164addge01d 11766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ ℝ) → (0 ≤ (𝐺𝑧) ↔ (𝐹𝑧) ≤ ((𝐹𝑧) + (𝐺𝑧))))
24976, 248mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑧 ∈ ℝ) → (𝐹𝑧) ≤ ((𝐹𝑧) + (𝐺𝑧)))
250160, 249sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝐹𝑧) ≤ ((𝐹𝑧) + (𝐺𝑧)))
251250adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → (𝐹𝑧) ≤ ((𝐹𝑧) + (𝐺𝑧)))
252234, 235, 236, 247, 251letrd 11331 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → ((𝑓𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝐹𝑧) + (𝐺𝑧)))
253252adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑔𝑧) = 0) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → ((𝑓𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝐹𝑧) + (𝐺𝑧)))
254232, 253eqbrtrd 5129 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑔𝑧) = 0) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝐹𝑧) + (𝐺𝑧)))
255222, 254, 212syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑔𝑧) = 0) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧)))
256255ex 412 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑔𝑧) = 0) → (((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
257256adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ¬ (𝑓𝑧) = 0) ∧ (𝑔𝑧) = 0) → (((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
258257adantrd 491 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ¬ (𝑓𝑧) = 0) ∧ (𝑔𝑧) = 0) → ((((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ 0 ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
259166adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧))) → 0 ≤ ((𝐹𝑧) + (𝐺𝑧)))
260182recnd 11202 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → if(𝑐𝑑, 𝑐, 𝑑) ∈ ℂ)
261228, 176, 260addassd 11196 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)) = ((𝑓𝑧) + ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑))))
262261adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧))) → (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)) = ((𝑓𝑧) + ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑))))
263227, 237ltaddrpd 13028 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝑓𝑧) < ((𝑓𝑧) + 𝑐))
264227, 243, 263ltled 11322 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝑓𝑧) ≤ ((𝑓𝑧) + 𝑐))
265 letr 11268 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑓𝑧) ∈ ℝ ∧ ((𝑓𝑧) + 𝑐) ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ) → (((𝑓𝑧) ≤ ((𝑓𝑧) + 𝑐) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → (𝑓𝑧) ≤ (𝐹𝑧)))
266227, 243, 187, 265syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (((𝑓𝑧) ≤ ((𝑓𝑧) + 𝑐) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → (𝑓𝑧) ≤ (𝐹𝑧)))
267264, 266mpand 695 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) → (𝑓𝑧) ≤ (𝐹𝑧)))
268 le2add 11660 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑓𝑧) ∈ ℝ ∧ ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ∈ ℝ) ∧ ((𝐹𝑧) ∈ ℝ ∧ (𝐺𝑧) ∈ ℝ)) → (((𝑓𝑧) ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ (𝐺𝑧)) → ((𝑓𝑧) + ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
269227, 183, 187, 185, 268syl22anc 838 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (((𝑓𝑧) ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ (𝐺𝑧)) → ((𝑓𝑧) + ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
270267, 201, 269syl2and 608 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → ((𝑓𝑧) + ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
271270imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧))) → ((𝑓𝑧) + ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧)))
272262, 271eqbrtrd 5129 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧))) → (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝐹𝑧) + (𝐺𝑧)))
273259, 272, 212syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧))) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧)))
274273ex 412 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
275274ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ¬ (𝑓𝑧) = 0) ∧ ¬ (𝑔𝑧) = 0) → ((((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
276219, 221, 258, 275ifbothda 4527 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ¬ (𝑓𝑧) = 0) → ((((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
277145, 148, 217, 276ifbothda 4527 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
278277ralimdva 3145 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → (∀𝑧 ∈ ℝ (if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) → ∀𝑧 ∈ ℝ if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
279 ovex 7420 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓𝑧) + 𝑐) ∈ V
28021, 279ifex 4539 . . . . . . . . . . . . . . . . . . . . . . . . 25 if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ∈ V
281280a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑧 ∈ ℝ) → if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ∈ V)
282 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) = (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))))
28320, 281, 14, 282, 24ofrfval2 7674 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ↔ ∀𝑧 ∈ ℝ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ≤ (𝐹𝑧)))
284 ovex 7420 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑔𝑧) + 𝑑) ∈ V
28521, 284ifex 4539 . . . . . . . . . . . . . . . . . . . . . . . . 25 if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ∈ V
286285a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑧 ∈ ℝ) → if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ∈ V)
287 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) = (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))))
28820, 286, 73, 287, 78ofrfval2 7674 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺 ↔ ∀𝑧 ∈ ℝ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)))
289283, 288anbi12d 632 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺) ↔ (∀𝑧 ∈ ℝ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ≤ (𝐹𝑧) ∧ ∀𝑧 ∈ ℝ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧))))
290 r19.26 3091 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑧 ∈ ℝ (if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) ↔ (∀𝑧 ∈ ℝ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ≤ (𝐹𝑧) ∧ ∀𝑧 ∈ ℝ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)))
291289, 290bitr4di 289 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺) ↔ ∀𝑧 ∈ ℝ (if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧))))
292291ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → (((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺) ↔ ∀𝑧 ∈ ℝ (if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧))))
29319a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ℝ ∈ V)
294 ovex 7420 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)) ∈ V
29521, 294ifex 4539 . . . . . . . . . . . . . . . . . . . . . 22 if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ∈ V
296295a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ∈ V)
297 ovexd 7422 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝐹𝑧) + (𝐺𝑧)) ∈ V)
298225ffnd 6689 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓 ∈ dom ∫1𝑓 Fn ℝ)
299298adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → 𝑓 Fn ℝ)
300299ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑓 Fn ℝ)
301173ffnd 6689 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑔 ∈ dom ∫1𝑔 Fn ℝ)
302301adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → 𝑔 Fn ℝ)
303302ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑔 Fn ℝ)
304 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝑓𝑧) = (𝑓𝑧))
305 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝑔𝑧) = (𝑔𝑧))
306300, 303, 293, 293, 127, 304, 305ofval 7664 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝑓f + 𝑔)‘𝑧) = ((𝑓𝑧) + (𝑔𝑧)))
307306eqeq1d 2731 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (((𝑓f + 𝑔)‘𝑧) = 0 ↔ ((𝑓𝑧) + (𝑔𝑧)) = 0))
308306oveq1d 7402 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (((𝑓f + 𝑔)‘𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) = (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)))
309307, 308ifbieq2d 4515 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + if(𝑐𝑑, 𝑐, 𝑑))) = if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))))
310309mpteq2dva 5200 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → (𝑧 ∈ ℝ ↦ if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + if(𝑐𝑑, 𝑐, 𝑑)))) = (𝑧 ∈ ℝ ↦ if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)))))
31113ffnd 6689 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐹 Fn ℝ)
31272ffnd 6689 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐺 Fn ℝ)
313 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧 ∈ ℝ) → (𝐹𝑧) = (𝐹𝑧))
314 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧 ∈ ℝ) → (𝐺𝑧) = (𝐺𝑧))
315311, 312, 20, 20, 127, 313, 314offval 7662 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐹f + 𝐺) = (𝑧 ∈ ℝ ↦ ((𝐹𝑧) + (𝐺𝑧))))
316315ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → (𝐹f + 𝐺) = (𝑧 ∈ ℝ ↦ ((𝐹𝑧) + (𝐺𝑧))))
317293, 296, 297, 310, 316ofrfval2 7674 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ((𝑧 ∈ ℝ ↦ if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + if(𝑐𝑑, 𝑐, 𝑑)))) ∘r ≤ (𝐹f + 𝐺) ↔ ∀𝑧 ∈ ℝ if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
318278, 292, 3173imtr4d 294 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → (((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺) → (𝑧 ∈ ℝ ↦ if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + if(𝑐𝑑, 𝑐, 𝑑)))) ∘r ≤ (𝐹f + 𝐺)))
319318imp 406 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺)) → (𝑧 ∈ ℝ ↦ if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + if(𝑐𝑑, 𝑐, 𝑑)))) ∘r ≤ (𝐹f + 𝐺))
320 oveq2 7395 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = if(𝑐𝑑, 𝑐, 𝑑) → (((𝑓f + 𝑔)‘𝑧) + 𝑦) = (((𝑓f + 𝑔)‘𝑧) + if(𝑐𝑑, 𝑐, 𝑑)))
321320ifeq2d 4509 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = if(𝑐𝑑, 𝑐, 𝑑) → if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + 𝑦)) = if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + if(𝑐𝑑, 𝑐, 𝑑))))
322321mpteq2dv 5201 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = if(𝑐𝑑, 𝑐, 𝑑) → (𝑧 ∈ ℝ ↦ if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + 𝑦))) = (𝑧 ∈ ℝ ↦ if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + if(𝑐𝑑, 𝑐, 𝑑)))))
323322breq1d 5117 . . . . . . . . . . . . . . . . . . 19 (𝑦 = if(𝑐𝑑, 𝑐, 𝑑) → ((𝑧 ∈ ℝ ↦ if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺) ↔ (𝑧 ∈ ℝ ↦ if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + if(𝑐𝑑, 𝑐, 𝑑)))) ∘r ≤ (𝐹f + 𝐺)))
324323rspcev 3588 . . . . . . . . . . . . . . . . . 18 ((if(𝑐𝑑, 𝑐, 𝑑) ∈ ℝ+ ∧ (𝑧 ∈ ℝ ↦ if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + if(𝑐𝑑, 𝑐, 𝑑)))) ∘r ≤ (𝐹f + 𝐺)) → ∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺))
325142, 319, 324syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺)) → ∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺))
326325ex 412 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → (((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺) → ∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺)))
327326rexlimdvva 3194 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∃𝑐 ∈ ℝ+𝑑 ∈ ℝ+ ((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺) → ∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺)))
328140, 327syl5 34 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))) → ∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺)))
329328a1dd 50 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))) → (𝑠 = (𝑡 + 𝑢) → ∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺))))
330329imp31 417 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ ((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔)))) ∧ 𝑠 = (𝑡 + 𝑢)) → ∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺))
331 oveq12 7396 . . . . . . . . . . . . . . 15 ((𝑡 = (∫1𝑓) ∧ 𝑢 = (∫1𝑔)) → (𝑡 + 𝑢) = ((∫1𝑓) + (∫1𝑔)))
332331ad2ant2l 746 . . . . . . . . . . . . . 14 (((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))) → (𝑡 + 𝑢) = ((∫1𝑓) + (∫1𝑔)))
333134, 135itg1add 25602 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (∫1‘(𝑓f + 𝑔)) = ((∫1𝑓) + (∫1𝑔)))
334333eqcomd 2735 . . . . . . . . . . . . . . 15 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → ((∫1𝑓) + (∫1𝑔)) = (∫1‘(𝑓f + 𝑔)))
335334adantl 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((∫1𝑓) + (∫1𝑔)) = (∫1‘(𝑓f + 𝑔)))
336332, 335sylan9eqr 2786 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ ((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔)))) → (𝑡 + 𝑢) = (∫1‘(𝑓f + 𝑔)))
337 eqtr 2749 . . . . . . . . . . . . . 14 ((𝑠 = (𝑡 + 𝑢) ∧ (𝑡 + 𝑢) = (∫1‘(𝑓f + 𝑔))) → 𝑠 = (∫1‘(𝑓f + 𝑔)))
338337ancoms 458 . . . . . . . . . . . . 13 (((𝑡 + 𝑢) = (∫1‘(𝑓f + 𝑔)) ∧ 𝑠 = (𝑡 + 𝑢)) → 𝑠 = (∫1‘(𝑓f + 𝑔)))
339336, 338sylan 580 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ ((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔)))) ∧ 𝑠 = (𝑡 + 𝑢)) → 𝑠 = (∫1‘(𝑓f + 𝑔)))
340 fveq1 6857 . . . . . . . . . . . . . . . . . . 19 ( = (𝑓f + 𝑔) → (𝑧) = ((𝑓f + 𝑔)‘𝑧))
341340eqeq1d 2731 . . . . . . . . . . . . . . . . . 18 ( = (𝑓f + 𝑔) → ((𝑧) = 0 ↔ ((𝑓f + 𝑔)‘𝑧) = 0))
342340oveq1d 7402 . . . . . . . . . . . . . . . . . 18 ( = (𝑓f + 𝑔) → ((𝑧) + 𝑦) = (((𝑓f + 𝑔)‘𝑧) + 𝑦))
343341, 342ifbieq2d 4515 . . . . . . . . . . . . . . . . 17 ( = (𝑓f + 𝑔) → if((𝑧) = 0, 0, ((𝑧) + 𝑦)) = if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + 𝑦)))
344343mpteq2dv 5201 . . . . . . . . . . . . . . . 16 ( = (𝑓f + 𝑔) → (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) = (𝑧 ∈ ℝ ↦ if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + 𝑦))))
345344breq1d 5117 . . . . . . . . . . . . . . 15 ( = (𝑓f + 𝑔) → ((𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺) ↔ (𝑧 ∈ ℝ ↦ if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺)))
346345rexbidv 3157 . . . . . . . . . . . . . 14 ( = (𝑓f + 𝑔) → (∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺) ↔ ∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺)))
347 fveq2 6858 . . . . . . . . . . . . . . 15 ( = (𝑓f + 𝑔) → (∫1) = (∫1‘(𝑓f + 𝑔)))
348347eqeq2d 2740 . . . . . . . . . . . . . 14 ( = (𝑓f + 𝑔) → (𝑠 = (∫1) ↔ 𝑠 = (∫1‘(𝑓f + 𝑔))))
349346, 348anbi12d 632 . . . . . . . . . . . . 13 ( = (𝑓f + 𝑔) → ((∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺) ∧ 𝑠 = (∫1)) ↔ (∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺) ∧ 𝑠 = (∫1‘(𝑓f + 𝑔)))))
350349rspcev 3588 . . . . . . . . . . . 12 (((𝑓f + 𝑔) ∈ dom ∫1 ∧ (∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺) ∧ 𝑠 = (∫1‘(𝑓f + 𝑔)))) → ∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺) ∧ 𝑠 = (∫1)))
351137, 330, 339, 350syl12anc 836 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ ((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔)))) ∧ 𝑠 = (𝑡 + 𝑢)) → ∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺) ∧ 𝑠 = (∫1)))
352351exp31 419 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))) → (𝑠 = (𝑡 + 𝑢) → ∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺) ∧ 𝑠 = (∫1)))))
353352rexlimdvva 3194 . . . . . . . . 9 (𝜑 → (∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))) → (𝑠 = (𝑡 + 𝑢) → ∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺) ∧ 𝑠 = (∫1)))))
354353impd 410 . . . . . . . 8 (𝜑 → ((∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) → ∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺) ∧ 𝑠 = (∫1))))
355354exlimdvv 1934 . . . . . . 7 (𝜑 → (∃𝑡𝑢(∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) → ∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺) ∧ 𝑠 = (∫1))))
356133, 355impbid 212 . . . . . 6 (𝜑 → (∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺) ∧ 𝑠 = (∫1)) ↔ ∃𝑡𝑢(∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢))))
357 eqeq1 2733 . . . . . . . . . 10 (𝑥 = 𝑡 → (𝑥 = (∫1𝑓) ↔ 𝑡 = (∫1𝑓)))
358357anbi2d 630 . . . . . . . . 9 (𝑥 = 𝑡 → ((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓)) ↔ (∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓))))
359358rexbidv 3157 . . . . . . . 8 (𝑥 = 𝑡 → (∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓)) ↔ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓))))
360359rexab 3666 . . . . . . 7 (∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢) ↔ ∃𝑡(∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ ∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)))
361 eqeq1 2733 . . . . . . . . . . . . 13 (𝑥 = 𝑢 → (𝑥 = (∫1𝑔) ↔ 𝑢 = (∫1𝑔)))
362361anbi2d 630 . . . . . . . . . . . 12 (𝑥 = 𝑢 → ((∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔)) ↔ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))))
363362rexbidv 3157 . . . . . . . . . . 11 (𝑥 = 𝑢 → (∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔)) ↔ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))))
364363rexab 3666 . . . . . . . . . 10 (∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢) ↔ ∃𝑢(∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔)) ∧ 𝑠 = (𝑡 + 𝑢)))
365364anbi2i 623 . . . . . . . . 9 ((∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ ∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)) ↔ (∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ ∃𝑢(∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔)) ∧ 𝑠 = (𝑡 + 𝑢))))
366 19.42v 1953 . . . . . . . . 9 (∃𝑢(∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔)) ∧ 𝑠 = (𝑡 + 𝑢))) ↔ (∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ ∃𝑢(∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔)) ∧ 𝑠 = (𝑡 + 𝑢))))
367 reeanv 3209 . . . . . . . . . . . 12 (∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))) ↔ (∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))))
368367anbi1i 624 . . . . . . . . . . 11 ((∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) ↔ ((∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))
369 anass 468 . . . . . . . . . . 11 (((∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) ↔ (∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔)) ∧ 𝑠 = (𝑡 + 𝑢))))
370368, 369bitr2i 276 . . . . . . . . . 10 ((∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔)) ∧ 𝑠 = (𝑡 + 𝑢))) ↔ (∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))
371370exbii 1848 . . . . . . . . 9 (∃𝑢(∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔)) ∧ 𝑠 = (𝑡 + 𝑢))) ↔ ∃𝑢(∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))
372365, 366, 3713bitr2i 299 . . . . . . . 8 ((∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ ∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)) ↔ ∃𝑢(∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))
373372exbii 1848 . . . . . . 7 (∃𝑡(∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ ∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)) ↔ ∃𝑡𝑢(∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))
374360, 373bitri 275 . . . . . 6 (∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢) ↔ ∃𝑡𝑢(∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))
375356, 374bitr4di 289 . . . . 5 (𝜑 → (∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺) ∧ 𝑠 = (∫1)) ↔ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)))
376375abbidv 2795 . . . 4 (𝜑 → {𝑠 ∣ ∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺) ∧ 𝑠 = (∫1))} = {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)})
377376supeq1d 9397 . . 3 (𝜑 → sup({𝑠 ∣ ∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺) ∧ 𝑠 = (∫1))}, ℝ*, < ) = sup({𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}, ℝ*, < ))
378 simpr 484 . . . . . . . . 9 (((𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}) ∧ 𝑠 = (𝑡 + 𝑢)) → 𝑠 = (𝑡 + 𝑢))
3796sseli 3942 . . . . . . . . . . 11 (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} → 𝑡 ∈ ℝ)
380379ad2antrr 726 . . . . . . . . . 10 (((𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}) ∧ 𝑠 = (𝑡 + 𝑢)) → 𝑡 ∈ ℝ)
38170sseli 3942 . . . . . . . . . . 11 (𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))} → 𝑢 ∈ ℝ)
382381ad2antlr 727 . . . . . . . . . 10 (((𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}) ∧ 𝑠 = (𝑡 + 𝑢)) → 𝑢 ∈ ℝ)
383380, 382readdcld 11203 . . . . . . . . 9 (((𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}) ∧ 𝑠 = (𝑡 + 𝑢)) → (𝑡 + 𝑢) ∈ ℝ)
384378, 383eqeltrd 2828 . . . . . . . 8 (((𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}) ∧ 𝑠 = (𝑡 + 𝑢)) → 𝑠 ∈ ℝ)
385384ex 412 . . . . . . 7 ((𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}) → (𝑠 = (𝑡 + 𝑢) → 𝑠 ∈ ℝ))
386385rexlimivv 3179 . . . . . 6 (∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢) → 𝑠 ∈ ℝ)
387386abssi 4033 . . . . 5 {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)} ⊆ ℝ
388387a1i 11 . . . 4 (𝜑 → {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)} ⊆ ℝ)
389156eqcomi 2738 . . . . . . . 8 0 = (0 + 0)
390 rspceov 7436 . . . . . . . 8 ((0 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ∧ 0 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))} ∧ 0 = (0 + 0)) → ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}0 = (𝑡 + 𝑢))
391389, 390mp3an3 1452 . . . . . . 7 ((0 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ∧ 0 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}) → ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}0 = (𝑡 + 𝑢))
39248, 100, 391syl2anc 584 . . . . . 6 (𝜑 → ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}0 = (𝑡 + 𝑢))
393 eqeq1 2733 . . . . . . . 8 (𝑠 = 0 → (𝑠 = (𝑡 + 𝑢) ↔ 0 = (𝑡 + 𝑢)))
3943932rexbidv 3202 . . . . . . 7 (𝑠 = 0 → (∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢) ↔ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}0 = (𝑡 + 𝑢)))
39521, 394spcev 3572 . . . . . 6 (∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}0 = (𝑡 + 𝑢) → ∃𝑠𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢))
396392, 395syl 17 . . . . 5 (𝜑 → ∃𝑠𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢))
397 abn0 4348 . . . . 5 ({𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)} ≠ ∅ ↔ ∃𝑠𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢))
398396, 397sylibr 234 . . . 4 (𝜑 → {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)} ≠ ∅)
39957, 108readdcld 11203 . . . . 5 (𝜑 → (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < )) ∈ ℝ)
400 simpr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))})) ∧ 𝑏 = (𝑡 + 𝑢)) → 𝑏 = (𝑡 + 𝑢))
401379ad2antrl 728 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))})) → 𝑡 ∈ ℝ)
402381ad2antll 729 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))})) → 𝑢 ∈ ℝ)
40357adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))})) → sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) ∈ ℝ)
404108adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))})) → sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < ) ∈ ℝ)
405 supxrub 13284 . . . . . . . . . . . . 13 (({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ⊆ ℝ*𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}) → 𝑡 ≤ sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ))
40659, 405mpan 690 . . . . . . . . . . . 12 (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} → 𝑡 ≤ sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ))
407406ad2antrl 728 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))})) → 𝑡 ≤ sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ))
408 supxrub 13284 . . . . . . . . . . . . 13 (({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))} ⊆ ℝ*𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}) → 𝑢 ≤ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < ))
409109, 408mpan 690 . . . . . . . . . . . 12 (𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))} → 𝑢 ≤ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < ))
410409ad2antll 729 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))})) → 𝑢 ≤ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < ))
411401, 402, 403, 404, 407, 410le2addd 11797 . . . . . . . . . 10 ((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))})) → (𝑡 + 𝑢) ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < )))
412411adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))})) ∧ 𝑏 = (𝑡 + 𝑢)) → (𝑡 + 𝑢) ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < )))
413400, 412eqbrtrd 5129 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))})) ∧ 𝑏 = (𝑡 + 𝑢)) → 𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < )))
414413ex 412 . . . . . . 7 ((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))})) → (𝑏 = (𝑡 + 𝑢) → 𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < ))))
415414rexlimdvva 3194 . . . . . 6 (𝜑 → (∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑏 = (𝑡 + 𝑢) → 𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < ))))
416415alrimiv 1927 . . . . 5 (𝜑 → ∀𝑏(∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑏 = (𝑡 + 𝑢) → 𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < ))))
417 breq2 5111 . . . . . . . 8 (𝑎 = (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < )) → (𝑏𝑎𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < ))))
418417ralbidv 3156 . . . . . . 7 (𝑎 = (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < )) → (∀𝑏 ∈ {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}𝑏𝑎 ↔ ∀𝑏 ∈ {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < ))))
419 eqeq1 2733 . . . . . . . . 9 (𝑠 = 𝑏 → (𝑠 = (𝑡 + 𝑢) ↔ 𝑏 = (𝑡 + 𝑢)))
4204192rexbidv 3202 . . . . . . . 8 (𝑠 = 𝑏 → (∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢) ↔ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑏 = (𝑡 + 𝑢)))
421420ralab 3664 . . . . . . 7 (∀𝑏 ∈ {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < )) ↔ ∀𝑏(∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑏 = (𝑡 + 𝑢) → 𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < ))))
422418, 421bitrdi 287 . . . . . 6 (𝑎 = (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < )) → (∀𝑏 ∈ {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}𝑏𝑎 ↔ ∀𝑏(∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑏 = (𝑡 + 𝑢) → 𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < )))))
423422rspcev 3588 . . . . 5 (((sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < )) ∈ ℝ ∧ ∀𝑏(∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑏 = (𝑡 + 𝑢) → 𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < )))) → ∃𝑎 ∈ ℝ ∀𝑏 ∈ {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}𝑏𝑎)
424399, 416, 423syl2anc 584 . . . 4 (𝜑 → ∃𝑎 ∈ ℝ ∀𝑏 ∈ {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}𝑏𝑎)
425 supxrre 13287 . . . 4 (({𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)} ⊆ ℝ ∧ {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)} ≠ ∅ ∧ ∃𝑎 ∈ ℝ ∀𝑏 ∈ {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}𝑏𝑎) → sup({𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}, ℝ*, < ) = sup({𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}, ℝ, < ))
426388, 398, 424, 425syl3anc 1373 . . 3 (𝜑 → sup({𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}, ℝ*, < ) = sup({𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}, ℝ, < ))
427131, 377, 4263eqtrd 2768 . 2 (𝜑 → (∫2‘(𝐹f + 𝐺)) = sup({𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}, ℝ, < ))
428116, 123, 4273eqtr4rd 2775 1 (𝜑 → (∫2‘(𝐹f + 𝐺)) = ((∫2𝐹) + (∫2𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  Vcvv 3447  wss 3914  c0 4296  ifcif 4488  {csn 4589   class class class wbr 5107  cmpt 5188   × cxp 5636  dom cdm 5638   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  f cof 7651  r cofr 7652  supcsup 9391  cr 11067  0cc0 11068   + caddc 11071  +∞cpnf 11205  *cxr 11207   < clt 11208  cle 11209  cn 12186  3c3 12242  +crp 12951  [,)cico 13308  [,]cicc 13309  MblFncmbf 25515  1citg1 25516  2citg2 25517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-rest 17385  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-top 22781  df-topon 22798  df-bases 22833  df-cmp 23274  df-ovol 25365  df-vol 25366  df-mbf 25520  df-itg1 25521  df-itg2 25522
This theorem is referenced by:  ibladdnclem  37670  itgaddnclem1  37672  iblabsnclem  37677  iblabsnc  37678  iblmulc2nc  37679  ftc1anclem4  37690  ftc1anclem5  37691  ftc1anclem6  37692  ftc1anclem8  37694
  Copyright terms: Public domain W3C validator