Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itg2addnc Structured version   Visualization version   GIF version

Theorem itg2addnc 37653
Description: Alternate proof of itg2add 25676 using the "buffer zone" definition from the first lemma, in which every simple function in the set is divided into to by dividing its buffer by a third and finding the largest allowable function locked to a grid laid out in increments of the new, smaller buffer up to the original simple function. The measurability of this function follows from that of the augend, and subtracting it from the original simple function yields another simple function by i1fsub 25625, which is allowable by the fact that the grid must have a mark between one third and two thirds the original buffer. This has two advantages over the current approach: first, eliminating ax-cc 10348, and second, weakening the measurability hypothesis to only the augend. (Contributed by Brendan Leahy, 31-Oct-2017.) (Revised by Brendan Leahy, 13-Mar-2018.)
Hypotheses
Ref Expression
itg2addnc.f1 (𝜑𝐹 ∈ MblFn)
itg2addnc.f2 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2addnc.f3 (𝜑 → (∫2𝐹) ∈ ℝ)
itg2addnc.g2 (𝜑𝐺:ℝ⟶(0[,)+∞))
itg2addnc.g3 (𝜑 → (∫2𝐺) ∈ ℝ)
Assertion
Ref Expression
itg2addnc (𝜑 → (∫2‘(𝐹f + 𝐺)) = ((∫2𝐹) + (∫2𝐺)))

Proof of Theorem itg2addnc
Dummy variables 𝑡 𝑠 𝑢 𝑥 𝑦 𝑧 𝑓 𝑔 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprr 772 . . . . . . 7 ((𝑓 ∈ dom ∫1 ∧ (∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))) → 𝑥 = (∫1𝑓))
2 itg1cl 25602 . . . . . . . 8 (𝑓 ∈ dom ∫1 → (∫1𝑓) ∈ ℝ)
32adantr 480 . . . . . . 7 ((𝑓 ∈ dom ∫1 ∧ (∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))) → (∫1𝑓) ∈ ℝ)
41, 3eqeltrd 2828 . . . . . 6 ((𝑓 ∈ dom ∫1 ∧ (∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))) → 𝑥 ∈ ℝ)
54rexlimiva 3122 . . . . 5 (∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓)) → 𝑥 ∈ ℝ)
65abssi 4023 . . . 4 {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ⊆ ℝ
76a1i 11 . . 3 (𝜑 → {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ⊆ ℝ)
8 i1f0 25604 . . . . . 6 (ℝ × {0}) ∈ dom ∫1
9 3nn 12225 . . . . . . . 8 3 ∈ ℕ
10 nnrp 12923 . . . . . . . 8 (3 ∈ ℕ → 3 ∈ ℝ+)
11 ne0i 4294 . . . . . . . 8 (3 ∈ ℝ+ → ℝ+ ≠ ∅)
129, 10, 11mp2b 10 . . . . . . 7 + ≠ ∅
13 itg2addnc.f2 . . . . . . . . . . . . 13 (𝜑𝐹:ℝ⟶(0[,)+∞))
1413ffvelcdmda 7022 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ℝ) → (𝐹𝑧) ∈ (0[,)+∞))
15 elrege0 13375 . . . . . . . . . . . 12 ((𝐹𝑧) ∈ (0[,)+∞) ↔ ((𝐹𝑧) ∈ ℝ ∧ 0 ≤ (𝐹𝑧)))
1614, 15sylib 218 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℝ) → ((𝐹𝑧) ∈ ℝ ∧ 0 ≤ (𝐹𝑧)))
1716simprd 495 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℝ) → 0 ≤ (𝐹𝑧))
1817ralrimiva 3121 . . . . . . . . 9 (𝜑 → ∀𝑧 ∈ ℝ 0 ≤ (𝐹𝑧))
19 reex 11119 . . . . . . . . . . 11 ℝ ∈ V
2019a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ∈ V)
21 c0ex 11128 . . . . . . . . . . 11 0 ∈ V
2221a1i 11 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℝ) → 0 ∈ V)
23 eqidd 2730 . . . . . . . . . 10 (𝜑 → (𝑧 ∈ ℝ ↦ 0) = (𝑧 ∈ ℝ ↦ 0))
2413feqmptd 6895 . . . . . . . . . 10 (𝜑𝐹 = (𝑧 ∈ ℝ ↦ (𝐹𝑧)))
2520, 22, 14, 23, 24ofrfval2 7638 . . . . . . . . 9 (𝜑 → ((𝑧 ∈ ℝ ↦ 0) ∘r𝐹 ↔ ∀𝑧 ∈ ℝ 0 ≤ (𝐹𝑧)))
2618, 25mpbird 257 . . . . . . . 8 (𝜑 → (𝑧 ∈ ℝ ↦ 0) ∘r𝐹)
2726ralrimivw 3125 . . . . . . 7 (𝜑 → ∀𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0) ∘r𝐹)
28 r19.2z 4448 . . . . . . 7 ((ℝ+ ≠ ∅ ∧ ∀𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0) ∘r𝐹) → ∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0) ∘r𝐹)
2912, 27, 28sylancr 587 . . . . . 6 (𝜑 → ∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0) ∘r𝐹)
30 fveq2 6826 . . . . . . . . . 10 (𝑓 = (ℝ × {0}) → (∫1𝑓) = (∫1‘(ℝ × {0})))
31 itg10 25605 . . . . . . . . . 10 (∫1‘(ℝ × {0})) = 0
3230, 31eqtr2di 2781 . . . . . . . . 9 (𝑓 = (ℝ × {0}) → 0 = (∫1𝑓))
3332biantrud 531 . . . . . . . 8 (𝑓 = (ℝ × {0}) → (∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ↔ (∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ∧ 0 = (∫1𝑓))))
34 fveq1 6825 . . . . . . . . . . . . 13 (𝑓 = (ℝ × {0}) → (𝑓𝑧) = ((ℝ × {0})‘𝑧))
3521fvconst2 7144 . . . . . . . . . . . . 13 (𝑧 ∈ ℝ → ((ℝ × {0})‘𝑧) = 0)
3634, 35sylan9eq 2784 . . . . . . . . . . . 12 ((𝑓 = (ℝ × {0}) ∧ 𝑧 ∈ ℝ) → (𝑓𝑧) = 0)
3736iftrued 4486 . . . . . . . . . . 11 ((𝑓 = (ℝ × {0}) ∧ 𝑧 ∈ ℝ) → if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) = 0)
3837mpteq2dva 5188 . . . . . . . . . 10 (𝑓 = (ℝ × {0}) → (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) = (𝑧 ∈ ℝ ↦ 0))
3938breq1d 5105 . . . . . . . . 9 (𝑓 = (ℝ × {0}) → ((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ↔ (𝑧 ∈ ℝ ↦ 0) ∘r𝐹))
4039rexbidv 3153 . . . . . . . 8 (𝑓 = (ℝ × {0}) → (∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ↔ ∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0) ∘r𝐹))
4133, 40bitr3d 281 . . . . . . 7 (𝑓 = (ℝ × {0}) → ((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ∧ 0 = (∫1𝑓)) ↔ ∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0) ∘r𝐹))
4241rspcev 3579 . . . . . 6 (((ℝ × {0}) ∈ dom ∫1 ∧ ∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0) ∘r𝐹) → ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ∧ 0 = (∫1𝑓)))
438, 29, 42sylancr 587 . . . . 5 (𝜑 → ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ∧ 0 = (∫1𝑓)))
44 eqeq1 2733 . . . . . . . 8 (𝑥 = 0 → (𝑥 = (∫1𝑓) ↔ 0 = (∫1𝑓)))
4544anbi2d 630 . . . . . . 7 (𝑥 = 0 → ((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓)) ↔ (∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ∧ 0 = (∫1𝑓))))
4645rexbidv 3153 . . . . . 6 (𝑥 = 0 → (∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓)) ↔ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ∧ 0 = (∫1𝑓))))
4721, 46elab 3637 . . . . 5 (0 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ↔ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ∧ 0 = (∫1𝑓)))
4843, 47sylibr 234 . . . 4 (𝜑 → 0 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))})
4948ne0d 4295 . . 3 (𝜑 → {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ≠ ∅)
50 icossicc 13357 . . . . . . 7 (0[,)+∞) ⊆ (0[,]+∞)
51 fss 6672 . . . . . . 7 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → 𝐹:ℝ⟶(0[,]+∞))
5250, 51mpan2 691 . . . . . 6 (𝐹:ℝ⟶(0[,)+∞) → 𝐹:ℝ⟶(0[,]+∞))
53 eqid 2729 . . . . . . 7 {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} = {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}
5453itg2addnclem 37650 . . . . . 6 (𝐹:ℝ⟶(0[,]+∞) → (∫2𝐹) = sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ))
5513, 52, 543syl 18 . . . . 5 (𝜑 → (∫2𝐹) = sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ))
56 itg2addnc.f3 . . . . 5 (𝜑 → (∫2𝐹) ∈ ℝ)
5755, 56eqeltrrd 2829 . . . 4 (𝜑 → sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) ∈ ℝ)
58 ressxr 11178 . . . . . . 7 ℝ ⊆ ℝ*
596, 58sstri 3947 . . . . . 6 {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ⊆ ℝ*
60 supxrub 13244 . . . . . 6 (({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ⊆ ℝ*𝑏 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}) → 𝑏 ≤ sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ))
6159, 60mpan 690 . . . . 5 (𝑏 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} → 𝑏 ≤ sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ))
6261rgen 3046 . . . 4 𝑏 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}𝑏 ≤ sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < )
63 brralrspcev 5155 . . . 4 ((sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) ∈ ℝ ∧ ∀𝑏 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}𝑏 ≤ sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < )) → ∃𝑎 ∈ ℝ ∀𝑏 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}𝑏𝑎)
6457, 62, 63sylancl 586 . . 3 (𝜑 → ∃𝑎 ∈ ℝ ∀𝑏 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}𝑏𝑎)
65 simprr 772 . . . . . . 7 ((𝑔 ∈ dom ∫1 ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))) → 𝑥 = (∫1𝑔))
66 itg1cl 25602 . . . . . . . 8 (𝑔 ∈ dom ∫1 → (∫1𝑔) ∈ ℝ)
6766adantr 480 . . . . . . 7 ((𝑔 ∈ dom ∫1 ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))) → (∫1𝑔) ∈ ℝ)
6865, 67eqeltrd 2828 . . . . . 6 ((𝑔 ∈ dom ∫1 ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))) → 𝑥 ∈ ℝ)
6968rexlimiva 3122 . . . . 5 (∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔)) → 𝑥 ∈ ℝ)
7069abssi 4023 . . . 4 {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))} ⊆ ℝ
7170a1i 11 . . 3 (𝜑 → {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))} ⊆ ℝ)
72 itg2addnc.g2 . . . . . . . . . . . . 13 (𝜑𝐺:ℝ⟶(0[,)+∞))
7372ffvelcdmda 7022 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ℝ) → (𝐺𝑧) ∈ (0[,)+∞))
74 elrege0 13375 . . . . . . . . . . . 12 ((𝐺𝑧) ∈ (0[,)+∞) ↔ ((𝐺𝑧) ∈ ℝ ∧ 0 ≤ (𝐺𝑧)))
7573, 74sylib 218 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℝ) → ((𝐺𝑧) ∈ ℝ ∧ 0 ≤ (𝐺𝑧)))
7675simprd 495 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℝ) → 0 ≤ (𝐺𝑧))
7776ralrimiva 3121 . . . . . . . . 9 (𝜑 → ∀𝑧 ∈ ℝ 0 ≤ (𝐺𝑧))
7872feqmptd 6895 . . . . . . . . . 10 (𝜑𝐺 = (𝑧 ∈ ℝ ↦ (𝐺𝑧)))
7920, 22, 73, 23, 78ofrfval2 7638 . . . . . . . . 9 (𝜑 → ((𝑧 ∈ ℝ ↦ 0) ∘r𝐺 ↔ ∀𝑧 ∈ ℝ 0 ≤ (𝐺𝑧)))
8077, 79mpbird 257 . . . . . . . 8 (𝜑 → (𝑧 ∈ ℝ ↦ 0) ∘r𝐺)
8180ralrimivw 3125 . . . . . . 7 (𝜑 → ∀𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0) ∘r𝐺)
82 r19.2z 4448 . . . . . . 7 ((ℝ+ ≠ ∅ ∧ ∀𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0) ∘r𝐺) → ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0) ∘r𝐺)
8312, 81, 82sylancr 587 . . . . . 6 (𝜑 → ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0) ∘r𝐺)
84 fveq2 6826 . . . . . . . . . 10 (𝑔 = (ℝ × {0}) → (∫1𝑔) = (∫1‘(ℝ × {0})))
8584, 31eqtr2di 2781 . . . . . . . . 9 (𝑔 = (ℝ × {0}) → 0 = (∫1𝑔))
8685biantrud 531 . . . . . . . 8 (𝑔 = (ℝ × {0}) → (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺 ↔ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺 ∧ 0 = (∫1𝑔))))
87 fveq1 6825 . . . . . . . . . . . . 13 (𝑔 = (ℝ × {0}) → (𝑔𝑧) = ((ℝ × {0})‘𝑧))
8887, 35sylan9eq 2784 . . . . . . . . . . . 12 ((𝑔 = (ℝ × {0}) ∧ 𝑧 ∈ ℝ) → (𝑔𝑧) = 0)
8988iftrued 4486 . . . . . . . . . . 11 ((𝑔 = (ℝ × {0}) ∧ 𝑧 ∈ ℝ) → if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) = 0)
9089mpteq2dva 5188 . . . . . . . . . 10 (𝑔 = (ℝ × {0}) → (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) = (𝑧 ∈ ℝ ↦ 0))
9190breq1d 5105 . . . . . . . . 9 (𝑔 = (ℝ × {0}) → ((𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺 ↔ (𝑧 ∈ ℝ ↦ 0) ∘r𝐺))
9291rexbidv 3153 . . . . . . . 8 (𝑔 = (ℝ × {0}) → (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺 ↔ ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0) ∘r𝐺))
9386, 92bitr3d 281 . . . . . . 7 (𝑔 = (ℝ × {0}) → ((∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺 ∧ 0 = (∫1𝑔)) ↔ ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0) ∘r𝐺))
9493rspcev 3579 . . . . . 6 (((ℝ × {0}) ∈ dom ∫1 ∧ ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0) ∘r𝐺) → ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺 ∧ 0 = (∫1𝑔)))
958, 83, 94sylancr 587 . . . . 5 (𝜑 → ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺 ∧ 0 = (∫1𝑔)))
96 eqeq1 2733 . . . . . . . 8 (𝑥 = 0 → (𝑥 = (∫1𝑔) ↔ 0 = (∫1𝑔)))
9796anbi2d 630 . . . . . . 7 (𝑥 = 0 → ((∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔)) ↔ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺 ∧ 0 = (∫1𝑔))))
9897rexbidv 3153 . . . . . 6 (𝑥 = 0 → (∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔)) ↔ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺 ∧ 0 = (∫1𝑔))))
9921, 98elab 3637 . . . . 5 (0 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))} ↔ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺 ∧ 0 = (∫1𝑔)))
10095, 99sylibr 234 . . . 4 (𝜑 → 0 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))})
101100ne0d 4295 . . 3 (𝜑 → {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))} ≠ ∅)
102 fss 6672 . . . . . . 7 ((𝐺:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → 𝐺:ℝ⟶(0[,]+∞))
10350, 102mpan2 691 . . . . . 6 (𝐺:ℝ⟶(0[,)+∞) → 𝐺:ℝ⟶(0[,]+∞))
104 eqid 2729 . . . . . . 7 {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))} = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}
105104itg2addnclem 37650 . . . . . 6 (𝐺:ℝ⟶(0[,]+∞) → (∫2𝐺) = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < ))
10672, 103, 1053syl 18 . . . . 5 (𝜑 → (∫2𝐺) = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < ))
107 itg2addnc.g3 . . . . 5 (𝜑 → (∫2𝐺) ∈ ℝ)
108106, 107eqeltrrd 2829 . . . 4 (𝜑 → sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < ) ∈ ℝ)
10970, 58sstri 3947 . . . . . 6 {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))} ⊆ ℝ*
110 supxrub 13244 . . . . . 6 (({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))} ⊆ ℝ*𝑏 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}) → 𝑏 ≤ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < ))
111109, 110mpan 690 . . . . 5 (𝑏 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))} → 𝑏 ≤ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < ))
112111rgen 3046 . . . 4 𝑏 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑏 ≤ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < )
113 brralrspcev 5155 . . . 4 ((sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < ) ∈ ℝ ∧ ∀𝑏 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑏 ≤ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < )) → ∃𝑎 ∈ ℝ ∀𝑏 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑏𝑎)
114108, 112, 113sylancl 586 . . 3 (𝜑 → ∃𝑎 ∈ ℝ ∀𝑏 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑏𝑎)
115 eqid 2729 . . 3 {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)} = {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}
1167, 49, 64, 71, 101, 114, 115supadd 12111 . 2 (𝜑 → (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ, < )) = sup({𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}, ℝ, < ))
117 supxrre 13247 . . . . 5 (({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ⊆ ℝ ∧ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ≠ ∅ ∧ ∃𝑎 ∈ ℝ ∀𝑏 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}𝑏𝑎) → sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) = sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ, < ))
1187, 49, 64, 117syl3anc 1373 . . . 4 (𝜑 → sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) = sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ, < ))
11955, 118eqtrd 2764 . . 3 (𝜑 → (∫2𝐹) = sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ, < ))
120 supxrre 13247 . . . . 5 (({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))} ⊆ ℝ ∧ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))} ≠ ∅ ∧ ∃𝑎 ∈ ℝ ∀𝑏 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑏𝑎) → sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < ) = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ, < ))
12171, 101, 114, 120syl3anc 1373 . . . 4 (𝜑 → sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < ) = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ, < ))
122106, 121eqtrd 2764 . . 3 (𝜑 → (∫2𝐺) = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ, < ))
123119, 122oveq12d 7371 . 2 (𝜑 → ((∫2𝐹) + (∫2𝐺)) = (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ, < )))
124 ge0addcl 13381 . . . . . . 7 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 + 𝑦) ∈ (0[,)+∞))
12550, 124sselid 3935 . . . . . 6 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 + 𝑦) ∈ (0[,]+∞))
126125adantl 481 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) ∈ (0[,]+∞))
127 inidm 4180 . . . . 5 (ℝ ∩ ℝ) = ℝ
128126, 13, 72, 20, 20, 127off 7635 . . . 4 (𝜑 → (𝐹f + 𝐺):ℝ⟶(0[,]+∞))
129 eqid 2729 . . . . 5 {𝑠 ∣ ∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺) ∧ 𝑠 = (∫1))} = {𝑠 ∣ ∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺) ∧ 𝑠 = (∫1))}
130129itg2addnclem 37650 . . . 4 ((𝐹f + 𝐺):ℝ⟶(0[,]+∞) → (∫2‘(𝐹f + 𝐺)) = sup({𝑠 ∣ ∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺) ∧ 𝑠 = (∫1))}, ℝ*, < ))
131128, 130syl 17 . . 3 (𝜑 → (∫2‘(𝐹f + 𝐺)) = sup({𝑠 ∣ ∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺) ∧ 𝑠 = (∫1))}, ℝ*, < ))
132 itg2addnc.f1 . . . . . . . 8 (𝜑𝐹 ∈ MblFn)
133132, 13, 56, 72, 107itg2addnclem3 37652 . . . . . . 7 (𝜑 → (∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺) ∧ 𝑠 = (∫1)) → ∃𝑡𝑢(∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢))))
134 simpl 482 . . . . . . . . . . . . . 14 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → 𝑓 ∈ dom ∫1)
135 simpr 484 . . . . . . . . . . . . . 14 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → 𝑔 ∈ dom ∫1)
136134, 135i1fadd 25612 . . . . . . . . . . . . 13 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (𝑓f + 𝑔) ∈ dom ∫1)
137136ad3antlr 731 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ ((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔)))) ∧ 𝑠 = (𝑡 + 𝑢)) → (𝑓f + 𝑔) ∈ dom ∫1)
138 reeanv 3201 . . . . . . . . . . . . . . . . 17 (∃𝑐 ∈ ℝ+𝑑 ∈ ℝ+ ((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺) ↔ (∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ∧ ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺))
139138biimpri 228 . . . . . . . . . . . . . . . 16 ((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ∧ ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺) → ∃𝑐 ∈ ℝ+𝑑 ∈ ℝ+ ((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺))
140139ad2ant2r 747 . . . . . . . . . . . . . . 15 (((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))) → ∃𝑐 ∈ ℝ+𝑑 ∈ ℝ+ ((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺))
141 ifcl 4524 . . . . . . . . . . . . . . . . . . 19 ((𝑐 ∈ ℝ+𝑑 ∈ ℝ+) → if(𝑐𝑑, 𝑐, 𝑑) ∈ ℝ+)
142141ad2antlr 727 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺)) → if(𝑐𝑑, 𝑐, 𝑑) ∈ ℝ+)
143 breq1 5098 . . . . . . . . . . . . . . . . . . . . . . . 24 (0 = if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) → (0 ≤ (𝐹𝑧) ↔ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ≤ (𝐹𝑧)))
144143anbi1d 631 . . . . . . . . . . . . . . . . . . . . . . 23 (0 = if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) → ((0 ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) ↔ (if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧))))
145144imbi1d 341 . . . . . . . . . . . . . . . . . . . . . 22 (0 = if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) → (((0 ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))) ↔ ((if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧)))))
146 breq1 5098 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑓𝑧) + 𝑐) = if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) → (((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ↔ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ≤ (𝐹𝑧)))
147146anbi1d 631 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑓𝑧) + 𝑐) = if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) → ((((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) ↔ (if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧))))
148147imbi1d 341 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑓𝑧) + 𝑐) = if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) → (((((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))) ↔ ((if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧)))))
149 breq1 5098 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 = if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) → (0 ≤ (𝐺𝑧) ↔ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)))
150149anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . 24 (0 = if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) → ((0 ≤ (𝐹𝑧) ∧ 0 ≤ (𝐺𝑧)) ↔ (0 ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧))))
151150imbi1d 341 . . . . . . . . . . . . . . . . . . . . . . 23 (0 = if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) → (((0 ≤ (𝐹𝑧) ∧ 0 ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))) ↔ ((0 ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧)))))
152 breq1 5098 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑔𝑧) + 𝑑) = if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) → (((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧) ↔ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)))
153152anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑔𝑧) + 𝑑) = if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) → ((0 ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) ↔ (0 ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧))))
154153imbi1d 341 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑔𝑧) + 𝑑) = if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) → (((0 ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))) ↔ ((0 ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧)))))
155 oveq12 7362 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑓𝑧) = 0 ∧ (𝑔𝑧) = 0) → ((𝑓𝑧) + (𝑔𝑧)) = (0 + 0))
156 00id 11309 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (0 + 0) = 0
157155, 156eqtrdi 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑓𝑧) = 0 ∧ (𝑔𝑧) = 0) → ((𝑓𝑧) + (𝑔𝑧)) = 0)
158157iftrued 4486 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑓𝑧) = 0 ∧ (𝑔𝑧) = 0) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) = 0)
159158adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) ∧ (𝑔𝑧) = 0) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) = 0)
160 simpll 766 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝜑)
16115simplbi 497 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹𝑧) ∈ (0[,)+∞) → (𝐹𝑧) ∈ ℝ)
16214, 161syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑧 ∈ ℝ) → (𝐹𝑧) ∈ ℝ)
16374simplbi 497 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐺𝑧) ∈ (0[,)+∞) → (𝐺𝑧) ∈ ℝ)
16473, 163syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑧 ∈ ℝ) → (𝐺𝑧) ∈ ℝ)
165162, 164, 17, 76addge0d 11714 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑧 ∈ ℝ) → 0 ≤ ((𝐹𝑧) + (𝐺𝑧)))
166160, 165sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → 0 ≤ ((𝐹𝑧) + (𝐺𝑧)))
167166ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) ∧ (𝑔𝑧) = 0) → 0 ≤ ((𝐹𝑧) + (𝐺𝑧)))
168159, 167eqbrtrd 5117 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) ∧ (𝑔𝑧) = 0) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧)))
169168a1d 25 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) ∧ (𝑔𝑧) = 0) → ((0 ≤ (𝐹𝑧) ∧ 0 ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
170166ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → 0 ≤ ((𝐹𝑧) + (𝐺𝑧)))
171 oveq1 7360 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑓𝑧) = 0 → ((𝑓𝑧) + (𝑔𝑧)) = (0 + (𝑔𝑧)))
172 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑔 ∈ dom ∫1)
173 i1ff 25593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑔 ∈ dom ∫1𝑔:ℝ⟶ℝ)
174173ffvelcdmda 7022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑔 ∈ dom ∫1𝑧 ∈ ℝ) → (𝑔𝑧) ∈ ℝ)
175172, 174sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝑔𝑧) ∈ ℝ)
176175recnd 11162 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝑔𝑧) ∈ ℂ)
177176addlidd 11335 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (0 + (𝑔𝑧)) = (𝑔𝑧))
178171, 177sylan9eqr 2786 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) → ((𝑓𝑧) + (𝑔𝑧)) = (𝑔𝑧))
179178oveq1d 7368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) → (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)) = ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)))
180179adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)) = ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)))
181141rpred 12955 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑐 ∈ ℝ+𝑑 ∈ ℝ+) → if(𝑐𝑑, 𝑐, 𝑑) ∈ ℝ)
182181ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → if(𝑐𝑑, 𝑐, 𝑑) ∈ ℝ)
183175, 182readdcld 11163 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ∈ ℝ)
184183adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ∈ ℝ)
185160, 164sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝐺𝑧) ∈ ℝ)
186185adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → (𝐺𝑧) ∈ ℝ)
187160, 162sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝐹𝑧) ∈ ℝ)
188187, 185readdcld 11163 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝐹𝑧) + (𝐺𝑧)) ∈ ℝ)
189188adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → ((𝐹𝑧) + (𝐺𝑧)) ∈ ℝ)
190 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → 𝑑 ∈ ℝ+)
191190rpred 12955 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → 𝑑 ∈ ℝ)
192 rpre 12920 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑐 ∈ ℝ+𝑐 ∈ ℝ)
193 rpre 12920 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑑 ∈ ℝ+𝑑 ∈ ℝ)
194 min2 13110 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → if(𝑐𝑑, 𝑐, 𝑑) ≤ 𝑑)
195192, 193, 194syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑐 ∈ ℝ+𝑑 ∈ ℝ+) → if(𝑐𝑑, 𝑐, 𝑑) ≤ 𝑑)
196195ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → if(𝑐𝑑, 𝑐, 𝑑) ≤ 𝑑)
197182, 191, 175, 196leadd2dd 11753 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝑔𝑧) + 𝑑))
198175, 191readdcld 11163 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝑔𝑧) + 𝑑) ∈ ℝ)
199 letr 11228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ∈ ℝ ∧ ((𝑔𝑧) + 𝑑) ∈ ℝ ∧ (𝐺𝑧) ∈ ℝ) → ((((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝑔𝑧) + 𝑑) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ (𝐺𝑧)))
200183, 198, 185, 199syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝑔𝑧) + 𝑑) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ (𝐺𝑧)))
201197, 200mpand 695 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧) → ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ (𝐺𝑧)))
202201imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ (𝐺𝑧))
203164, 162addge02d 11727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ ℝ) → (0 ≤ (𝐹𝑧) ↔ (𝐺𝑧) ≤ ((𝐹𝑧) + (𝐺𝑧))))
20417, 203mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑧 ∈ ℝ) → (𝐺𝑧) ≤ ((𝐹𝑧) + (𝐺𝑧)))
205160, 204sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝐺𝑧) ≤ ((𝐹𝑧) + (𝐺𝑧)))
206205adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → (𝐺𝑧) ≤ ((𝐹𝑧) + (𝐺𝑧)))
207184, 186, 189, 202, 206letrd 11291 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝐹𝑧) + (𝐺𝑧)))
208207adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝐹𝑧) + (𝐺𝑧)))
209180, 208eqbrtrd 5117 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝐹𝑧) + (𝐺𝑧)))
210 breq1 5098 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (0 = if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) → (0 ≤ ((𝐹𝑧) + (𝐺𝑧)) ↔ if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
211 breq1 5098 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)) = if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) → ((((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝐹𝑧) + (𝐺𝑧)) ↔ if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
212210, 211ifboth 4518 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((0 ≤ ((𝐹𝑧) + (𝐺𝑧)) ∧ (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝐹𝑧) + (𝐺𝑧))) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧)))
213170, 209, 212syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧)))
214213ex 412 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) → (((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
215214adantld 490 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) → ((0 ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
216215adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) ∧ ¬ (𝑔𝑧) = 0) → ((0 ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
217151, 154, 169, 216ifbothda 4517 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) → ((0 ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
218149anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . 24 (0 = if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) → ((((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ 0 ≤ (𝐺𝑧)) ↔ (((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧))))
219218imbi1d 341 . . . . . . . . . . . . . . . . . . . . . . 23 (0 = if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) → (((((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ 0 ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))) ↔ ((((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧)))))
220152anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑔𝑧) + 𝑑) = if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) → ((((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) ↔ (((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧))))
221220imbi1d 341 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑔𝑧) + 𝑑) = if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) → (((((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))) ↔ ((((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧)))))
222166ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑔𝑧) = 0) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → 0 ≤ ((𝐹𝑧) + (𝐺𝑧)))
223 oveq2 7361 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑔𝑧) = 0 → ((𝑓𝑧) + (𝑔𝑧)) = ((𝑓𝑧) + 0))
224 simplrl 776 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑓 ∈ dom ∫1)
225 i1ff 25593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑓 ∈ dom ∫1𝑓:ℝ⟶ℝ)
226225ffvelcdmda 7022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑓 ∈ dom ∫1𝑧 ∈ ℝ) → (𝑓𝑧) ∈ ℝ)
227224, 226sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝑓𝑧) ∈ ℝ)
228227recnd 11162 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝑓𝑧) ∈ ℂ)
229228addridd 11334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝑓𝑧) + 0) = (𝑓𝑧))
230223, 229sylan9eqr 2786 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑔𝑧) = 0) → ((𝑓𝑧) + (𝑔𝑧)) = (𝑓𝑧))
231230oveq1d 7368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑔𝑧) = 0) → (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)) = ((𝑓𝑧) + if(𝑐𝑑, 𝑐, 𝑑)))
232231adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑔𝑧) = 0) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)) = ((𝑓𝑧) + if(𝑐𝑑, 𝑐, 𝑑)))
233227, 182readdcld 11163 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝑓𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ∈ ℝ)
234233adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → ((𝑓𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ∈ ℝ)
235187adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → (𝐹𝑧) ∈ ℝ)
236188adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → ((𝐹𝑧) + (𝐺𝑧)) ∈ ℝ)
237 simplrl 776 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → 𝑐 ∈ ℝ+)
238237rpred 12955 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → 𝑐 ∈ ℝ)
239 min1 13109 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → if(𝑐𝑑, 𝑐, 𝑑) ≤ 𝑐)
240192, 193, 239syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑐 ∈ ℝ+𝑑 ∈ ℝ+) → if(𝑐𝑑, 𝑐, 𝑑) ≤ 𝑐)
241240ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → if(𝑐𝑑, 𝑐, 𝑑) ≤ 𝑐)
242182, 238, 227, 241leadd2dd 11753 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝑓𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝑓𝑧) + 𝑐))
243227, 238readdcld 11163 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝑓𝑧) + 𝑐) ∈ ℝ)
244 letr 11228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝑓𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ∈ ℝ ∧ ((𝑓𝑧) + 𝑐) ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ) → ((((𝑓𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝑓𝑧) + 𝑐) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → ((𝑓𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ (𝐹𝑧)))
245233, 243, 187, 244syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((((𝑓𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝑓𝑧) + 𝑐) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → ((𝑓𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ (𝐹𝑧)))
246242, 245mpand 695 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) → ((𝑓𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ (𝐹𝑧)))
247246imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → ((𝑓𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ (𝐹𝑧))
248162, 164addge01d 11726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ ℝ) → (0 ≤ (𝐺𝑧) ↔ (𝐹𝑧) ≤ ((𝐹𝑧) + (𝐺𝑧))))
24976, 248mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑧 ∈ ℝ) → (𝐹𝑧) ≤ ((𝐹𝑧) + (𝐺𝑧)))
250160, 249sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝐹𝑧) ≤ ((𝐹𝑧) + (𝐺𝑧)))
251250adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → (𝐹𝑧) ≤ ((𝐹𝑧) + (𝐺𝑧)))
252234, 235, 236, 247, 251letrd 11291 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → ((𝑓𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝐹𝑧) + (𝐺𝑧)))
253252adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑔𝑧) = 0) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → ((𝑓𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝐹𝑧) + (𝐺𝑧)))
254232, 253eqbrtrd 5117 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑔𝑧) = 0) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝐹𝑧) + (𝐺𝑧)))
255222, 254, 212syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑔𝑧) = 0) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧)))
256255ex 412 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑔𝑧) = 0) → (((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
257256adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ¬ (𝑓𝑧) = 0) ∧ (𝑔𝑧) = 0) → (((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
258257adantrd 491 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ¬ (𝑓𝑧) = 0) ∧ (𝑔𝑧) = 0) → ((((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ 0 ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
259166adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧))) → 0 ≤ ((𝐹𝑧) + (𝐺𝑧)))
260182recnd 11162 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → if(𝑐𝑑, 𝑐, 𝑑) ∈ ℂ)
261228, 176, 260addassd 11156 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)) = ((𝑓𝑧) + ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑))))
262261adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧))) → (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)) = ((𝑓𝑧) + ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑))))
263227, 237ltaddrpd 12988 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝑓𝑧) < ((𝑓𝑧) + 𝑐))
264227, 243, 263ltled 11282 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝑓𝑧) ≤ ((𝑓𝑧) + 𝑐))
265 letr 11228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑓𝑧) ∈ ℝ ∧ ((𝑓𝑧) + 𝑐) ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ) → (((𝑓𝑧) ≤ ((𝑓𝑧) + 𝑐) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → (𝑓𝑧) ≤ (𝐹𝑧)))
266227, 243, 187, 265syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (((𝑓𝑧) ≤ ((𝑓𝑧) + 𝑐) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → (𝑓𝑧) ≤ (𝐹𝑧)))
267264, 266mpand 695 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) → (𝑓𝑧) ≤ (𝐹𝑧)))
268 le2add 11620 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑓𝑧) ∈ ℝ ∧ ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ∈ ℝ) ∧ ((𝐹𝑧) ∈ ℝ ∧ (𝐺𝑧) ∈ ℝ)) → (((𝑓𝑧) ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ (𝐺𝑧)) → ((𝑓𝑧) + ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
269227, 183, 187, 185, 268syl22anc 838 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (((𝑓𝑧) ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ (𝐺𝑧)) → ((𝑓𝑧) + ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
270267, 201, 269syl2and 608 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → ((𝑓𝑧) + ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
271270imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧))) → ((𝑓𝑧) + ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧)))
272262, 271eqbrtrd 5117 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧))) → (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝐹𝑧) + (𝐺𝑧)))
273259, 272, 212syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧))) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧)))
274273ex 412 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
275274ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ¬ (𝑓𝑧) = 0) ∧ ¬ (𝑔𝑧) = 0) → ((((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
276219, 221, 258, 275ifbothda 4517 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ¬ (𝑓𝑧) = 0) → ((((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
277145, 148, 217, 276ifbothda 4517 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
278277ralimdva 3141 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → (∀𝑧 ∈ ℝ (if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) → ∀𝑧 ∈ ℝ if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
279 ovex 7386 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓𝑧) + 𝑐) ∈ V
28021, 279ifex 4529 . . . . . . . . . . . . . . . . . . . . . . . . 25 if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ∈ V
281280a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑧 ∈ ℝ) → if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ∈ V)
282 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) = (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))))
28320, 281, 14, 282, 24ofrfval2 7638 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ↔ ∀𝑧 ∈ ℝ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ≤ (𝐹𝑧)))
284 ovex 7386 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑔𝑧) + 𝑑) ∈ V
28521, 284ifex 4529 . . . . . . . . . . . . . . . . . . . . . . . . 25 if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ∈ V
286285a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑧 ∈ ℝ) → if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ∈ V)
287 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) = (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))))
28820, 286, 73, 287, 78ofrfval2 7638 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺 ↔ ∀𝑧 ∈ ℝ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)))
289283, 288anbi12d 632 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺) ↔ (∀𝑧 ∈ ℝ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ≤ (𝐹𝑧) ∧ ∀𝑧 ∈ ℝ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧))))
290 r19.26 3089 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑧 ∈ ℝ (if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) ↔ (∀𝑧 ∈ ℝ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ≤ (𝐹𝑧) ∧ ∀𝑧 ∈ ℝ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)))
291289, 290bitr4di 289 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺) ↔ ∀𝑧 ∈ ℝ (if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧))))
292291ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → (((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺) ↔ ∀𝑧 ∈ ℝ (if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧))))
29319a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ℝ ∈ V)
294 ovex 7386 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)) ∈ V
29521, 294ifex 4529 . . . . . . . . . . . . . . . . . . . . . 22 if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ∈ V
296295a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ∈ V)
297 ovexd 7388 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝐹𝑧) + (𝐺𝑧)) ∈ V)
298225ffnd 6657 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓 ∈ dom ∫1𝑓 Fn ℝ)
299298adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → 𝑓 Fn ℝ)
300299ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑓 Fn ℝ)
301173ffnd 6657 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑔 ∈ dom ∫1𝑔 Fn ℝ)
302301adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → 𝑔 Fn ℝ)
303302ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑔 Fn ℝ)
304 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝑓𝑧) = (𝑓𝑧))
305 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝑔𝑧) = (𝑔𝑧))
306300, 303, 293, 293, 127, 304, 305ofval 7628 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝑓f + 𝑔)‘𝑧) = ((𝑓𝑧) + (𝑔𝑧)))
307306eqeq1d 2731 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (((𝑓f + 𝑔)‘𝑧) = 0 ↔ ((𝑓𝑧) + (𝑔𝑧)) = 0))
308306oveq1d 7368 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (((𝑓f + 𝑔)‘𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) = (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)))
309307, 308ifbieq2d 4505 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + if(𝑐𝑑, 𝑐, 𝑑))) = if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))))
310309mpteq2dva 5188 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → (𝑧 ∈ ℝ ↦ if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + if(𝑐𝑑, 𝑐, 𝑑)))) = (𝑧 ∈ ℝ ↦ if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)))))
31113ffnd 6657 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐹 Fn ℝ)
31272ffnd 6657 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐺 Fn ℝ)
313 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧 ∈ ℝ) → (𝐹𝑧) = (𝐹𝑧))
314 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧 ∈ ℝ) → (𝐺𝑧) = (𝐺𝑧))
315311, 312, 20, 20, 127, 313, 314offval 7626 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐹f + 𝐺) = (𝑧 ∈ ℝ ↦ ((𝐹𝑧) + (𝐺𝑧))))
316315ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → (𝐹f + 𝐺) = (𝑧 ∈ ℝ ↦ ((𝐹𝑧) + (𝐺𝑧))))
317293, 296, 297, 310, 316ofrfval2 7638 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ((𝑧 ∈ ℝ ↦ if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + if(𝑐𝑑, 𝑐, 𝑑)))) ∘r ≤ (𝐹f + 𝐺) ↔ ∀𝑧 ∈ ℝ if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
318278, 292, 3173imtr4d 294 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → (((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺) → (𝑧 ∈ ℝ ↦ if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + if(𝑐𝑑, 𝑐, 𝑑)))) ∘r ≤ (𝐹f + 𝐺)))
319318imp 406 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺)) → (𝑧 ∈ ℝ ↦ if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + if(𝑐𝑑, 𝑐, 𝑑)))) ∘r ≤ (𝐹f + 𝐺))
320 oveq2 7361 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = if(𝑐𝑑, 𝑐, 𝑑) → (((𝑓f + 𝑔)‘𝑧) + 𝑦) = (((𝑓f + 𝑔)‘𝑧) + if(𝑐𝑑, 𝑐, 𝑑)))
321320ifeq2d 4499 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = if(𝑐𝑑, 𝑐, 𝑑) → if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + 𝑦)) = if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + if(𝑐𝑑, 𝑐, 𝑑))))
322321mpteq2dv 5189 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = if(𝑐𝑑, 𝑐, 𝑑) → (𝑧 ∈ ℝ ↦ if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + 𝑦))) = (𝑧 ∈ ℝ ↦ if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + if(𝑐𝑑, 𝑐, 𝑑)))))
323322breq1d 5105 . . . . . . . . . . . . . . . . . . 19 (𝑦 = if(𝑐𝑑, 𝑐, 𝑑) → ((𝑧 ∈ ℝ ↦ if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺) ↔ (𝑧 ∈ ℝ ↦ if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + if(𝑐𝑑, 𝑐, 𝑑)))) ∘r ≤ (𝐹f + 𝐺)))
324323rspcev 3579 . . . . . . . . . . . . . . . . . 18 ((if(𝑐𝑑, 𝑐, 𝑑) ∈ ℝ+ ∧ (𝑧 ∈ ℝ ↦ if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + if(𝑐𝑑, 𝑐, 𝑑)))) ∘r ≤ (𝐹f + 𝐺)) → ∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺))
325142, 319, 324syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺)) → ∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺))
326325ex 412 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → (((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺) → ∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺)))
327326rexlimdvva 3186 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∃𝑐 ∈ ℝ+𝑑 ∈ ℝ+ ((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺) → ∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺)))
328140, 327syl5 34 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))) → ∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺)))
329328a1dd 50 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))) → (𝑠 = (𝑡 + 𝑢) → ∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺))))
330329imp31 417 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ ((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔)))) ∧ 𝑠 = (𝑡 + 𝑢)) → ∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺))
331 oveq12 7362 . . . . . . . . . . . . . . 15 ((𝑡 = (∫1𝑓) ∧ 𝑢 = (∫1𝑔)) → (𝑡 + 𝑢) = ((∫1𝑓) + (∫1𝑔)))
332331ad2ant2l 746 . . . . . . . . . . . . . 14 (((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))) → (𝑡 + 𝑢) = ((∫1𝑓) + (∫1𝑔)))
333134, 135itg1add 25618 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (∫1‘(𝑓f + 𝑔)) = ((∫1𝑓) + (∫1𝑔)))
334333eqcomd 2735 . . . . . . . . . . . . . . 15 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → ((∫1𝑓) + (∫1𝑔)) = (∫1‘(𝑓f + 𝑔)))
335334adantl 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((∫1𝑓) + (∫1𝑔)) = (∫1‘(𝑓f + 𝑔)))
336332, 335sylan9eqr 2786 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ ((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔)))) → (𝑡 + 𝑢) = (∫1‘(𝑓f + 𝑔)))
337 eqtr 2749 . . . . . . . . . . . . . 14 ((𝑠 = (𝑡 + 𝑢) ∧ (𝑡 + 𝑢) = (∫1‘(𝑓f + 𝑔))) → 𝑠 = (∫1‘(𝑓f + 𝑔)))
338337ancoms 458 . . . . . . . . . . . . 13 (((𝑡 + 𝑢) = (∫1‘(𝑓f + 𝑔)) ∧ 𝑠 = (𝑡 + 𝑢)) → 𝑠 = (∫1‘(𝑓f + 𝑔)))
339336, 338sylan 580 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ ((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔)))) ∧ 𝑠 = (𝑡 + 𝑢)) → 𝑠 = (∫1‘(𝑓f + 𝑔)))
340 fveq1 6825 . . . . . . . . . . . . . . . . . . 19 ( = (𝑓f + 𝑔) → (𝑧) = ((𝑓f + 𝑔)‘𝑧))
341340eqeq1d 2731 . . . . . . . . . . . . . . . . . 18 ( = (𝑓f + 𝑔) → ((𝑧) = 0 ↔ ((𝑓f + 𝑔)‘𝑧) = 0))
342340oveq1d 7368 . . . . . . . . . . . . . . . . . 18 ( = (𝑓f + 𝑔) → ((𝑧) + 𝑦) = (((𝑓f + 𝑔)‘𝑧) + 𝑦))
343341, 342ifbieq2d 4505 . . . . . . . . . . . . . . . . 17 ( = (𝑓f + 𝑔) → if((𝑧) = 0, 0, ((𝑧) + 𝑦)) = if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + 𝑦)))
344343mpteq2dv 5189 . . . . . . . . . . . . . . . 16 ( = (𝑓f + 𝑔) → (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) = (𝑧 ∈ ℝ ↦ if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + 𝑦))))
345344breq1d 5105 . . . . . . . . . . . . . . 15 ( = (𝑓f + 𝑔) → ((𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺) ↔ (𝑧 ∈ ℝ ↦ if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺)))
346345rexbidv 3153 . . . . . . . . . . . . . 14 ( = (𝑓f + 𝑔) → (∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺) ↔ ∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺)))
347 fveq2 6826 . . . . . . . . . . . . . . 15 ( = (𝑓f + 𝑔) → (∫1) = (∫1‘(𝑓f + 𝑔)))
348347eqeq2d 2740 . . . . . . . . . . . . . 14 ( = (𝑓f + 𝑔) → (𝑠 = (∫1) ↔ 𝑠 = (∫1‘(𝑓f + 𝑔))))
349346, 348anbi12d 632 . . . . . . . . . . . . 13 ( = (𝑓f + 𝑔) → ((∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺) ∧ 𝑠 = (∫1)) ↔ (∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺) ∧ 𝑠 = (∫1‘(𝑓f + 𝑔)))))
350349rspcev 3579 . . . . . . . . . . . 12 (((𝑓f + 𝑔) ∈ dom ∫1 ∧ (∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓f + 𝑔)‘𝑧) = 0, 0, (((𝑓f + 𝑔)‘𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺) ∧ 𝑠 = (∫1‘(𝑓f + 𝑔)))) → ∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺) ∧ 𝑠 = (∫1)))
351137, 330, 339, 350syl12anc 836 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ ((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔)))) ∧ 𝑠 = (𝑡 + 𝑢)) → ∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺) ∧ 𝑠 = (∫1)))
352351exp31 419 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))) → (𝑠 = (𝑡 + 𝑢) → ∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺) ∧ 𝑠 = (∫1)))))
353352rexlimdvva 3186 . . . . . . . . 9 (𝜑 → (∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))) → (𝑠 = (𝑡 + 𝑢) → ∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺) ∧ 𝑠 = (∫1)))))
354353impd 410 . . . . . . . 8 (𝜑 → ((∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) → ∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺) ∧ 𝑠 = (∫1))))
355354exlimdvv 1934 . . . . . . 7 (𝜑 → (∃𝑡𝑢(∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) → ∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺) ∧ 𝑠 = (∫1))))
356133, 355impbid 212 . . . . . 6 (𝜑 → (∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺) ∧ 𝑠 = (∫1)) ↔ ∃𝑡𝑢(∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢))))
357 eqeq1 2733 . . . . . . . . . 10 (𝑥 = 𝑡 → (𝑥 = (∫1𝑓) ↔ 𝑡 = (∫1𝑓)))
358357anbi2d 630 . . . . . . . . 9 (𝑥 = 𝑡 → ((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓)) ↔ (∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓))))
359358rexbidv 3153 . . . . . . . 8 (𝑥 = 𝑡 → (∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓)) ↔ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓))))
360359rexab 3657 . . . . . . 7 (∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢) ↔ ∃𝑡(∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ ∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)))
361 eqeq1 2733 . . . . . . . . . . . . 13 (𝑥 = 𝑢 → (𝑥 = (∫1𝑔) ↔ 𝑢 = (∫1𝑔)))
362361anbi2d 630 . . . . . . . . . . . 12 (𝑥 = 𝑢 → ((∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔)) ↔ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))))
363362rexbidv 3153 . . . . . . . . . . 11 (𝑥 = 𝑢 → (∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔)) ↔ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))))
364363rexab 3657 . . . . . . . . . 10 (∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢) ↔ ∃𝑢(∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔)) ∧ 𝑠 = (𝑡 + 𝑢)))
365364anbi2i 623 . . . . . . . . 9 ((∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ ∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)) ↔ (∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ ∃𝑢(∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔)) ∧ 𝑠 = (𝑡 + 𝑢))))
366 19.42v 1953 . . . . . . . . 9 (∃𝑢(∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔)) ∧ 𝑠 = (𝑡 + 𝑢))) ↔ (∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ ∃𝑢(∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔)) ∧ 𝑠 = (𝑡 + 𝑢))))
367 reeanv 3201 . . . . . . . . . . . 12 (∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))) ↔ (∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))))
368367anbi1i 624 . . . . . . . . . . 11 ((∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) ↔ ((∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))
369 anass 468 . . . . . . . . . . 11 (((∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) ↔ (∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔)) ∧ 𝑠 = (𝑡 + 𝑢))))
370368, 369bitr2i 276 . . . . . . . . . 10 ((∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔)) ∧ 𝑠 = (𝑡 + 𝑢))) ↔ (∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))
371370exbii 1848 . . . . . . . . 9 (∃𝑢(∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔)) ∧ 𝑠 = (𝑡 + 𝑢))) ↔ ∃𝑢(∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))
372365, 366, 3713bitr2i 299 . . . . . . . 8 ((∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ ∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)) ↔ ∃𝑢(∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))
373372exbii 1848 . . . . . . 7 (∃𝑡(∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ ∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)) ↔ ∃𝑡𝑢(∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))
374360, 373bitri 275 . . . . . 6 (∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢) ↔ ∃𝑡𝑢(∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))
375356, 374bitr4di 289 . . . . 5 (𝜑 → (∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺) ∧ 𝑠 = (∫1)) ↔ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)))
376375abbidv 2795 . . . 4 (𝜑 → {𝑠 ∣ ∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺) ∧ 𝑠 = (∫1))} = {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)})
377376supeq1d 9355 . . 3 (𝜑 → sup({𝑠 ∣ ∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺) ∧ 𝑠 = (∫1))}, ℝ*, < ) = sup({𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}, ℝ*, < ))
378 simpr 484 . . . . . . . . 9 (((𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}) ∧ 𝑠 = (𝑡 + 𝑢)) → 𝑠 = (𝑡 + 𝑢))
3796sseli 3933 . . . . . . . . . . 11 (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} → 𝑡 ∈ ℝ)
380379ad2antrr 726 . . . . . . . . . 10 (((𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}) ∧ 𝑠 = (𝑡 + 𝑢)) → 𝑡 ∈ ℝ)
38170sseli 3933 . . . . . . . . . . 11 (𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))} → 𝑢 ∈ ℝ)
382381ad2antlr 727 . . . . . . . . . 10 (((𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}) ∧ 𝑠 = (𝑡 + 𝑢)) → 𝑢 ∈ ℝ)
383380, 382readdcld 11163 . . . . . . . . 9 (((𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}) ∧ 𝑠 = (𝑡 + 𝑢)) → (𝑡 + 𝑢) ∈ ℝ)
384378, 383eqeltrd 2828 . . . . . . . 8 (((𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}) ∧ 𝑠 = (𝑡 + 𝑢)) → 𝑠 ∈ ℝ)
385384ex 412 . . . . . . 7 ((𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}) → (𝑠 = (𝑡 + 𝑢) → 𝑠 ∈ ℝ))
386385rexlimivv 3171 . . . . . 6 (∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢) → 𝑠 ∈ ℝ)
387386abssi 4023 . . . . 5 {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)} ⊆ ℝ
388387a1i 11 . . . 4 (𝜑 → {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)} ⊆ ℝ)
389156eqcomi 2738 . . . . . . . 8 0 = (0 + 0)
390 rspceov 7402 . . . . . . . 8 ((0 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ∧ 0 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))} ∧ 0 = (0 + 0)) → ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}0 = (𝑡 + 𝑢))
391389, 390mp3an3 1452 . . . . . . 7 ((0 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ∧ 0 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}) → ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}0 = (𝑡 + 𝑢))
39248, 100, 391syl2anc 584 . . . . . 6 (𝜑 → ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}0 = (𝑡 + 𝑢))
393 eqeq1 2733 . . . . . . . 8 (𝑠 = 0 → (𝑠 = (𝑡 + 𝑢) ↔ 0 = (𝑡 + 𝑢)))
3943932rexbidv 3194 . . . . . . 7 (𝑠 = 0 → (∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢) ↔ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}0 = (𝑡 + 𝑢)))
39521, 394spcev 3563 . . . . . 6 (∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}0 = (𝑡 + 𝑢) → ∃𝑠𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢))
396392, 395syl 17 . . . . 5 (𝜑 → ∃𝑠𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢))
397 abn0 4338 . . . . 5 ({𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)} ≠ ∅ ↔ ∃𝑠𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢))
398396, 397sylibr 234 . . . 4 (𝜑 → {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)} ≠ ∅)
39957, 108readdcld 11163 . . . . 5 (𝜑 → (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < )) ∈ ℝ)
400 simpr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))})) ∧ 𝑏 = (𝑡 + 𝑢)) → 𝑏 = (𝑡 + 𝑢))
401379ad2antrl 728 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))})) → 𝑡 ∈ ℝ)
402381ad2antll 729 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))})) → 𝑢 ∈ ℝ)
40357adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))})) → sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) ∈ ℝ)
404108adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))})) → sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < ) ∈ ℝ)
405 supxrub 13244 . . . . . . . . . . . . 13 (({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ⊆ ℝ*𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}) → 𝑡 ≤ sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ))
40659, 405mpan 690 . . . . . . . . . . . 12 (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} → 𝑡 ≤ sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ))
407406ad2antrl 728 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))})) → 𝑡 ≤ sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ))
408 supxrub 13244 . . . . . . . . . . . . 13 (({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))} ⊆ ℝ*𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}) → 𝑢 ≤ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < ))
409109, 408mpan 690 . . . . . . . . . . . 12 (𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))} → 𝑢 ≤ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < ))
410409ad2antll 729 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))})) → 𝑢 ≤ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < ))
411401, 402, 403, 404, 407, 410le2addd 11757 . . . . . . . . . 10 ((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))})) → (𝑡 + 𝑢) ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < )))
412411adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))})) ∧ 𝑏 = (𝑡 + 𝑢)) → (𝑡 + 𝑢) ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < )))
413400, 412eqbrtrd 5117 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))})) ∧ 𝑏 = (𝑡 + 𝑢)) → 𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < )))
414413ex 412 . . . . . . 7 ((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))})) → (𝑏 = (𝑡 + 𝑢) → 𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < ))))
415414rexlimdvva 3186 . . . . . 6 (𝜑 → (∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑏 = (𝑡 + 𝑢) → 𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < ))))
416415alrimiv 1927 . . . . 5 (𝜑 → ∀𝑏(∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑏 = (𝑡 + 𝑢) → 𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < ))))
417 breq2 5099 . . . . . . . 8 (𝑎 = (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < )) → (𝑏𝑎𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < ))))
418417ralbidv 3152 . . . . . . 7 (𝑎 = (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < )) → (∀𝑏 ∈ {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}𝑏𝑎 ↔ ∀𝑏 ∈ {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < ))))
419 eqeq1 2733 . . . . . . . . 9 (𝑠 = 𝑏 → (𝑠 = (𝑡 + 𝑢) ↔ 𝑏 = (𝑡 + 𝑢)))
4204192rexbidv 3194 . . . . . . . 8 (𝑠 = 𝑏 → (∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢) ↔ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑏 = (𝑡 + 𝑢)))
421420ralab 3655 . . . . . . 7 (∀𝑏 ∈ {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < )) ↔ ∀𝑏(∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑏 = (𝑡 + 𝑢) → 𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < ))))
422418, 421bitrdi 287 . . . . . 6 (𝑎 = (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < )) → (∀𝑏 ∈ {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}𝑏𝑎 ↔ ∀𝑏(∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑏 = (𝑡 + 𝑢) → 𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < )))))
423422rspcev 3579 . . . . 5 (((sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < )) ∈ ℝ ∧ ∀𝑏(∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑏 = (𝑡 + 𝑢) → 𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}, ℝ*, < )))) → ∃𝑎 ∈ ℝ ∀𝑏 ∈ {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}𝑏𝑎)
424399, 416, 423syl2anc 584 . . . 4 (𝜑 → ∃𝑎 ∈ ℝ ∀𝑏 ∈ {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}𝑏𝑎)
425 supxrre 13247 . . . 4 (({𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)} ⊆ ℝ ∧ {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)} ≠ ∅ ∧ ∃𝑎 ∈ ℝ ∀𝑏 ∈ {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}𝑏𝑎) → sup({𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}, ℝ*, < ) = sup({𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}, ℝ, < ))
426388, 398, 424, 425syl3anc 1373 . . 3 (𝜑 → sup({𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}, ℝ*, < ) = sup({𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}, ℝ, < ))
427131, 377, 4263eqtrd 2768 . 2 (𝜑 → (∫2‘(𝐹f + 𝐺)) = sup({𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}, ℝ, < ))
428116, 123, 4273eqtr4rd 2775 1 (𝜑 → (∫2‘(𝐹f + 𝐺)) = ((∫2𝐹) + (∫2𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  Vcvv 3438  wss 3905  c0 4286  ifcif 4478  {csn 4579   class class class wbr 5095  cmpt 5176   × cxp 5621  dom cdm 5623   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  f cof 7615  r cofr 7616  supcsup 9349  cr 11027  0cc0 11028   + caddc 11031  +∞cpnf 11165  *cxr 11167   < clt 11168  cle 11169  cn 12146  3c3 12202  +crp 12911  [,)cico 13268  [,]cicc 13269  MblFncmbf 25531  1citg1 25532  2citg2 25533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-ofr 7618  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612  df-rest 17344  df-topgen 17365  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-top 22797  df-topon 22814  df-bases 22849  df-cmp 23290  df-ovol 25381  df-vol 25382  df-mbf 25536  df-itg1 25537  df-itg2 25538
This theorem is referenced by:  ibladdnclem  37655  itgaddnclem1  37657  iblabsnclem  37662  iblabsnc  37663  iblmulc2nc  37664  ftc1anclem4  37675  ftc1anclem5  37676  ftc1anclem6  37677  ftc1anclem8  37679
  Copyright terms: Public domain W3C validator