Step | Hyp | Ref
| Expression |
1 | | simprr 770 |
. . . . . . 7
⊢ ((𝑓 ∈ dom ∫1
∧ (∃𝑐 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))) → 𝑥 = (∫1‘𝑓)) |
2 | | itg1cl 24849 |
. . . . . . . 8
⊢ (𝑓 ∈ dom ∫1
→ (∫1‘𝑓) ∈ ℝ) |
3 | 2 | adantr 481 |
. . . . . . 7
⊢ ((𝑓 ∈ dom ∫1
∧ (∃𝑐 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))) →
(∫1‘𝑓)
∈ ℝ) |
4 | 1, 3 | eqeltrd 2839 |
. . . . . 6
⊢ ((𝑓 ∈ dom ∫1
∧ (∃𝑐 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))) → 𝑥 ∈ ℝ) |
5 | 4 | rexlimiva 3210 |
. . . . 5
⊢
(∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓)) → 𝑥 ∈ ℝ) |
6 | 5 | abssi 4003 |
. . . 4
⊢ {𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ⊆
ℝ |
7 | 6 | a1i 11 |
. . 3
⊢ (𝜑 → {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ⊆
ℝ) |
8 | | i1f0 24851 |
. . . . . 6
⊢ (ℝ
× {0}) ∈ dom ∫1 |
9 | | 3nn 12052 |
. . . . . . . 8
⊢ 3 ∈
ℕ |
10 | | nnrp 12741 |
. . . . . . . 8
⊢ (3 ∈
ℕ → 3 ∈ ℝ+) |
11 | | ne0i 4268 |
. . . . . . . 8
⊢ (3 ∈
ℝ+ → ℝ+ ≠ ∅) |
12 | 9, 10, 11 | mp2b 10 |
. . . . . . 7
⊢
ℝ+ ≠ ∅ |
13 | | itg2addnc.f2 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) |
14 | 13 | ffvelrnda 6961 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → (𝐹‘𝑧) ∈ (0[,)+∞)) |
15 | | elrege0 13186 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑧) ∈ (0[,)+∞) ↔ ((𝐹‘𝑧) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑧))) |
16 | 14, 15 | sylib 217 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → ((𝐹‘𝑧) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑧))) |
17 | 16 | simprd 496 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → 0 ≤ (𝐹‘𝑧)) |
18 | 17 | ralrimiva 3103 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑧 ∈ ℝ 0 ≤ (𝐹‘𝑧)) |
19 | | reex 10962 |
. . . . . . . . . . 11
⊢ ℝ
∈ V |
20 | 19 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ℝ ∈
V) |
21 | | c0ex 10969 |
. . . . . . . . . . 11
⊢ 0 ∈
V |
22 | 21 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → 0 ∈
V) |
23 | | eqidd 2739 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑧 ∈ ℝ ↦ 0) = (𝑧 ∈ ℝ ↦
0)) |
24 | 13 | feqmptd 6837 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℝ ↦ (𝐹‘𝑧))) |
25 | 20, 22, 14, 23, 24 | ofrfval2 7554 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑧 ∈ ℝ ↦ 0)
∘r ≤ 𝐹
↔ ∀𝑧 ∈
ℝ 0 ≤ (𝐹‘𝑧))) |
26 | 18, 25 | mpbird 256 |
. . . . . . . 8
⊢ (𝜑 → (𝑧 ∈ ℝ ↦ 0)
∘r ≤ 𝐹) |
27 | 26 | ralrimivw 3104 |
. . . . . . 7
⊢ (𝜑 → ∀𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0)
∘r ≤ 𝐹) |
28 | | r19.2z 4425 |
. . . . . . 7
⊢
((ℝ+ ≠ ∅ ∧ ∀𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0)
∘r ≤ 𝐹)
→ ∃𝑐 ∈
ℝ+ (𝑧
∈ ℝ ↦ 0) ∘r ≤ 𝐹) |
29 | 12, 27, 28 | sylancr 587 |
. . . . . 6
⊢ (𝜑 → ∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0)
∘r ≤ 𝐹) |
30 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑓 = (ℝ × {0}) →
(∫1‘𝑓)
= (∫1‘(ℝ × {0}))) |
31 | | itg10 24852 |
. . . . . . . . . 10
⊢
(∫1‘(ℝ × {0})) = 0 |
32 | 30, 31 | eqtr2di 2795 |
. . . . . . . . 9
⊢ (𝑓 = (ℝ × {0}) →
0 = (∫1‘𝑓)) |
33 | 32 | biantrud 532 |
. . . . . . . 8
⊢ (𝑓 = (ℝ × {0}) →
(∃𝑐 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ↔ (∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 0 =
(∫1‘𝑓)))) |
34 | | fveq1 6773 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (ℝ × {0}) →
(𝑓‘𝑧) = ((ℝ × {0})‘𝑧)) |
35 | 21 | fvconst2 7079 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ ℝ → ((ℝ
× {0})‘𝑧) =
0) |
36 | 34, 35 | sylan9eq 2798 |
. . . . . . . . . . . 12
⊢ ((𝑓 = (ℝ × {0}) ∧
𝑧 ∈ ℝ) →
(𝑓‘𝑧) = 0) |
37 | 36 | iftrued 4467 |
. . . . . . . . . . 11
⊢ ((𝑓 = (ℝ × {0}) ∧
𝑧 ∈ ℝ) →
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) = 0) |
38 | 37 | mpteq2dva 5174 |
. . . . . . . . . 10
⊢ (𝑓 = (ℝ × {0}) →
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) = (𝑧 ∈ ℝ ↦ 0)) |
39 | 38 | breq1d 5084 |
. . . . . . . . 9
⊢ (𝑓 = (ℝ × {0}) →
((𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ↔ (𝑧 ∈ ℝ ↦ 0)
∘r ≤ 𝐹)) |
40 | 39 | rexbidv 3226 |
. . . . . . . 8
⊢ (𝑓 = (ℝ × {0}) →
(∃𝑐 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ↔ ∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
0) ∘r ≤ 𝐹)) |
41 | 33, 40 | bitr3d 280 |
. . . . . . 7
⊢ (𝑓 = (ℝ × {0}) →
((∃𝑐 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 0 =
(∫1‘𝑓)) ↔ ∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0)
∘r ≤ 𝐹)) |
42 | 41 | rspcev 3561 |
. . . . . 6
⊢
(((ℝ × {0}) ∈ dom ∫1 ∧ ∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
0) ∘r ≤ 𝐹) → ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 0 =
(∫1‘𝑓))) |
43 | 8, 29, 42 | sylancr 587 |
. . . . 5
⊢ (𝜑 → ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 0 =
(∫1‘𝑓))) |
44 | | eqeq1 2742 |
. . . . . . . 8
⊢ (𝑥 = 0 → (𝑥 = (∫1‘𝑓) ↔ 0 =
(∫1‘𝑓))) |
45 | 44 | anbi2d 629 |
. . . . . . 7
⊢ (𝑥 = 0 → ((∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓)) ↔ (∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 0 =
(∫1‘𝑓)))) |
46 | 45 | rexbidv 3226 |
. . . . . 6
⊢ (𝑥 = 0 → (∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓)) ↔ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 0 =
(∫1‘𝑓)))) |
47 | 21, 46 | elab 3609 |
. . . . 5
⊢ (0 ∈
{𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ↔ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 0 =
(∫1‘𝑓))) |
48 | 43, 47 | sylibr 233 |
. . . 4
⊢ (𝜑 → 0 ∈ {𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}) |
49 | 48 | ne0d 4269 |
. . 3
⊢ (𝜑 → {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ≠
∅) |
50 | | icossicc 13168 |
. . . . . . 7
⊢
(0[,)+∞) ⊆ (0[,]+∞) |
51 | | fss 6617 |
. . . . . . 7
⊢ ((𝐹:ℝ⟶(0[,)+∞)
∧ (0[,)+∞) ⊆ (0[,]+∞)) → 𝐹:ℝ⟶(0[,]+∞)) |
52 | 50, 51 | mpan2 688 |
. . . . . 6
⊢ (𝐹:ℝ⟶(0[,)+∞)
→ 𝐹:ℝ⟶(0[,]+∞)) |
53 | | eqid 2738 |
. . . . . . 7
⊢ {𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} = {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} |
54 | 53 | itg2addnclem 35828 |
. . . . . 6
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ (∫2‘𝐹) = sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, <
)) |
55 | 13, 52, 54 | 3syl 18 |
. . . . 5
⊢ (𝜑 →
(∫2‘𝐹)
= sup({𝑥 ∣
∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, <
)) |
56 | | itg2addnc.f3 |
. . . . 5
⊢ (𝜑 →
(∫2‘𝐹)
∈ ℝ) |
57 | 55, 56 | eqeltrrd 2840 |
. . . 4
⊢ (𝜑 → sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
∈ ℝ) |
58 | | ressxr 11019 |
. . . . . . 7
⊢ ℝ
⊆ ℝ* |
59 | 6, 58 | sstri 3930 |
. . . . . 6
⊢ {𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ⊆
ℝ* |
60 | | supxrub 13058 |
. . . . . 6
⊢ (({𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ⊆ ℝ*
∧ 𝑏 ∈ {𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}) → 𝑏 ≤ sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, <
)) |
61 | 59, 60 | mpan 687 |
. . . . 5
⊢ (𝑏 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} → 𝑏 ≤ sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, <
)) |
62 | 61 | rgen 3074 |
. . . 4
⊢
∀𝑏 ∈
{𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}𝑏 ≤ sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, <
) |
63 | | brralrspcev 5134 |
. . . 4
⊢
((sup({𝑥 ∣
∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
∈ ℝ ∧ ∀𝑏 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}𝑏 ≤ sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, <
)) → ∃𝑎 ∈
ℝ ∀𝑏 ∈
{𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}𝑏 ≤ 𝑎) |
64 | 57, 62, 63 | sylancl 586 |
. . 3
⊢ (𝜑 → ∃𝑎 ∈ ℝ ∀𝑏 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}𝑏 ≤ 𝑎) |
65 | | simprr 770 |
. . . . . . 7
⊢ ((𝑔 ∈ dom ∫1
∧ (∃𝑑 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))) → 𝑥 = (∫1‘𝑔)) |
66 | | itg1cl 24849 |
. . . . . . . 8
⊢ (𝑔 ∈ dom ∫1
→ (∫1‘𝑔) ∈ ℝ) |
67 | 66 | adantr 481 |
. . . . . . 7
⊢ ((𝑔 ∈ dom ∫1
∧ (∃𝑑 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))) →
(∫1‘𝑔)
∈ ℝ) |
68 | 65, 67 | eqeltrd 2839 |
. . . . . 6
⊢ ((𝑔 ∈ dom ∫1
∧ (∃𝑑 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))) → 𝑥 ∈ ℝ) |
69 | 68 | rexlimiva 3210 |
. . . . 5
⊢
(∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔)) → 𝑥 ∈ ℝ) |
70 | 69 | abssi 4003 |
. . . 4
⊢ {𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))} ⊆
ℝ |
71 | 70 | a1i 11 |
. . 3
⊢ (𝜑 → {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))} ⊆
ℝ) |
72 | | itg2addnc.g2 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺:ℝ⟶(0[,)+∞)) |
73 | 72 | ffvelrnda 6961 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → (𝐺‘𝑧) ∈ (0[,)+∞)) |
74 | | elrege0 13186 |
. . . . . . . . . . . 12
⊢ ((𝐺‘𝑧) ∈ (0[,)+∞) ↔ ((𝐺‘𝑧) ∈ ℝ ∧ 0 ≤ (𝐺‘𝑧))) |
75 | 73, 74 | sylib 217 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → ((𝐺‘𝑧) ∈ ℝ ∧ 0 ≤ (𝐺‘𝑧))) |
76 | 75 | simprd 496 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → 0 ≤ (𝐺‘𝑧)) |
77 | 76 | ralrimiva 3103 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑧 ∈ ℝ 0 ≤ (𝐺‘𝑧)) |
78 | 72 | feqmptd 6837 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℝ ↦ (𝐺‘𝑧))) |
79 | 20, 22, 73, 23, 78 | ofrfval2 7554 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑧 ∈ ℝ ↦ 0)
∘r ≤ 𝐺
↔ ∀𝑧 ∈
ℝ 0 ≤ (𝐺‘𝑧))) |
80 | 77, 79 | mpbird 256 |
. . . . . . . 8
⊢ (𝜑 → (𝑧 ∈ ℝ ↦ 0)
∘r ≤ 𝐺) |
81 | 80 | ralrimivw 3104 |
. . . . . . 7
⊢ (𝜑 → ∀𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0)
∘r ≤ 𝐺) |
82 | | r19.2z 4425 |
. . . . . . 7
⊢
((ℝ+ ≠ ∅ ∧ ∀𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0)
∘r ≤ 𝐺)
→ ∃𝑑 ∈
ℝ+ (𝑧
∈ ℝ ↦ 0) ∘r ≤ 𝐺) |
83 | 12, 81, 82 | sylancr 587 |
. . . . . 6
⊢ (𝜑 → ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0)
∘r ≤ 𝐺) |
84 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑔 = (ℝ × {0}) →
(∫1‘𝑔)
= (∫1‘(ℝ × {0}))) |
85 | 84, 31 | eqtr2di 2795 |
. . . . . . . . 9
⊢ (𝑔 = (ℝ × {0}) →
0 = (∫1‘𝑔)) |
86 | 85 | biantrud 532 |
. . . . . . . 8
⊢ (𝑔 = (ℝ × {0}) →
(∃𝑑 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ↔ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 0 =
(∫1‘𝑔)))) |
87 | | fveq1 6773 |
. . . . . . . . . . . . 13
⊢ (𝑔 = (ℝ × {0}) →
(𝑔‘𝑧) = ((ℝ × {0})‘𝑧)) |
88 | 87, 35 | sylan9eq 2798 |
. . . . . . . . . . . 12
⊢ ((𝑔 = (ℝ × {0}) ∧
𝑧 ∈ ℝ) →
(𝑔‘𝑧) = 0) |
89 | 88 | iftrued 4467 |
. . . . . . . . . . 11
⊢ ((𝑔 = (ℝ × {0}) ∧
𝑧 ∈ ℝ) →
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) = 0) |
90 | 89 | mpteq2dva 5174 |
. . . . . . . . . 10
⊢ (𝑔 = (ℝ × {0}) →
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) = (𝑧 ∈ ℝ ↦ 0)) |
91 | 90 | breq1d 5084 |
. . . . . . . . 9
⊢ (𝑔 = (ℝ × {0}) →
((𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ↔ (𝑧 ∈ ℝ ↦ 0)
∘r ≤ 𝐺)) |
92 | 91 | rexbidv 3226 |
. . . . . . . 8
⊢ (𝑔 = (ℝ × {0}) →
(∃𝑑 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ↔ ∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
0) ∘r ≤ 𝐺)) |
93 | 86, 92 | bitr3d 280 |
. . . . . . 7
⊢ (𝑔 = (ℝ × {0}) →
((∃𝑑 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 0 =
(∫1‘𝑔)) ↔ ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0)
∘r ≤ 𝐺)) |
94 | 93 | rspcev 3561 |
. . . . . 6
⊢
(((ℝ × {0}) ∈ dom ∫1 ∧ ∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
0) ∘r ≤ 𝐺) → ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 0 =
(∫1‘𝑔))) |
95 | 8, 83, 94 | sylancr 587 |
. . . . 5
⊢ (𝜑 → ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 0 =
(∫1‘𝑔))) |
96 | | eqeq1 2742 |
. . . . . . . 8
⊢ (𝑥 = 0 → (𝑥 = (∫1‘𝑔) ↔ 0 =
(∫1‘𝑔))) |
97 | 96 | anbi2d 629 |
. . . . . . 7
⊢ (𝑥 = 0 → ((∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔)) ↔ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 0 =
(∫1‘𝑔)))) |
98 | 97 | rexbidv 3226 |
. . . . . 6
⊢ (𝑥 = 0 → (∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔)) ↔ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 0 =
(∫1‘𝑔)))) |
99 | 21, 98 | elab 3609 |
. . . . 5
⊢ (0 ∈
{𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))} ↔ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 0 =
(∫1‘𝑔))) |
100 | 95, 99 | sylibr 233 |
. . . 4
⊢ (𝜑 → 0 ∈ {𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}) |
101 | 100 | ne0d 4269 |
. . 3
⊢ (𝜑 → {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))} ≠
∅) |
102 | | fss 6617 |
. . . . . . 7
⊢ ((𝐺:ℝ⟶(0[,)+∞)
∧ (0[,)+∞) ⊆ (0[,]+∞)) → 𝐺:ℝ⟶(0[,]+∞)) |
103 | 50, 102 | mpan2 688 |
. . . . . 6
⊢ (𝐺:ℝ⟶(0[,)+∞)
→ 𝐺:ℝ⟶(0[,]+∞)) |
104 | | eqid 2738 |
. . . . . . 7
⊢ {𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))} = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))} |
105 | 104 | itg2addnclem 35828 |
. . . . . 6
⊢ (𝐺:ℝ⟶(0[,]+∞)
→ (∫2‘𝐺) = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
)) |
106 | 72, 103, 105 | 3syl 18 |
. . . . 5
⊢ (𝜑 →
(∫2‘𝐺)
= sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
)) |
107 | | itg2addnc.g3 |
. . . . 5
⊢ (𝜑 →
(∫2‘𝐺)
∈ ℝ) |
108 | 106, 107 | eqeltrrd 2840 |
. . . 4
⊢ (𝜑 → sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < )
∈ ℝ) |
109 | 70, 58 | sstri 3930 |
. . . . . 6
⊢ {𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))} ⊆
ℝ* |
110 | | supxrub 13058 |
. . . . . 6
⊢ (({𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))} ⊆ ℝ*
∧ 𝑏 ∈ {𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}) → 𝑏 ≤ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
)) |
111 | 109, 110 | mpan 687 |
. . . . 5
⊢ (𝑏 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))} → 𝑏 ≤ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
)) |
112 | 111 | rgen 3074 |
. . . 4
⊢
∀𝑏 ∈
{𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑏 ≤ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
) |
113 | | brralrspcev 5134 |
. . . 4
⊢
((sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < )
∈ ℝ ∧ ∀𝑏 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑏 ≤ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
)) → ∃𝑎 ∈
ℝ ∀𝑏 ∈
{𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑏 ≤ 𝑎) |
114 | 108, 112,
113 | sylancl 586 |
. . 3
⊢ (𝜑 → ∃𝑎 ∈ ℝ ∀𝑏 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑏 ≤ 𝑎) |
115 | | eqid 2738 |
. . 3
⊢ {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)} = {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)} |
116 | 7, 49, 64, 71, 101, 114, 115 | supadd 11943 |
. 2
⊢ (𝜑 → (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ, < ) +
sup({𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ, < )) =
sup({𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)}, ℝ, < )) |
117 | | supxrre 13061 |
. . . . 5
⊢ (({𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ⊆ ℝ ∧ {𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ≠ ∅ ∧
∃𝑎 ∈ ℝ
∀𝑏 ∈ {𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}𝑏 ≤ 𝑎) → sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
= sup({𝑥 ∣
∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ, <
)) |
118 | 7, 49, 64, 117 | syl3anc 1370 |
. . . 4
⊢ (𝜑 → sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
= sup({𝑥 ∣
∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ, <
)) |
119 | 55, 118 | eqtrd 2778 |
. . 3
⊢ (𝜑 →
(∫2‘𝐹)
= sup({𝑥 ∣
∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ, <
)) |
120 | | supxrre 13061 |
. . . . 5
⊢ (({𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))} ⊆ ℝ ∧ {𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))} ≠ ∅ ∧
∃𝑎 ∈ ℝ
∀𝑏 ∈ {𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑏 ≤ 𝑎) → sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < )
= sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ, <
)) |
121 | 71, 101, 114, 120 | syl3anc 1370 |
. . . 4
⊢ (𝜑 → sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < )
= sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ, <
)) |
122 | 106, 121 | eqtrd 2778 |
. . 3
⊢ (𝜑 →
(∫2‘𝐺)
= sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ, <
)) |
123 | 119, 122 | oveq12d 7293 |
. 2
⊢ (𝜑 →
((∫2‘𝐹) + (∫2‘𝐺)) = (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ, < ) +
sup({𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ, <
))) |
124 | | ge0addcl 13192 |
. . . . . . 7
⊢ ((𝑥 ∈ (0[,)+∞) ∧
𝑦 ∈ (0[,)+∞))
→ (𝑥 + 𝑦) ∈
(0[,)+∞)) |
125 | 50, 124 | sselid 3919 |
. . . . . 6
⊢ ((𝑥 ∈ (0[,)+∞) ∧
𝑦 ∈ (0[,)+∞))
→ (𝑥 + 𝑦) ∈
(0[,]+∞)) |
126 | 125 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) →
(𝑥 + 𝑦) ∈ (0[,]+∞)) |
127 | | inidm 4152 |
. . . . 5
⊢ (ℝ
∩ ℝ) = ℝ |
128 | 126, 13, 72, 20, 20, 127 | off 7551 |
. . . 4
⊢ (𝜑 → (𝐹 ∘f + 𝐺):ℝ⟶(0[,]+∞)) |
129 | | eqid 2738 |
. . . . 5
⊢ {𝑠 ∣ ∃ℎ ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((ℎ‘𝑧) = 0, 0, ((ℎ‘𝑧) + 𝑦))) ∘r ≤ (𝐹 ∘f + 𝐺) ∧ 𝑠 = (∫1‘ℎ))} = {𝑠 ∣ ∃ℎ ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((ℎ‘𝑧) = 0, 0, ((ℎ‘𝑧) + 𝑦))) ∘r ≤ (𝐹 ∘f + 𝐺) ∧ 𝑠 = (∫1‘ℎ))} |
130 | 129 | itg2addnclem 35828 |
. . . 4
⊢ ((𝐹 ∘f + 𝐺):ℝ⟶(0[,]+∞)
→ (∫2‘(𝐹 ∘f + 𝐺)) = sup({𝑠 ∣ ∃ℎ ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((ℎ‘𝑧) = 0, 0, ((ℎ‘𝑧) + 𝑦))) ∘r ≤ (𝐹 ∘f + 𝐺) ∧ 𝑠 = (∫1‘ℎ))}, ℝ*, <
)) |
131 | 128, 130 | syl 17 |
. . 3
⊢ (𝜑 →
(∫2‘(𝐹
∘f + 𝐺)) =
sup({𝑠 ∣ ∃ℎ ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((ℎ‘𝑧) = 0, 0, ((ℎ‘𝑧) + 𝑦))) ∘r ≤ (𝐹 ∘f + 𝐺) ∧ 𝑠 = (∫1‘ℎ))}, ℝ*, <
)) |
132 | | itg2addnc.f1 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ MblFn) |
133 | 132, 13, 56, 72, 107 | itg2addnclem3 35830 |
. . . . . . 7
⊢ (𝜑 → (∃ℎ ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((ℎ‘𝑧) = 0, 0, ((ℎ‘𝑧) + 𝑦))) ∘r ≤ (𝐹 ∘f + 𝐺) ∧ 𝑠 = (∫1‘ℎ)) → ∃𝑡∃𝑢(∃𝑓 ∈ dom ∫1∃𝑔 ∈ dom
∫1((∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))) |
134 | | simpl 483 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → 𝑓
∈ dom ∫1) |
135 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → 𝑔
∈ dom ∫1) |
136 | 134, 135 | i1fadd 24859 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑓 ∘f + 𝑔) ∈ dom
∫1) |
137 | 136 | ad3antlr 728 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ((∃𝑐 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔)))) ∧ 𝑠 = (𝑡 + 𝑢)) → (𝑓 ∘f + 𝑔) ∈ dom
∫1) |
138 | | reeanv 3294 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑐 ∈
ℝ+ ∃𝑑 ∈ ℝ+ ((𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺) ↔ (∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺)) |
139 | 138 | biimpri 227 |
. . . . . . . . . . . . . . . 16
⊢
((∃𝑐 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺) → ∃𝑐 ∈ ℝ+
∃𝑑 ∈
ℝ+ ((𝑧
∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺)) |
140 | 139 | ad2ant2r 744 |
. . . . . . . . . . . . . . 15
⊢
(((∃𝑐 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔))) → ∃𝑐 ∈ ℝ+
∃𝑑 ∈
ℝ+ ((𝑧
∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺)) |
141 | | ifcl 4504 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑐 ∈ ℝ+
∧ 𝑑 ∈
ℝ+) → if(𝑐 ≤ 𝑑, 𝑐, 𝑑) ∈
ℝ+) |
142 | 141 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ ((𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺)) → if(𝑐 ≤ 𝑑, 𝑐, 𝑑) ∈
ℝ+) |
143 | | breq1 5077 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (0 =
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) → (0 ≤ (𝐹‘𝑧) ↔ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) ≤ (𝐹‘𝑧))) |
144 | 143 | anbi1d 630 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (0 =
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) → ((0 ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)) ↔ (if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)))) |
145 | 144 | imbi1d 342 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (0 =
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) → (((0 ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) ↔ ((if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))))) |
146 | | breq1 5077 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑓‘𝑧) + 𝑐) = if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) → (((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) ↔ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) ≤ (𝐹‘𝑧))) |
147 | 146 | anbi1d 630 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑓‘𝑧) + 𝑐) = if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) → ((((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)) ↔ (if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)))) |
148 | 147 | imbi1d 342 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑓‘𝑧) + 𝑐) = if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) → (((((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) ↔ ((if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))))) |
149 | | breq1 5077 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (0 =
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) → (0 ≤ (𝐺‘𝑧) ↔ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧))) |
150 | 149 | anbi2d 629 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (0 =
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) → ((0 ≤ (𝐹‘𝑧) ∧ 0 ≤ (𝐺‘𝑧)) ↔ (0 ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)))) |
151 | 150 | imbi1d 342 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (0 =
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) → (((0 ≤ (𝐹‘𝑧) ∧ 0 ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) ↔ ((0 ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))))) |
152 | | breq1 5077 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑔‘𝑧) + 𝑑) = if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) → (((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧) ↔ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧))) |
153 | 152 | anbi2d 629 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑔‘𝑧) + 𝑑) = if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) → ((0 ≤ (𝐹‘𝑧) ∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) ↔ (0 ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)))) |
154 | 153 | imbi1d 342 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑔‘𝑧) + 𝑑) = if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) → (((0 ≤ (𝐹‘𝑧) ∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) ↔ ((0 ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))))) |
155 | | oveq12 7284 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑓‘𝑧) = 0 ∧ (𝑔‘𝑧) = 0) → ((𝑓‘𝑧) + (𝑔‘𝑧)) = (0 + 0)) |
156 | | 00id 11150 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (0 + 0) =
0 |
157 | 155, 156 | eqtrdi 2794 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑓‘𝑧) = 0 ∧ (𝑔‘𝑧) = 0) → ((𝑓‘𝑧) + (𝑔‘𝑧)) = 0) |
158 | 157 | iftrued 4467 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑓‘𝑧) = 0 ∧ (𝑔‘𝑧) = 0) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) = 0) |
159 | 158 | adantll 711 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑓‘𝑧) = 0) ∧ (𝑔‘𝑧) = 0) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) = 0) |
160 | | simpll 764 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) → 𝜑) |
161 | 15 | simplbi 498 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝐹‘𝑧) ∈ (0[,)+∞) → (𝐹‘𝑧) ∈ ℝ) |
162 | 14, 161 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → (𝐹‘𝑧) ∈ ℝ) |
163 | 74 | simplbi 498 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝐺‘𝑧) ∈ (0[,)+∞) → (𝐺‘𝑧) ∈ ℝ) |
164 | 73, 163 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → (𝐺‘𝑧) ∈ ℝ) |
165 | 162, 164,
17, 76 | addge0d 11551 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → 0 ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
166 | 160, 165 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → 0 ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
167 | 166 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑓‘𝑧) = 0) ∧ (𝑔‘𝑧) = 0) → 0 ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
168 | 159, 167 | eqbrtrd 5096 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑓‘𝑧) = 0) ∧ (𝑔‘𝑧) = 0) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
169 | 168 | a1d 25 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑓‘𝑧) = 0) ∧ (𝑔‘𝑧) = 0) → ((0 ≤ (𝐹‘𝑧) ∧ 0 ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
170 | 166 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑓‘𝑧) = 0) ∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) → 0 ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
171 | | oveq1 7282 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑓‘𝑧) = 0 → ((𝑓‘𝑧) + (𝑔‘𝑧)) = (0 + (𝑔‘𝑧))) |
172 | | simplrr 775 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) → 𝑔 ∈ dom
∫1) |
173 | | i1ff 24840 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑔 ∈ dom ∫1
→ 𝑔:ℝ⟶ℝ) |
174 | 173 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑧 ∈ ℝ)
→ (𝑔‘𝑧) ∈
ℝ) |
175 | 172, 174 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝑔‘𝑧) ∈ ℝ) |
176 | 175 | recnd 11003 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝑔‘𝑧) ∈ ℂ) |
177 | 176 | addid2d 11176 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (0 + (𝑔‘𝑧)) = (𝑔‘𝑧)) |
178 | 171, 177 | sylan9eqr 2800 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑓‘𝑧) = 0) → ((𝑓‘𝑧) + (𝑔‘𝑧)) = (𝑔‘𝑧)) |
179 | 178 | oveq1d 7290 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑓‘𝑧) = 0) → (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) = ((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) |
180 | 179 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑓‘𝑧) = 0) ∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) → (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) = ((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) |
181 | 141 | rpred 12772 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑐 ∈ ℝ+
∧ 𝑑 ∈
ℝ+) → if(𝑐 ≤ 𝑑, 𝑐, 𝑑) ∈ ℝ) |
182 | 181 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → if(𝑐 ≤ 𝑑, 𝑐, 𝑑) ∈ ℝ) |
183 | 175, 182 | readdcld 11004 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ∈ ℝ) |
184 | 183 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) → ((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ∈ ℝ) |
185 | 160, 164 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝐺‘𝑧) ∈ ℝ) |
186 | 185 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) → (𝐺‘𝑧) ∈ ℝ) |
187 | 160, 162 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝐹‘𝑧) ∈ ℝ) |
188 | 187, 185 | readdcld 11004 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝐹‘𝑧) + (𝐺‘𝑧)) ∈ ℝ) |
189 | 188 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) → ((𝐹‘𝑧) + (𝐺‘𝑧)) ∈ ℝ) |
190 | | simplrr 775 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → 𝑑 ∈ ℝ+) |
191 | 190 | rpred 12772 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → 𝑑 ∈ ℝ) |
192 | | rpre 12738 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑐 ∈ ℝ+
→ 𝑐 ∈
ℝ) |
193 | | rpre 12738 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑑 ∈ ℝ+
→ 𝑑 ∈
ℝ) |
194 | | min2 12924 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → if(𝑐 ≤ 𝑑, 𝑐, 𝑑) ≤ 𝑑) |
195 | 192, 193,
194 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑐 ∈ ℝ+
∧ 𝑑 ∈
ℝ+) → if(𝑐 ≤ 𝑑, 𝑐, 𝑑) ≤ 𝑑) |
196 | 195 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → if(𝑐 ≤ 𝑑, 𝑐, 𝑑) ≤ 𝑑) |
197 | 182, 191,
175, 196 | leadd2dd 11590 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ ((𝑔‘𝑧) + 𝑑)) |
198 | 175, 191 | readdcld 11004 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝑔‘𝑧) + 𝑑) ∈ ℝ) |
199 | | letr 11069 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ∈ ℝ ∧ ((𝑔‘𝑧) + 𝑑) ∈ ℝ ∧ (𝐺‘𝑧) ∈ ℝ) → ((((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ ((𝑔‘𝑧) + 𝑑) ∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) → ((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ (𝐺‘𝑧))) |
200 | 183, 198,
185, 199 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ ((𝑔‘𝑧) + 𝑑) ∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) → ((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ (𝐺‘𝑧))) |
201 | 197, 200 | mpand 692 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧) → ((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ (𝐺‘𝑧))) |
202 | 201 | imp 407 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) → ((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ (𝐺‘𝑧)) |
203 | 164, 162 | addge02d 11564 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → (0 ≤ (𝐹‘𝑧) ↔ (𝐺‘𝑧) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
204 | 17, 203 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → (𝐺‘𝑧) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
205 | 160, 204 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝐺‘𝑧) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
206 | 205 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) → (𝐺‘𝑧) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
207 | 184, 186,
189, 202, 206 | letrd 11132 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) → ((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
208 | 207 | adantlr 712 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑓‘𝑧) = 0) ∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) → ((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
209 | 180, 208 | eqbrtrd 5096 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑓‘𝑧) = 0) ∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) → (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
210 | | breq1 5077 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (0 =
if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) → (0 ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)) ↔ if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
211 | | breq1 5077 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) = if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) → ((((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)) ↔ if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
212 | 210, 211 | ifboth 4498 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((0 ≤
((𝐹‘𝑧) + (𝐺‘𝑧)) ∧ (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
213 | 170, 209,
212 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑓‘𝑧) = 0) ∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
214 | 213 | ex 413 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑓‘𝑧) = 0) → (((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
215 | 214 | adantld 491 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑓‘𝑧) = 0) → ((0 ≤ (𝐹‘𝑧) ∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
216 | 215 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑓‘𝑧) = 0) ∧ ¬ (𝑔‘𝑧) = 0) → ((0 ≤ (𝐹‘𝑧) ∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
217 | 151, 154,
169, 216 | ifbothda 4497 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑓‘𝑧) = 0) → ((0 ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
218 | 149 | anbi2d 629 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (0 =
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) → ((((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) ∧ 0 ≤ (𝐺‘𝑧)) ↔ (((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)))) |
219 | 218 | imbi1d 342 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (0 =
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) → (((((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) ∧ 0 ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) ↔ ((((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))))) |
220 | 152 | anbi2d 629 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑔‘𝑧) + 𝑑) = if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) → ((((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) ∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) ↔ (((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)))) |
221 | 220 | imbi1d 342 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑔‘𝑧) + 𝑑) = if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) → (((((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) ∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) ↔ ((((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))))) |
222 | 166 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑔‘𝑧) = 0) ∧ ((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧)) → 0 ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
223 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑔‘𝑧) = 0 → ((𝑓‘𝑧) + (𝑔‘𝑧)) = ((𝑓‘𝑧) + 0)) |
224 | | simplrl 774 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) → 𝑓 ∈ dom
∫1) |
225 | | i1ff 24840 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑓 ∈ dom ∫1
→ 𝑓:ℝ⟶ℝ) |
226 | 225 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑧 ∈ ℝ)
→ (𝑓‘𝑧) ∈
ℝ) |
227 | 224, 226 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝑓‘𝑧) ∈ ℝ) |
228 | 227 | recnd 11003 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝑓‘𝑧) ∈ ℂ) |
229 | 228 | addid1d 11175 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝑓‘𝑧) + 0) = (𝑓‘𝑧)) |
230 | 223, 229 | sylan9eqr 2800 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑔‘𝑧) = 0) → ((𝑓‘𝑧) + (𝑔‘𝑧)) = (𝑓‘𝑧)) |
231 | 230 | oveq1d 7290 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑔‘𝑧) = 0) → (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) = ((𝑓‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) |
232 | 231 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑔‘𝑧) = 0) ∧ ((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧)) → (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) = ((𝑓‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) |
233 | 227, 182 | readdcld 11004 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝑓‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ∈ ℝ) |
234 | 233 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ ((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧)) → ((𝑓‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ∈ ℝ) |
235 | 187 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ ((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧)) → (𝐹‘𝑧) ∈ ℝ) |
236 | 188 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ ((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧)) → ((𝐹‘𝑧) + (𝐺‘𝑧)) ∈ ℝ) |
237 | | simplrl 774 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → 𝑐 ∈ ℝ+) |
238 | 237 | rpred 12772 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → 𝑐 ∈ ℝ) |
239 | | min1 12923 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → if(𝑐 ≤ 𝑑, 𝑐, 𝑑) ≤ 𝑐) |
240 | 192, 193,
239 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑐 ∈ ℝ+
∧ 𝑑 ∈
ℝ+) → if(𝑐 ≤ 𝑑, 𝑐, 𝑑) ≤ 𝑐) |
241 | 240 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → if(𝑐 ≤ 𝑑, 𝑐, 𝑑) ≤ 𝑐) |
242 | 182, 238,
227, 241 | leadd2dd 11590 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝑓‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ ((𝑓‘𝑧) + 𝑐)) |
243 | 227, 238 | readdcld 11004 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝑓‘𝑧) + 𝑐) ∈ ℝ) |
244 | | letr 11069 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝑓‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ∈ ℝ ∧ ((𝑓‘𝑧) + 𝑐) ∈ ℝ ∧ (𝐹‘𝑧) ∈ ℝ) → ((((𝑓‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ ((𝑓‘𝑧) + 𝑐) ∧ ((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧)) → ((𝑓‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ (𝐹‘𝑧))) |
245 | 233, 243,
187, 244 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((((𝑓‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ ((𝑓‘𝑧) + 𝑐) ∧ ((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧)) → ((𝑓‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ (𝐹‘𝑧))) |
246 | 242, 245 | mpand 692 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) → ((𝑓‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ (𝐹‘𝑧))) |
247 | 246 | imp 407 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ ((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧)) → ((𝑓‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ (𝐹‘𝑧)) |
248 | 162, 164 | addge01d 11563 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → (0 ≤ (𝐺‘𝑧) ↔ (𝐹‘𝑧) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
249 | 76, 248 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → (𝐹‘𝑧) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
250 | 160, 249 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝐹‘𝑧) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
251 | 250 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ ((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧)) → (𝐹‘𝑧) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
252 | 234, 235,
236, 247, 251 | letrd 11132 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ ((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧)) → ((𝑓‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
253 | 252 | adantlr 712 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑔‘𝑧) = 0) ∧ ((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧)) → ((𝑓‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
254 | 232, 253 | eqbrtrd 5096 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑔‘𝑧) = 0) ∧ ((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧)) → (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
255 | 222, 254,
212 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑔‘𝑧) = 0) ∧ ((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
256 | 255 | ex 413 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑔‘𝑧) = 0) → (((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
257 | 256 | adantlr 712 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ ¬ (𝑓‘𝑧) = 0) ∧ (𝑔‘𝑧) = 0) → (((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
258 | 257 | adantrd 492 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ ¬ (𝑓‘𝑧) = 0) ∧ (𝑔‘𝑧) = 0) → ((((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) ∧ 0 ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
259 | 166 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) ∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧))) → 0 ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
260 | 182 | recnd 11003 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → if(𝑐 ≤ 𝑑, 𝑐, 𝑑) ∈ ℂ) |
261 | 228, 176,
260 | addassd 10997 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) = ((𝑓‘𝑧) + ((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)))) |
262 | 261 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) ∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧))) → (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) = ((𝑓‘𝑧) + ((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)))) |
263 | 227, 237 | ltaddrpd 12805 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝑓‘𝑧) < ((𝑓‘𝑧) + 𝑐)) |
264 | 227, 243,
263 | ltled 11123 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝑓‘𝑧) ≤ ((𝑓‘𝑧) + 𝑐)) |
265 | | letr 11069 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑓‘𝑧) ∈ ℝ ∧ ((𝑓‘𝑧) + 𝑐) ∈ ℝ ∧ (𝐹‘𝑧) ∈ ℝ) → (((𝑓‘𝑧) ≤ ((𝑓‘𝑧) + 𝑐) ∧ ((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧)) → (𝑓‘𝑧) ≤ (𝐹‘𝑧))) |
266 | 227, 243,
187, 265 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (((𝑓‘𝑧) ≤ ((𝑓‘𝑧) + 𝑐) ∧ ((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧)) → (𝑓‘𝑧) ≤ (𝐹‘𝑧))) |
267 | 264, 266 | mpand 692 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) → (𝑓‘𝑧) ≤ (𝐹‘𝑧))) |
268 | | le2add 11457 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑓‘𝑧) ∈ ℝ ∧ ((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ∈ ℝ) ∧ ((𝐹‘𝑧) ∈ ℝ ∧ (𝐺‘𝑧) ∈ ℝ)) → (((𝑓‘𝑧) ≤ (𝐹‘𝑧) ∧ ((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ (𝐺‘𝑧)) → ((𝑓‘𝑧) + ((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
269 | 227, 183,
187, 185, 268 | syl22anc 836 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (((𝑓‘𝑧) ≤ (𝐹‘𝑧) ∧ ((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ (𝐺‘𝑧)) → ((𝑓‘𝑧) + ((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
270 | 267, 201,
269 | syl2and 608 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) ∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) → ((𝑓‘𝑧) + ((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
271 | 270 | imp 407 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) ∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧))) → ((𝑓‘𝑧) + ((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
272 | 262, 271 | eqbrtrd 5096 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) ∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧))) → (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
273 | 259, 272,
212 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) ∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧))) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
274 | 273 | ex 413 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) ∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
275 | 274 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ ¬ (𝑓‘𝑧) = 0) ∧ ¬ (𝑔‘𝑧) = 0) → ((((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) ∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
276 | 219, 221,
258, 275 | ifbothda 4497 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ ¬ (𝑓‘𝑧) = 0) → ((((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
277 | 145, 148,
217, 276 | ifbothda 4497 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
278 | 277 | ralimdva 3108 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) → (∀𝑧 ∈ ℝ (if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)) → ∀𝑧 ∈ ℝ if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
279 | | ovex 7308 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑓‘𝑧) + 𝑐) ∈ V |
280 | 21, 279 | ifex 4509 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) ∈ V |
281 | 280 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) ∈ V) |
282 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) = (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)))) |
283 | 20, 281, 14, 282, 24 | ofrfval2 7554 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ↔ ∀𝑧 ∈ ℝ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) ≤ (𝐹‘𝑧))) |
284 | | ovex 7308 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑔‘𝑧) + 𝑑) ∈ V |
285 | 21, 284 | ifex 4509 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ∈ V |
286 | 285 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ∈ V) |
287 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) = (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)))) |
288 | 20, 286, 73, 287, 78 | ofrfval2 7554 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ↔ ∀𝑧 ∈ ℝ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧))) |
289 | 283, 288 | anbi12d 631 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (((𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺) ↔ (∀𝑧 ∈ ℝ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) ≤ (𝐹‘𝑧) ∧ ∀𝑧 ∈ ℝ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)))) |
290 | | r19.26 3095 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑧 ∈
ℝ (if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)) ↔ (∀𝑧 ∈ ℝ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) ≤ (𝐹‘𝑧) ∧ ∀𝑧 ∈ ℝ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧))) |
291 | 289, 290 | bitr4di 289 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (((𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺) ↔ ∀𝑧 ∈ ℝ (if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)))) |
292 | 291 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) → (((𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺) ↔ ∀𝑧 ∈ ℝ (if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)))) |
293 | 19 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) → ℝ ∈ V) |
294 | | ovex 7308 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ∈ V |
295 | 21, 294 | ifex 4509 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ∈ V |
296 | 295 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ∈ V) |
297 | | ovexd 7310 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝐹‘𝑧) + (𝐺‘𝑧)) ∈ V) |
298 | 225 | ffnd 6601 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑓 ∈ dom ∫1
→ 𝑓 Fn
ℝ) |
299 | 298 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → 𝑓
Fn ℝ) |
300 | 299 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) → 𝑓 Fn ℝ) |
301 | 173 | ffnd 6601 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑔 ∈ dom ∫1
→ 𝑔 Fn
ℝ) |
302 | 301 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → 𝑔
Fn ℝ) |
303 | 302 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) → 𝑔 Fn ℝ) |
304 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝑓‘𝑧) = (𝑓‘𝑧)) |
305 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝑔‘𝑧) = (𝑔‘𝑧)) |
306 | 300, 303,
293, 293, 127, 304, 305 | ofval 7544 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝑓 ∘f + 𝑔)‘𝑧) = ((𝑓‘𝑧) + (𝑔‘𝑧))) |
307 | 306 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (((𝑓 ∘f + 𝑔)‘𝑧) = 0 ↔ ((𝑓‘𝑧) + (𝑔‘𝑧)) = 0)) |
308 | 306 | oveq1d 7290 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (((𝑓 ∘f + 𝑔)‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) = (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) |
309 | 307, 308 | ifbieq2d 4485 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → if(((𝑓 ∘f + 𝑔)‘𝑧) = 0, 0, (((𝑓 ∘f + 𝑔)‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) = if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)))) |
310 | 309 | mpteq2dva 5174 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) → (𝑧 ∈ ℝ ↦ if(((𝑓 ∘f + 𝑔)‘𝑧) = 0, 0, (((𝑓 ∘f + 𝑔)‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)))) = (𝑧 ∈ ℝ ↦ if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))))) |
311 | 13 | ffnd 6601 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝐹 Fn ℝ) |
312 | 72 | ffnd 6601 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝐺 Fn ℝ) |
313 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → (𝐹‘𝑧) = (𝐹‘𝑧)) |
314 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → (𝐺‘𝑧) = (𝐺‘𝑧)) |
315 | 311, 312,
20, 20, 127, 313, 314 | offval 7542 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝐹 ∘f + 𝐺) = (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
316 | 315 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) → (𝐹 ∘f + 𝐺) = (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
317 | 293, 296,
297, 310, 316 | ofrfval2 7554 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) → ((𝑧 ∈ ℝ ↦ if(((𝑓 ∘f + 𝑔)‘𝑧) = 0, 0, (((𝑓 ∘f + 𝑔)‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)))) ∘r ≤ (𝐹 ∘f + 𝐺) ↔ ∀𝑧 ∈ ℝ if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
318 | 278, 292,
317 | 3imtr4d 294 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) → (((𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺) → (𝑧 ∈ ℝ ↦ if(((𝑓 ∘f + 𝑔)‘𝑧) = 0, 0, (((𝑓 ∘f + 𝑔)‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)))) ∘r ≤ (𝐹 ∘f + 𝐺))) |
319 | 318 | imp 407 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ ((𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺)) → (𝑧 ∈ ℝ ↦ if(((𝑓 ∘f + 𝑔)‘𝑧) = 0, 0, (((𝑓 ∘f + 𝑔)‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)))) ∘r ≤ (𝐹 ∘f + 𝐺)) |
320 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 = if(𝑐 ≤ 𝑑, 𝑐, 𝑑) → (((𝑓 ∘f + 𝑔)‘𝑧) + 𝑦) = (((𝑓 ∘f + 𝑔)‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) |
321 | 320 | ifeq2d 4479 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = if(𝑐 ≤ 𝑑, 𝑐, 𝑑) → if(((𝑓 ∘f + 𝑔)‘𝑧) = 0, 0, (((𝑓 ∘f + 𝑔)‘𝑧) + 𝑦)) = if(((𝑓 ∘f + 𝑔)‘𝑧) = 0, 0, (((𝑓 ∘f + 𝑔)‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)))) |
322 | 321 | mpteq2dv 5176 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = if(𝑐 ≤ 𝑑, 𝑐, 𝑑) → (𝑧 ∈ ℝ ↦ if(((𝑓 ∘f + 𝑔)‘𝑧) = 0, 0, (((𝑓 ∘f + 𝑔)‘𝑧) + 𝑦))) = (𝑧 ∈ ℝ ↦ if(((𝑓 ∘f + 𝑔)‘𝑧) = 0, 0, (((𝑓 ∘f + 𝑔)‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))))) |
323 | 322 | breq1d 5084 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = if(𝑐 ≤ 𝑑, 𝑐, 𝑑) → ((𝑧 ∈ ℝ ↦ if(((𝑓 ∘f + 𝑔)‘𝑧) = 0, 0, (((𝑓 ∘f + 𝑔)‘𝑧) + 𝑦))) ∘r ≤ (𝐹 ∘f + 𝐺) ↔ (𝑧 ∈ ℝ ↦ if(((𝑓 ∘f + 𝑔)‘𝑧) = 0, 0, (((𝑓 ∘f + 𝑔)‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)))) ∘r ≤ (𝐹 ∘f + 𝐺))) |
324 | 323 | rspcev 3561 |
. . . . . . . . . . . . . . . . . 18
⊢
((if(𝑐 ≤ 𝑑, 𝑐, 𝑑) ∈ ℝ+ ∧ (𝑧 ∈ ℝ ↦
if(((𝑓 ∘f
+ 𝑔)‘𝑧) = 0, 0, (((𝑓 ∘f + 𝑔)‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)))) ∘r ≤ (𝐹 ∘f + 𝐺)) → ∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if(((𝑓 ∘f
+ 𝑔)‘𝑧) = 0, 0, (((𝑓 ∘f + 𝑔)‘𝑧) + 𝑦))) ∘r ≤ (𝐹 ∘f + 𝐺)) |
325 | 142, 319,
324 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ ((𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺)) → ∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if(((𝑓 ∘f
+ 𝑔)‘𝑧) = 0, 0, (((𝑓 ∘f + 𝑔)‘𝑧) + 𝑦))) ∘r ≤ (𝐹 ∘f + 𝐺)) |
326 | 325 | ex 413 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) → (((𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺) → ∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if(((𝑓 ∘f
+ 𝑔)‘𝑧) = 0, 0, (((𝑓 ∘f + 𝑔)‘𝑧) + 𝑦))) ∘r ≤ (𝐹 ∘f + 𝐺))) |
327 | 326 | rexlimdvva 3223 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (∃𝑐 ∈
ℝ+ ∃𝑑 ∈ ℝ+ ((𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺) → ∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if(((𝑓 ∘f
+ 𝑔)‘𝑧) = 0, 0, (((𝑓 ∘f + 𝑔)‘𝑧) + 𝑦))) ∘r ≤ (𝐹 ∘f + 𝐺))) |
328 | 140, 327 | syl5 34 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (((∃𝑐 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔))) → ∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if(((𝑓 ∘f
+ 𝑔)‘𝑧) = 0, 0, (((𝑓 ∘f + 𝑔)‘𝑧) + 𝑦))) ∘r ≤ (𝐹 ∘f + 𝐺))) |
329 | 328 | a1dd 50 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (((∃𝑐 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔))) → (𝑠 = (𝑡 + 𝑢) → ∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦
if(((𝑓 ∘f
+ 𝑔)‘𝑧) = 0, 0, (((𝑓 ∘f + 𝑔)‘𝑧) + 𝑦))) ∘r ≤ (𝐹 ∘f + 𝐺)))) |
330 | 329 | imp31 418 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ((∃𝑐 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔)))) ∧ 𝑠 = (𝑡 + 𝑢)) → ∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦
if(((𝑓 ∘f
+ 𝑔)‘𝑧) = 0, 0, (((𝑓 ∘f + 𝑔)‘𝑧) + 𝑦))) ∘r ≤ (𝐹 ∘f + 𝐺)) |
331 | | oveq12 7284 |
. . . . . . . . . . . . . . 15
⊢ ((𝑡 =
(∫1‘𝑓)
∧ 𝑢 =
(∫1‘𝑔)) → (𝑡 + 𝑢) = ((∫1‘𝑓) +
(∫1‘𝑔))) |
332 | 331 | ad2ant2l 743 |
. . . . . . . . . . . . . 14
⊢
(((∃𝑐 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔))) → (𝑡 + 𝑢) = ((∫1‘𝑓) +
(∫1‘𝑔))) |
333 | 134, 135 | itg1add 24866 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (∫1‘(𝑓 ∘f + 𝑔)) = ((∫1‘𝑓) +
(∫1‘𝑔))) |
334 | 333 | eqcomd 2744 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ((∫1‘𝑓) + (∫1‘𝑔)) =
(∫1‘(𝑓
∘f + 𝑔))) |
335 | 334 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ((∫1‘𝑓) + (∫1‘𝑔)) =
(∫1‘(𝑓
∘f + 𝑔))) |
336 | 332, 335 | sylan9eqr 2800 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ((∃𝑐 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔)))) → (𝑡 + 𝑢) = (∫1‘(𝑓 ∘f + 𝑔))) |
337 | | eqtr 2761 |
. . . . . . . . . . . . . 14
⊢ ((𝑠 = (𝑡 + 𝑢) ∧ (𝑡 + 𝑢) = (∫1‘(𝑓 ∘f + 𝑔))) → 𝑠 = (∫1‘(𝑓 ∘f + 𝑔))) |
338 | 337 | ancoms 459 |
. . . . . . . . . . . . 13
⊢ (((𝑡 + 𝑢) = (∫1‘(𝑓 ∘f + 𝑔)) ∧ 𝑠 = (𝑡 + 𝑢)) → 𝑠 = (∫1‘(𝑓 ∘f + 𝑔))) |
339 | 336, 338 | sylan 580 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ((∃𝑐 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔)))) ∧ 𝑠 = (𝑡 + 𝑢)) → 𝑠 = (∫1‘(𝑓 ∘f + 𝑔))) |
340 | | fveq1 6773 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ℎ = (𝑓 ∘f + 𝑔) → (ℎ‘𝑧) = ((𝑓 ∘f + 𝑔)‘𝑧)) |
341 | 340 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℎ = (𝑓 ∘f + 𝑔) → ((ℎ‘𝑧) = 0 ↔ ((𝑓 ∘f + 𝑔)‘𝑧) = 0)) |
342 | 340 | oveq1d 7290 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℎ = (𝑓 ∘f + 𝑔) → ((ℎ‘𝑧) + 𝑦) = (((𝑓 ∘f + 𝑔)‘𝑧) + 𝑦)) |
343 | 341, 342 | ifbieq2d 4485 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ = (𝑓 ∘f + 𝑔) → if((ℎ‘𝑧) = 0, 0, ((ℎ‘𝑧) + 𝑦)) = if(((𝑓 ∘f + 𝑔)‘𝑧) = 0, 0, (((𝑓 ∘f + 𝑔)‘𝑧) + 𝑦))) |
344 | 343 | mpteq2dv 5176 |
. . . . . . . . . . . . . . . 16
⊢ (ℎ = (𝑓 ∘f + 𝑔) → (𝑧 ∈ ℝ ↦ if((ℎ‘𝑧) = 0, 0, ((ℎ‘𝑧) + 𝑦))) = (𝑧 ∈ ℝ ↦ if(((𝑓 ∘f + 𝑔)‘𝑧) = 0, 0, (((𝑓 ∘f + 𝑔)‘𝑧) + 𝑦)))) |
345 | 344 | breq1d 5084 |
. . . . . . . . . . . . . . 15
⊢ (ℎ = (𝑓 ∘f + 𝑔) → ((𝑧 ∈ ℝ ↦ if((ℎ‘𝑧) = 0, 0, ((ℎ‘𝑧) + 𝑦))) ∘r ≤ (𝐹 ∘f + 𝐺) ↔ (𝑧 ∈ ℝ ↦ if(((𝑓 ∘f + 𝑔)‘𝑧) = 0, 0, (((𝑓 ∘f + 𝑔)‘𝑧) + 𝑦))) ∘r ≤ (𝐹 ∘f + 𝐺))) |
346 | 345 | rexbidv 3226 |
. . . . . . . . . . . . . 14
⊢ (ℎ = (𝑓 ∘f + 𝑔) → (∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦
if((ℎ‘𝑧) = 0, 0, ((ℎ‘𝑧) + 𝑦))) ∘r ≤ (𝐹 ∘f + 𝐺) ↔ ∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if(((𝑓 ∘f
+ 𝑔)‘𝑧) = 0, 0, (((𝑓 ∘f + 𝑔)‘𝑧) + 𝑦))) ∘r ≤ (𝐹 ∘f + 𝐺))) |
347 | | fveq2 6774 |
. . . . . . . . . . . . . . 15
⊢ (ℎ = (𝑓 ∘f + 𝑔) → (∫1‘ℎ) =
(∫1‘(𝑓
∘f + 𝑔))) |
348 | 347 | eqeq2d 2749 |
. . . . . . . . . . . . . 14
⊢ (ℎ = (𝑓 ∘f + 𝑔) → (𝑠 = (∫1‘ℎ) ↔ 𝑠 = (∫1‘(𝑓 ∘f + 𝑔)))) |
349 | 346, 348 | anbi12d 631 |
. . . . . . . . . . . . 13
⊢ (ℎ = (𝑓 ∘f + 𝑔) → ((∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦
if((ℎ‘𝑧) = 0, 0, ((ℎ‘𝑧) + 𝑦))) ∘r ≤ (𝐹 ∘f + 𝐺) ∧ 𝑠 = (∫1‘ℎ)) ↔ (∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if(((𝑓 ∘f
+ 𝑔)‘𝑧) = 0, 0, (((𝑓 ∘f + 𝑔)‘𝑧) + 𝑦))) ∘r ≤ (𝐹 ∘f + 𝐺) ∧ 𝑠 = (∫1‘(𝑓 ∘f + 𝑔))))) |
350 | 349 | rspcev 3561 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∘f + 𝑔) ∈ dom ∫1
∧ (∃𝑦 ∈
ℝ+ (𝑧
∈ ℝ ↦ if(((𝑓 ∘f + 𝑔)‘𝑧) = 0, 0, (((𝑓 ∘f + 𝑔)‘𝑧) + 𝑦))) ∘r ≤ (𝐹 ∘f + 𝐺) ∧ 𝑠 = (∫1‘(𝑓 ∘f + 𝑔)))) → ∃ℎ ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((ℎ‘𝑧) = 0, 0, ((ℎ‘𝑧) + 𝑦))) ∘r ≤ (𝐹 ∘f + 𝐺) ∧ 𝑠 = (∫1‘ℎ))) |
351 | 137, 330,
339, 350 | syl12anc 834 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ((∃𝑐 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔)))) ∧ 𝑠 = (𝑡 + 𝑢)) → ∃ℎ ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((ℎ‘𝑧) = 0, 0, ((ℎ‘𝑧) + 𝑦))) ∘r ≤ (𝐹 ∘f + 𝐺) ∧ 𝑠 = (∫1‘ℎ))) |
352 | 351 | exp31 420 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (((∃𝑐 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔))) → (𝑠 = (𝑡 + 𝑢) → ∃ℎ ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((ℎ‘𝑧) = 0, 0, ((ℎ‘𝑧) + 𝑦))) ∘r ≤ (𝐹 ∘f + 𝐺) ∧ 𝑠 = (∫1‘ℎ))))) |
353 | 352 | rexlimdvva 3223 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑓 ∈ dom ∫1∃𝑔 ∈ dom
∫1((∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔))) → (𝑠 = (𝑡 + 𝑢) → ∃ℎ ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((ℎ‘𝑧) = 0, 0, ((ℎ‘𝑧) + 𝑦))) ∘r ≤ (𝐹 ∘f + 𝐺) ∧ 𝑠 = (∫1‘ℎ))))) |
354 | 353 | impd 411 |
. . . . . . . 8
⊢ (𝜑 → ((∃𝑓 ∈ dom
∫1∃𝑔
∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) → ∃ℎ ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((ℎ‘𝑧) = 0, 0, ((ℎ‘𝑧) + 𝑦))) ∘r ≤ (𝐹 ∘f + 𝐺) ∧ 𝑠 = (∫1‘ℎ)))) |
355 | 354 | exlimdvv 1937 |
. . . . . . 7
⊢ (𝜑 → (∃𝑡∃𝑢(∃𝑓 ∈ dom ∫1∃𝑔 ∈ dom
∫1((∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) → ∃ℎ ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((ℎ‘𝑧) = 0, 0, ((ℎ‘𝑧) + 𝑦))) ∘r ≤ (𝐹 ∘f + 𝐺) ∧ 𝑠 = (∫1‘ℎ)))) |
356 | 133, 355 | impbid 211 |
. . . . . 6
⊢ (𝜑 → (∃ℎ ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((ℎ‘𝑧) = 0, 0, ((ℎ‘𝑧) + 𝑦))) ∘r ≤ (𝐹 ∘f + 𝐺) ∧ 𝑠 = (∫1‘ℎ)) ↔ ∃𝑡∃𝑢(∃𝑓 ∈ dom ∫1∃𝑔 ∈ dom
∫1((∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))) |
357 | | eqeq1 2742 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑡 → (𝑥 = (∫1‘𝑓) ↔ 𝑡 = (∫1‘𝑓))) |
358 | 357 | anbi2d 629 |
. . . . . . . . 9
⊢ (𝑥 = 𝑡 → ((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓)) ↔ (∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)))) |
359 | 358 | rexbidv 3226 |
. . . . . . . 8
⊢ (𝑥 = 𝑡 → (∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓)) ↔ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)))) |
360 | 359 | rexab 3631 |
. . . . . . 7
⊢
(∃𝑡 ∈
{𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢) ↔ ∃𝑡(∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ ∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢))) |
361 | | eqeq1 2742 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑢 → (𝑥 = (∫1‘𝑔) ↔ 𝑢 = (∫1‘𝑔))) |
362 | 361 | anbi2d 629 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑢 → ((∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔)) ↔ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔)))) |
363 | 362 | rexbidv 3226 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑢 → (∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔)) ↔ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔)))) |
364 | 363 | rexab 3631 |
. . . . . . . . . 10
⊢
(∃𝑢 ∈
{𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢) ↔ ∃𝑢(∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔)) ∧ 𝑠 = (𝑡 + 𝑢))) |
365 | 364 | anbi2i 623 |
. . . . . . . . 9
⊢
((∃𝑓 ∈
dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ ∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)) ↔ (∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ ∃𝑢(∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔)) ∧ 𝑠 = (𝑡 + 𝑢)))) |
366 | | 19.42v 1957 |
. . . . . . . . 9
⊢
(∃𝑢(∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔)) ∧ 𝑠 = (𝑡 + 𝑢))) ↔ (∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ ∃𝑢(∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔)) ∧ 𝑠 = (𝑡 + 𝑢)))) |
367 | | reeanv 3294 |
. . . . . . . . . . . 12
⊢
(∃𝑓 ∈ dom
∫1∃𝑔
∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔))) ↔ (∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔)))) |
368 | 367 | anbi1i 624 |
. . . . . . . . . . 11
⊢
((∃𝑓 ∈
dom ∫1∃𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) ↔ ((∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔))) ∧ 𝑠 = (𝑡 + 𝑢))) |
369 | | anass 469 |
. . . . . . . . . . 11
⊢
(((∃𝑓 ∈
dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) ↔ (∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔)) ∧ 𝑠 = (𝑡 + 𝑢)))) |
370 | 368, 369 | bitr2i 275 |
. . . . . . . . . 10
⊢
((∃𝑓 ∈
dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔)) ∧ 𝑠 = (𝑡 + 𝑢))) ↔ (∃𝑓 ∈ dom ∫1∃𝑔 ∈ dom
∫1((∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔))) ∧ 𝑠 = (𝑡 + 𝑢))) |
371 | 370 | exbii 1850 |
. . . . . . . . 9
⊢
(∃𝑢(∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔)) ∧ 𝑠 = (𝑡 + 𝑢))) ↔ ∃𝑢(∃𝑓 ∈ dom ∫1∃𝑔 ∈ dom
∫1((∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔))) ∧ 𝑠 = (𝑡 + 𝑢))) |
372 | 365, 366,
371 | 3bitr2i 299 |
. . . . . . . 8
⊢
((∃𝑓 ∈
dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ ∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)) ↔ ∃𝑢(∃𝑓 ∈ dom ∫1∃𝑔 ∈ dom
∫1((∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔))) ∧ 𝑠 = (𝑡 + 𝑢))) |
373 | 372 | exbii 1850 |
. . . . . . 7
⊢
(∃𝑡(∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ ∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)) ↔ ∃𝑡∃𝑢(∃𝑓 ∈ dom ∫1∃𝑔 ∈ dom
∫1((∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔))) ∧ 𝑠 = (𝑡 + 𝑢))) |
374 | 360, 373 | bitri 274 |
. . . . . 6
⊢
(∃𝑡 ∈
{𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢) ↔ ∃𝑡∃𝑢(∃𝑓 ∈ dom ∫1∃𝑔 ∈ dom
∫1((∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔))) ∧ 𝑠 = (𝑡 + 𝑢))) |
375 | 356, 374 | bitr4di 289 |
. . . . 5
⊢ (𝜑 → (∃ℎ ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((ℎ‘𝑧) = 0, 0, ((ℎ‘𝑧) + 𝑦))) ∘r ≤ (𝐹 ∘f + 𝐺) ∧ 𝑠 = (∫1‘ℎ)) ↔ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢))) |
376 | 375 | abbidv 2807 |
. . . 4
⊢ (𝜑 → {𝑠 ∣ ∃ℎ ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((ℎ‘𝑧) = 0, 0, ((ℎ‘𝑧) + 𝑦))) ∘r ≤ (𝐹 ∘f + 𝐺) ∧ 𝑠 = (∫1‘ℎ))} = {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)}) |
377 | 376 | supeq1d 9205 |
. . 3
⊢ (𝜑 → sup({𝑠 ∣ ∃ℎ ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((ℎ‘𝑧) = 0, 0, ((ℎ‘𝑧) + 𝑦))) ∘r ≤ (𝐹 ∘f + 𝐺) ∧ 𝑠 = (∫1‘ℎ))}, ℝ*, < )
= sup({𝑠 ∣
∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)}, ℝ*, <
)) |
378 | | simpr 485 |
. . . . . . . . 9
⊢ (((𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}) ∧ 𝑠 = (𝑡 + 𝑢)) → 𝑠 = (𝑡 + 𝑢)) |
379 | 6 | sseli 3917 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} → 𝑡 ∈ ℝ) |
380 | 379 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}) ∧ 𝑠 = (𝑡 + 𝑢)) → 𝑡 ∈ ℝ) |
381 | 70 | sseli 3917 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))} → 𝑢 ∈ ℝ) |
382 | 381 | ad2antlr 724 |
. . . . . . . . . 10
⊢ (((𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}) ∧ 𝑠 = (𝑡 + 𝑢)) → 𝑢 ∈ ℝ) |
383 | 380, 382 | readdcld 11004 |
. . . . . . . . 9
⊢ (((𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}) ∧ 𝑠 = (𝑡 + 𝑢)) → (𝑡 + 𝑢) ∈ ℝ) |
384 | 378, 383 | eqeltrd 2839 |
. . . . . . . 8
⊢ (((𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}) ∧ 𝑠 = (𝑡 + 𝑢)) → 𝑠 ∈ ℝ) |
385 | 384 | ex 413 |
. . . . . . 7
⊢ ((𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}) → (𝑠 = (𝑡 + 𝑢) → 𝑠 ∈ ℝ)) |
386 | 385 | rexlimivv 3221 |
. . . . . 6
⊢
(∃𝑡 ∈
{𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢) → 𝑠 ∈ ℝ) |
387 | 386 | abssi 4003 |
. . . . 5
⊢ {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)} ⊆ ℝ |
388 | 387 | a1i 11 |
. . . 4
⊢ (𝜑 → {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)} ⊆ ℝ) |
389 | 156 | eqcomi 2747 |
. . . . . . . 8
⊢ 0 = (0 +
0) |
390 | | rspceov 7322 |
. . . . . . . 8
⊢ ((0
∈ {𝑥 ∣
∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ∧ 0 ∈ {𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))} ∧ 0 = (0 + 0)) →
∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}0 = (𝑡 + 𝑢)) |
391 | 389, 390 | mp3an3 1449 |
. . . . . . 7
⊢ ((0
∈ {𝑥 ∣
∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ∧ 0 ∈ {𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}) → ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}0 = (𝑡 + 𝑢)) |
392 | 48, 100, 391 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}0 = (𝑡 + 𝑢)) |
393 | | eqeq1 2742 |
. . . . . . . 8
⊢ (𝑠 = 0 → (𝑠 = (𝑡 + 𝑢) ↔ 0 = (𝑡 + 𝑢))) |
394 | 393 | 2rexbidv 3229 |
. . . . . . 7
⊢ (𝑠 = 0 → (∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢) ↔ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}0 = (𝑡 + 𝑢))) |
395 | 21, 394 | spcev 3545 |
. . . . . 6
⊢
(∃𝑡 ∈
{𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}0 = (𝑡 + 𝑢) → ∃𝑠∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)) |
396 | 392, 395 | syl 17 |
. . . . 5
⊢ (𝜑 → ∃𝑠∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)) |
397 | | abn0 4314 |
. . . . 5
⊢ ({𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)} ≠ ∅ ↔ ∃𝑠∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)) |
398 | 396, 397 | sylibr 233 |
. . . 4
⊢ (𝜑 → {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)} ≠ ∅) |
399 | 57, 108 | readdcld 11004 |
. . . . 5
⊢ (𝜑 → (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
+ sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
)) ∈ ℝ) |
400 | | simpr 485 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))})) ∧ 𝑏 = (𝑡 + 𝑢)) → 𝑏 = (𝑡 + 𝑢)) |
401 | 379 | ad2antrl 725 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))})) → 𝑡 ∈ ℝ) |
402 | 381 | ad2antll 726 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))})) → 𝑢 ∈ ℝ) |
403 | 57 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))})) → sup({𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
∈ ℝ) |
404 | 108 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))})) → sup({𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < )
∈ ℝ) |
405 | | supxrub 13058 |
. . . . . . . . . . . . 13
⊢ (({𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ⊆ ℝ*
∧ 𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}) → 𝑡 ≤ sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, <
)) |
406 | 59, 405 | mpan 687 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} → 𝑡 ≤ sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, <
)) |
407 | 406 | ad2antrl 725 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))})) → 𝑡 ≤ sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, <
)) |
408 | | supxrub 13058 |
. . . . . . . . . . . . 13
⊢ (({𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))} ⊆ ℝ*
∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}) → 𝑢 ≤ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
)) |
409 | 109, 408 | mpan 687 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))} → 𝑢 ≤ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
)) |
410 | 409 | ad2antll 726 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))})) → 𝑢 ≤ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
)) |
411 | 401, 402,
403, 404, 407, 410 | le2addd 11594 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))})) → (𝑡 + 𝑢) ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
+ sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
))) |
412 | 411 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))})) ∧ 𝑏 = (𝑡 + 𝑢)) → (𝑡 + 𝑢) ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
+ sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
))) |
413 | 400, 412 | eqbrtrd 5096 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))})) ∧ 𝑏 = (𝑡 + 𝑢)) → 𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
+ sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
))) |
414 | 413 | ex 413 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))})) → (𝑏 = (𝑡 + 𝑢) → 𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
+ sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
)))) |
415 | 414 | rexlimdvva 3223 |
. . . . . 6
⊢ (𝜑 → (∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑏 = (𝑡 + 𝑢) → 𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
+ sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
)))) |
416 | 415 | alrimiv 1930 |
. . . . 5
⊢ (𝜑 → ∀𝑏(∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑏 = (𝑡 + 𝑢) → 𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
+ sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
)))) |
417 | | breq2 5078 |
. . . . . . . 8
⊢ (𝑎 = (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
+ sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
)) → (𝑏 ≤ 𝑎 ↔ 𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
+ sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
)))) |
418 | 417 | ralbidv 3112 |
. . . . . . 7
⊢ (𝑎 = (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
+ sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
)) → (∀𝑏 ∈
{𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)}𝑏 ≤ 𝑎 ↔ ∀𝑏 ∈ {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)}𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
+ sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
)))) |
419 | | eqeq1 2742 |
. . . . . . . . 9
⊢ (𝑠 = 𝑏 → (𝑠 = (𝑡 + 𝑢) ↔ 𝑏 = (𝑡 + 𝑢))) |
420 | 419 | 2rexbidv 3229 |
. . . . . . . 8
⊢ (𝑠 = 𝑏 → (∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢) ↔ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑏 = (𝑡 + 𝑢))) |
421 | 420 | ralab 3628 |
. . . . . . 7
⊢
(∀𝑏 ∈
{𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)}𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
+ sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
)) ↔ ∀𝑏(∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑏 = (𝑡 + 𝑢) → 𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
+ sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
)))) |
422 | 418, 421 | bitrdi 287 |
. . . . . 6
⊢ (𝑎 = (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
+ sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
)) → (∀𝑏 ∈
{𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)}𝑏 ≤ 𝑎 ↔ ∀𝑏(∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑏 = (𝑡 + 𝑢) → 𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
+ sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
))))) |
423 | 422 | rspcev 3561 |
. . . . 5
⊢
(((sup({𝑥 ∣
∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
+ sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
)) ∈ ℝ ∧ ∀𝑏(∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑏 = (𝑡 + 𝑢) → 𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
+ sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
)))) → ∃𝑎 ∈
ℝ ∀𝑏 ∈
{𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)}𝑏 ≤ 𝑎) |
424 | 399, 416,
423 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ∃𝑎 ∈ ℝ ∀𝑏 ∈ {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)}𝑏 ≤ 𝑎) |
425 | | supxrre 13061 |
. . . 4
⊢ (({𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)} ⊆ ℝ ∧ {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)} ≠ ∅ ∧ ∃𝑎 ∈ ℝ ∀𝑏 ∈ {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)}𝑏 ≤ 𝑎) → sup({𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)}, ℝ*, < ) = sup({𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)}, ℝ, < )) |
426 | 388, 398,
424, 425 | syl3anc 1370 |
. . 3
⊢ (𝜑 → sup({𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)}, ℝ*, < ) = sup({𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)}, ℝ, < )) |
427 | 131, 377,
426 | 3eqtrd 2782 |
. 2
⊢ (𝜑 →
(∫2‘(𝐹
∘f + 𝐺)) =
sup({𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)}, ℝ, < )) |
428 | 116, 123,
427 | 3eqtr4rd 2789 |
1
⊢ (𝜑 →
(∫2‘(𝐹
∘f + 𝐺)) =
((∫2‘𝐹) + (∫2‘𝐺))) |