HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopub Structured version   Visualization version   GIF version

Theorem nmopub 31940
Description: An upper bound for an operator norm. (Contributed by NM, 7-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmopub ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℝ*) → ((normop𝑇) ≤ 𝐴 ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ 𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑇

Proof of Theorem nmopub
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmopval 31888 . . . 4 (𝑇: ℋ⟶ ℋ → (normop𝑇) = sup({𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑥)))}, ℝ*, < ))
21adantr 480 . . 3 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℝ*) → (normop𝑇) = sup({𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑥)))}, ℝ*, < ))
32breq1d 5176 . 2 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℝ*) → ((normop𝑇) ≤ 𝐴 ↔ sup({𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑥)))}, ℝ*, < ) ≤ 𝐴))
4 nmopsetretALT 31895 . . . . 5 (𝑇: ℋ⟶ ℋ → {𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑥)))} ⊆ ℝ)
5 ressxr 11334 . . . . 5 ℝ ⊆ ℝ*
64, 5sstrdi 4021 . . . 4 (𝑇: ℋ⟶ ℋ → {𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑥)))} ⊆ ℝ*)
7 supxrleub 13388 . . . 4 (({𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑥)))} ⊆ ℝ*𝐴 ∈ ℝ*) → (sup({𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑥)))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑥)))}𝑧𝐴))
86, 7sylan 579 . . 3 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℝ*) → (sup({𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑥)))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑥)))}𝑧𝐴))
9 ancom 460 . . . . . . 7 (((norm𝑥) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑥))) ↔ (𝑦 = (norm‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1))
10 eqeq1 2744 . . . . . . . 8 (𝑦 = 𝑧 → (𝑦 = (norm‘(𝑇𝑥)) ↔ 𝑧 = (norm‘(𝑇𝑥))))
1110anbi1d 630 . . . . . . 7 (𝑦 = 𝑧 → ((𝑦 = (norm‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) ↔ (𝑧 = (norm‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1)))
129, 11bitrid 283 . . . . . 6 (𝑦 = 𝑧 → (((norm𝑥) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑥))) ↔ (𝑧 = (norm‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1)))
1312rexbidv 3185 . . . . 5 (𝑦 = 𝑧 → (∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑥))) ↔ ∃𝑥 ∈ ℋ (𝑧 = (norm‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1)))
1413ralab 3713 . . . 4 (∀𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑥)))}𝑧𝐴 ↔ ∀𝑧(∃𝑥 ∈ ℋ (𝑧 = (norm‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴))
15 ralcom4 3292 . . . . 5 (∀𝑥 ∈ ℋ ∀𝑧((𝑧 = (norm‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴) ↔ ∀𝑧𝑥 ∈ ℋ ((𝑧 = (norm‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴))
16 impexp 450 . . . . . . . 8 (((𝑧 = (norm‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴) ↔ (𝑧 = (norm‘(𝑇𝑥)) → ((norm𝑥) ≤ 1 → 𝑧𝐴)))
1716albii 1817 . . . . . . 7 (∀𝑧((𝑧 = (norm‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴) ↔ ∀𝑧(𝑧 = (norm‘(𝑇𝑥)) → ((norm𝑥) ≤ 1 → 𝑧𝐴)))
18 fvex 6933 . . . . . . . 8 (norm‘(𝑇𝑥)) ∈ V
19 breq1 5169 . . . . . . . . 9 (𝑧 = (norm‘(𝑇𝑥)) → (𝑧𝐴 ↔ (norm‘(𝑇𝑥)) ≤ 𝐴))
2019imbi2d 340 . . . . . . . 8 (𝑧 = (norm‘(𝑇𝑥)) → (((norm𝑥) ≤ 1 → 𝑧𝐴) ↔ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ 𝐴)))
2118, 20ceqsalv 3529 . . . . . . 7 (∀𝑧(𝑧 = (norm‘(𝑇𝑥)) → ((norm𝑥) ≤ 1 → 𝑧𝐴)) ↔ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ 𝐴))
2217, 21bitri 275 . . . . . 6 (∀𝑧((𝑧 = (norm‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴) ↔ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ 𝐴))
2322ralbii 3099 . . . . 5 (∀𝑥 ∈ ℋ ∀𝑧((𝑧 = (norm‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ 𝐴))
24 r19.23v 3189 . . . . . 6 (∀𝑥 ∈ ℋ ((𝑧 = (norm‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴) ↔ (∃𝑥 ∈ ℋ (𝑧 = (norm‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴))
2524albii 1817 . . . . 5 (∀𝑧𝑥 ∈ ℋ ((𝑧 = (norm‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴) ↔ ∀𝑧(∃𝑥 ∈ ℋ (𝑧 = (norm‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴))
2615, 23, 253bitr3i 301 . . . 4 (∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ 𝐴) ↔ ∀𝑧(∃𝑥 ∈ ℋ (𝑧 = (norm‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴))
2714, 26bitr4i 278 . . 3 (∀𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑥)))}𝑧𝐴 ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ 𝐴))
288, 27bitrdi 287 . 2 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℝ*) → (sup({𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑥)))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ 𝐴)))
293, 28bitrd 279 1 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℝ*) → ((normop𝑇) ≤ 𝐴 ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wcel 2108  {cab 2717  wral 3067  wrex 3076  wss 3976   class class class wbr 5166  wf 6569  cfv 6573  supcsup 9509  cr 11183  1c1 11185  *cxr 11323   < clt 11324  cle 11325  chba 30951  normcno 30955  normopcnop 30977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-hilex 31031  ax-hv0cl 31035  ax-hvmul0 31042  ax-hfi 31111  ax-his1 31114  ax-his3 31116  ax-his4 31117
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-hnorm 31000  df-nmop 31871
This theorem is referenced by:  nmopub2tALT  31941  nmophmi  32063  nmopadjlem  32121  nmoptrii  32126  nmopcoi  32127  nmopcoadji  32133
  Copyright terms: Public domain W3C validator