HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopub Structured version   Visualization version   GIF version

Theorem nmopub 31630
Description: An upper bound for an operator norm. (Contributed by NM, 7-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmopub ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℝ*) → ((normop𝑇) ≤ 𝐴 ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ 𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑇

Proof of Theorem nmopub
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmopval 31578 . . . 4 (𝑇: ℋ⟶ ℋ → (normop𝑇) = sup({𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑥)))}, ℝ*, < ))
21adantr 480 . . 3 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℝ*) → (normop𝑇) = sup({𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑥)))}, ℝ*, < ))
32breq1d 5148 . 2 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℝ*) → ((normop𝑇) ≤ 𝐴 ↔ sup({𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑥)))}, ℝ*, < ) ≤ 𝐴))
4 nmopsetretALT 31585 . . . . 5 (𝑇: ℋ⟶ ℋ → {𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑥)))} ⊆ ℝ)
5 ressxr 11255 . . . . 5 ℝ ⊆ ℝ*
64, 5sstrdi 3986 . . . 4 (𝑇: ℋ⟶ ℋ → {𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑥)))} ⊆ ℝ*)
7 supxrleub 13302 . . . 4 (({𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑥)))} ⊆ ℝ*𝐴 ∈ ℝ*) → (sup({𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑥)))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑥)))}𝑧𝐴))
86, 7sylan 579 . . 3 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℝ*) → (sup({𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑥)))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑥)))}𝑧𝐴))
9 ancom 460 . . . . . . 7 (((norm𝑥) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑥))) ↔ (𝑦 = (norm‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1))
10 eqeq1 2728 . . . . . . . 8 (𝑦 = 𝑧 → (𝑦 = (norm‘(𝑇𝑥)) ↔ 𝑧 = (norm‘(𝑇𝑥))))
1110anbi1d 629 . . . . . . 7 (𝑦 = 𝑧 → ((𝑦 = (norm‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) ↔ (𝑧 = (norm‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1)))
129, 11bitrid 283 . . . . . 6 (𝑦 = 𝑧 → (((norm𝑥) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑥))) ↔ (𝑧 = (norm‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1)))
1312rexbidv 3170 . . . . 5 (𝑦 = 𝑧 → (∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑥))) ↔ ∃𝑥 ∈ ℋ (𝑧 = (norm‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1)))
1413ralab 3679 . . . 4 (∀𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑥)))}𝑧𝐴 ↔ ∀𝑧(∃𝑥 ∈ ℋ (𝑧 = (norm‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴))
15 ralcom4 3275 . . . . 5 (∀𝑥 ∈ ℋ ∀𝑧((𝑧 = (norm‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴) ↔ ∀𝑧𝑥 ∈ ℋ ((𝑧 = (norm‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴))
16 impexp 450 . . . . . . . 8 (((𝑧 = (norm‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴) ↔ (𝑧 = (norm‘(𝑇𝑥)) → ((norm𝑥) ≤ 1 → 𝑧𝐴)))
1716albii 1813 . . . . . . 7 (∀𝑧((𝑧 = (norm‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴) ↔ ∀𝑧(𝑧 = (norm‘(𝑇𝑥)) → ((norm𝑥) ≤ 1 → 𝑧𝐴)))
18 fvex 6894 . . . . . . . 8 (norm‘(𝑇𝑥)) ∈ V
19 breq1 5141 . . . . . . . . 9 (𝑧 = (norm‘(𝑇𝑥)) → (𝑧𝐴 ↔ (norm‘(𝑇𝑥)) ≤ 𝐴))
2019imbi2d 340 . . . . . . . 8 (𝑧 = (norm‘(𝑇𝑥)) → (((norm𝑥) ≤ 1 → 𝑧𝐴) ↔ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ 𝐴)))
2118, 20ceqsalv 3504 . . . . . . 7 (∀𝑧(𝑧 = (norm‘(𝑇𝑥)) → ((norm𝑥) ≤ 1 → 𝑧𝐴)) ↔ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ 𝐴))
2217, 21bitri 275 . . . . . 6 (∀𝑧((𝑧 = (norm‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴) ↔ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ 𝐴))
2322ralbii 3085 . . . . 5 (∀𝑥 ∈ ℋ ∀𝑧((𝑧 = (norm‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ 𝐴))
24 r19.23v 3174 . . . . . 6 (∀𝑥 ∈ ℋ ((𝑧 = (norm‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴) ↔ (∃𝑥 ∈ ℋ (𝑧 = (norm‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴))
2524albii 1813 . . . . 5 (∀𝑧𝑥 ∈ ℋ ((𝑧 = (norm‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴) ↔ ∀𝑧(∃𝑥 ∈ ℋ (𝑧 = (norm‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴))
2615, 23, 253bitr3i 301 . . . 4 (∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ 𝐴) ↔ ∀𝑧(∃𝑥 ∈ ℋ (𝑧 = (norm‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴))
2714, 26bitr4i 278 . . 3 (∀𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑥)))}𝑧𝐴 ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ 𝐴))
288, 27bitrdi 287 . 2 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℝ*) → (sup({𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑥)))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ 𝐴)))
293, 28bitrd 279 1 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℝ*) → ((normop𝑇) ≤ 𝐴 ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1531   = wceq 1533  wcel 2098  {cab 2701  wral 3053  wrex 3062  wss 3940   class class class wbr 5138  wf 6529  cfv 6533  supcsup 9431  cr 11105  1c1 11107  *cxr 11244   < clt 11245  cle 11246  chba 30641  normcno 30645  normopcnop 30667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-hilex 30721  ax-hv0cl 30725  ax-hvmul0 30732  ax-hfi 30801  ax-his1 30804  ax-his3 30806  ax-his4 30807
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-n0 12470  df-z 12556  df-uz 12820  df-rp 12972  df-seq 13964  df-exp 14025  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-hnorm 30690  df-nmop 31561
This theorem is referenced by:  nmopub2tALT  31631  nmophmi  31753  nmopadjlem  31811  nmoptrii  31816  nmopcoi  31817  nmopcoadji  31823
  Copyright terms: Public domain W3C validator