![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > kardex | Structured version Visualization version GIF version |
Description: The collection of all sets equinumerous to a set π΄ and having the least possible rank is a set. This is the part of the justification of the definition of kard of [Enderton] p. 222. (Contributed by NM, 14-Dec-2003.) |
Ref | Expression |
---|---|
kardex | β’ {π₯ β£ (π₯ β π΄ β§ βπ¦(π¦ β π΄ β (rankβπ₯) β (rankβπ¦)))} β V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3431 | . . 3 β’ {π₯ β {π§ β£ π§ β π΄} β£ βπ¦ β {π§ β£ π§ β π΄} (rankβπ₯) β (rankβπ¦)} = {π₯ β£ (π₯ β {π§ β£ π§ β π΄} β§ βπ¦ β {π§ β£ π§ β π΄} (rankβπ₯) β (rankβπ¦))} | |
2 | vex 3476 | . . . . . 6 β’ π₯ β V | |
3 | breq1 5150 | . . . . . 6 β’ (π§ = π₯ β (π§ β π΄ β π₯ β π΄)) | |
4 | 2, 3 | elab 3667 | . . . . 5 β’ (π₯ β {π§ β£ π§ β π΄} β π₯ β π΄) |
5 | breq1 5150 | . . . . . 6 β’ (π§ = π¦ β (π§ β π΄ β π¦ β π΄)) | |
6 | 5 | ralab 3686 | . . . . 5 β’ (βπ¦ β {π§ β£ π§ β π΄} (rankβπ₯) β (rankβπ¦) β βπ¦(π¦ β π΄ β (rankβπ₯) β (rankβπ¦))) |
7 | 4, 6 | anbi12i 625 | . . . 4 β’ ((π₯ β {π§ β£ π§ β π΄} β§ βπ¦ β {π§ β£ π§ β π΄} (rankβπ₯) β (rankβπ¦)) β (π₯ β π΄ β§ βπ¦(π¦ β π΄ β (rankβπ₯) β (rankβπ¦)))) |
8 | 7 | abbii 2800 | . . 3 β’ {π₯ β£ (π₯ β {π§ β£ π§ β π΄} β§ βπ¦ β {π§ β£ π§ β π΄} (rankβπ₯) β (rankβπ¦))} = {π₯ β£ (π₯ β π΄ β§ βπ¦(π¦ β π΄ β (rankβπ₯) β (rankβπ¦)))} |
9 | 1, 8 | eqtri 2758 | . 2 β’ {π₯ β {π§ β£ π§ β π΄} β£ βπ¦ β {π§ β£ π§ β π΄} (rankβπ₯) β (rankβπ¦)} = {π₯ β£ (π₯ β π΄ β§ βπ¦(π¦ β π΄ β (rankβπ₯) β (rankβπ¦)))} |
10 | scottex 9882 | . 2 β’ {π₯ β {π§ β£ π§ β π΄} β£ βπ¦ β {π§ β£ π§ β π΄} (rankβπ₯) β (rankβπ¦)} β V | |
11 | 9, 10 | eqeltrri 2828 | 1 β’ {π₯ β£ (π₯ β π΄ β§ βπ¦(π¦ β π΄ β (rankβπ₯) β (rankβπ¦)))} β V |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 βwal 1537 β wcel 2104 {cab 2707 βwral 3059 {crab 3430 Vcvv 3472 β wss 3947 class class class wbr 5147 βcfv 6542 β cen 8938 rankcrnk 9760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-reg 9589 ax-inf2 9638 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-r1 9761 df-rank 9762 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |