Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > kardex | Structured version Visualization version GIF version |
Description: The collection of all sets equinumerous to a set 𝐴 and having the least possible rank is a set. This is the part of the justification of the definition of kard of [Enderton] p. 222. (Contributed by NM, 14-Dec-2003.) |
Ref | Expression |
---|---|
kardex | ⊢ {𝑥 ∣ (𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3073 | . . 3 ⊢ {𝑥 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} ∣ ∀𝑦 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥 ∣ (𝑥 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} ∧ ∀𝑦 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} (rank‘𝑥) ⊆ (rank‘𝑦))} | |
2 | vex 3436 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | breq1 5077 | . . . . . 6 ⊢ (𝑧 = 𝑥 → (𝑧 ≈ 𝐴 ↔ 𝑥 ≈ 𝐴)) | |
4 | 2, 3 | elab 3609 | . . . . 5 ⊢ (𝑥 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} ↔ 𝑥 ≈ 𝐴) |
5 | breq1 5077 | . . . . . 6 ⊢ (𝑧 = 𝑦 → (𝑧 ≈ 𝐴 ↔ 𝑦 ≈ 𝐴)) | |
6 | 5 | ralab 3628 | . . . . 5 ⊢ (∀𝑦 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦))) |
7 | 4, 6 | anbi12i 627 | . . . 4 ⊢ ((𝑥 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} ∧ ∀𝑦 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ (𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))) |
8 | 7 | abbii 2808 | . . 3 ⊢ {𝑥 ∣ (𝑥 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} ∧ ∀𝑦 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} (rank‘𝑥) ⊆ (rank‘𝑦))} = {𝑥 ∣ (𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))} |
9 | 1, 8 | eqtri 2766 | . 2 ⊢ {𝑥 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} ∣ ∀𝑦 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥 ∣ (𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))} |
10 | scottex 9643 | . 2 ⊢ {𝑥 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} ∣ ∀𝑦 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V | |
11 | 9, 10 | eqeltrri 2836 | 1 ⊢ {𝑥 ∣ (𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1537 ∈ wcel 2106 {cab 2715 ∀wral 3064 {crab 3068 Vcvv 3432 ⊆ wss 3887 class class class wbr 5074 ‘cfv 6433 ≈ cen 8730 rankcrnk 9521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-reg 9351 ax-inf2 9399 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-r1 9522 df-rank 9523 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |