MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kardex Structured version   Visualization version   GIF version

Theorem kardex 9891
Description: The collection of all sets equinumerous to a set 𝐴 and having the least possible rank is a set. This is the part of the justification of the definition of kard of [Enderton] p. 222. (Contributed by NM, 14-Dec-2003.)
Assertion
Ref Expression
kardex {π‘₯ ∣ (π‘₯ β‰ˆ 𝐴 ∧ βˆ€π‘¦(𝑦 β‰ˆ 𝐴 β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)))} ∈ V
Distinct variable group:   π‘₯,𝑦,𝐴

Proof of Theorem kardex
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-rab 3431 . . 3 {π‘₯ ∈ {𝑧 ∣ 𝑧 β‰ˆ 𝐴} ∣ βˆ€π‘¦ ∈ {𝑧 ∣ 𝑧 β‰ˆ 𝐴} (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)} = {π‘₯ ∣ (π‘₯ ∈ {𝑧 ∣ 𝑧 β‰ˆ 𝐴} ∧ βˆ€π‘¦ ∈ {𝑧 ∣ 𝑧 β‰ˆ 𝐴} (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦))}
2 vex 3476 . . . . . 6 π‘₯ ∈ V
3 breq1 5150 . . . . . 6 (𝑧 = π‘₯ β†’ (𝑧 β‰ˆ 𝐴 ↔ π‘₯ β‰ˆ 𝐴))
42, 3elab 3667 . . . . 5 (π‘₯ ∈ {𝑧 ∣ 𝑧 β‰ˆ 𝐴} ↔ π‘₯ β‰ˆ 𝐴)
5 breq1 5150 . . . . . 6 (𝑧 = 𝑦 β†’ (𝑧 β‰ˆ 𝐴 ↔ 𝑦 β‰ˆ 𝐴))
65ralab 3686 . . . . 5 (βˆ€π‘¦ ∈ {𝑧 ∣ 𝑧 β‰ˆ 𝐴} (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦) ↔ βˆ€π‘¦(𝑦 β‰ˆ 𝐴 β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)))
74, 6anbi12i 625 . . . 4 ((π‘₯ ∈ {𝑧 ∣ 𝑧 β‰ˆ 𝐴} ∧ βˆ€π‘¦ ∈ {𝑧 ∣ 𝑧 β‰ˆ 𝐴} (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)) ↔ (π‘₯ β‰ˆ 𝐴 ∧ βˆ€π‘¦(𝑦 β‰ˆ 𝐴 β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦))))
87abbii 2800 . . 3 {π‘₯ ∣ (π‘₯ ∈ {𝑧 ∣ 𝑧 β‰ˆ 𝐴} ∧ βˆ€π‘¦ ∈ {𝑧 ∣ 𝑧 β‰ˆ 𝐴} (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦))} = {π‘₯ ∣ (π‘₯ β‰ˆ 𝐴 ∧ βˆ€π‘¦(𝑦 β‰ˆ 𝐴 β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)))}
91, 8eqtri 2758 . 2 {π‘₯ ∈ {𝑧 ∣ 𝑧 β‰ˆ 𝐴} ∣ βˆ€π‘¦ ∈ {𝑧 ∣ 𝑧 β‰ˆ 𝐴} (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)} = {π‘₯ ∣ (π‘₯ β‰ˆ 𝐴 ∧ βˆ€π‘¦(𝑦 β‰ˆ 𝐴 β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)))}
10 scottex 9882 . 2 {π‘₯ ∈ {𝑧 ∣ 𝑧 β‰ˆ 𝐴} ∣ βˆ€π‘¦ ∈ {𝑧 ∣ 𝑧 β‰ˆ 𝐴} (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)} ∈ V
119, 10eqeltrri 2828 1 {π‘₯ ∣ (π‘₯ β‰ˆ 𝐴 ∧ βˆ€π‘¦(𝑦 β‰ˆ 𝐴 β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)))} ∈ V
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394  βˆ€wal 1537   ∈ wcel 2104  {cab 2707  βˆ€wral 3059  {crab 3430  Vcvv 3472   βŠ† wss 3947   class class class wbr 5147  β€˜cfv 6542   β‰ˆ cen 8938  rankcrnk 9760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-reg 9589  ax-inf2 9638
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-r1 9761  df-rank 9762
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator