![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > kardex | Structured version Visualization version GIF version |
Description: The collection of all sets equinumerous to a set 𝐴 and having the least possible rank is a set. This is the part of the justification of the definition of kard of [Enderton] p. 222. (Contributed by NM, 14-Dec-2003.) |
Ref | Expression |
---|---|
kardex | ⊢ {𝑥 ∣ (𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3420 | . . 3 ⊢ {𝑥 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} ∣ ∀𝑦 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥 ∣ (𝑥 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} ∧ ∀𝑦 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} (rank‘𝑥) ⊆ (rank‘𝑦))} | |
2 | vex 3466 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | breq1 5156 | . . . . . 6 ⊢ (𝑧 = 𝑥 → (𝑧 ≈ 𝐴 ↔ 𝑥 ≈ 𝐴)) | |
4 | 2, 3 | elab 3666 | . . . . 5 ⊢ (𝑥 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} ↔ 𝑥 ≈ 𝐴) |
5 | breq1 5156 | . . . . . 6 ⊢ (𝑧 = 𝑦 → (𝑧 ≈ 𝐴 ↔ 𝑦 ≈ 𝐴)) | |
6 | 5 | ralab 3685 | . . . . 5 ⊢ (∀𝑦 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦))) |
7 | 4, 6 | anbi12i 626 | . . . 4 ⊢ ((𝑥 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} ∧ ∀𝑦 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ (𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))) |
8 | 7 | abbii 2796 | . . 3 ⊢ {𝑥 ∣ (𝑥 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} ∧ ∀𝑦 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} (rank‘𝑥) ⊆ (rank‘𝑦))} = {𝑥 ∣ (𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))} |
9 | 1, 8 | eqtri 2754 | . 2 ⊢ {𝑥 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} ∣ ∀𝑦 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥 ∣ (𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))} |
10 | scottex 9928 | . 2 ⊢ {𝑥 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} ∣ ∀𝑦 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V | |
11 | 9, 10 | eqeltrri 2823 | 1 ⊢ {𝑥 ∣ (𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∀wal 1532 ∈ wcel 2099 {cab 2703 ∀wral 3051 {crab 3419 Vcvv 3462 ⊆ wss 3947 class class class wbr 5153 ‘cfv 6554 ≈ cen 8971 rankcrnk 9806 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-reg 9635 ax-inf2 9684 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-ov 7427 df-om 7877 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-r1 9807 df-rank 9808 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |