MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kardex Structured version   Visualization version   GIF version

Theorem kardex 9917
Description: The collection of all sets equinumerous to a set 𝐴 and having the least possible rank is a set. This is the part of the justification of the definition of kard of [Enderton] p. 222. (Contributed by NM, 14-Dec-2003.)
Assertion
Ref Expression
kardex {𝑥 ∣ (𝑥𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ∈ V
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem kardex
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-rab 3421 . . 3 {𝑥 ∈ {𝑧𝑧𝐴} ∣ ∀𝑦 ∈ {𝑧𝑧𝐴} (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥 ∣ (𝑥 ∈ {𝑧𝑧𝐴} ∧ ∀𝑦 ∈ {𝑧𝑧𝐴} (rank‘𝑥) ⊆ (rank‘𝑦))}
2 vex 3468 . . . . . 6 𝑥 ∈ V
3 breq1 5128 . . . . . 6 (𝑧 = 𝑥 → (𝑧𝐴𝑥𝐴))
42, 3elab 3663 . . . . 5 (𝑥 ∈ {𝑧𝑧𝐴} ↔ 𝑥𝐴)
5 breq1 5128 . . . . . 6 (𝑧 = 𝑦 → (𝑧𝐴𝑦𝐴))
65ralab 3681 . . . . 5 (∀𝑦 ∈ {𝑧𝑧𝐴} (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))
74, 6anbi12i 628 . . . 4 ((𝑥 ∈ {𝑧𝑧𝐴} ∧ ∀𝑦 ∈ {𝑧𝑧𝐴} (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ (𝑥𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦))))
87abbii 2801 . . 3 {𝑥 ∣ (𝑥 ∈ {𝑧𝑧𝐴} ∧ ∀𝑦 ∈ {𝑧𝑧𝐴} (rank‘𝑥) ⊆ (rank‘𝑦))} = {𝑥 ∣ (𝑥𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
91, 8eqtri 2757 . 2 {𝑥 ∈ {𝑧𝑧𝐴} ∣ ∀𝑦 ∈ {𝑧𝑧𝐴} (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥 ∣ (𝑥𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
10 scottex 9908 . 2 {𝑥 ∈ {𝑧𝑧𝐴} ∣ ∀𝑦 ∈ {𝑧𝑧𝐴} (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V
119, 10eqeltrri 2830 1 {𝑥 ∣ (𝑥𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537  wcel 2107  {cab 2712  wral 3050  {crab 3420  Vcvv 3464  wss 3933   class class class wbr 5125  cfv 6542  cen 8965  rankcrnk 9786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-reg 9615  ax-inf2 9664
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-int 4929  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-om 7871  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-r1 9787  df-rank 9788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator