MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kardex Structured version   Visualization version   GIF version

Theorem kardex 9790
Description: The collection of all sets equinumerous to a set 𝐴 and having the least possible rank is a set. This is the part of the justification of the definition of kard of [Enderton] p. 222. (Contributed by NM, 14-Dec-2003.)
Assertion
Ref Expression
kardex {𝑥 ∣ (𝑥𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ∈ V
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem kardex
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-rab 3395 . . 3 {𝑥 ∈ {𝑧𝑧𝐴} ∣ ∀𝑦 ∈ {𝑧𝑧𝐴} (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥 ∣ (𝑥 ∈ {𝑧𝑧𝐴} ∧ ∀𝑦 ∈ {𝑧𝑧𝐴} (rank‘𝑥) ⊆ (rank‘𝑦))}
2 vex 3440 . . . . . 6 𝑥 ∈ V
3 breq1 5095 . . . . . 6 (𝑧 = 𝑥 → (𝑧𝐴𝑥𝐴))
42, 3elab 3635 . . . . 5 (𝑥 ∈ {𝑧𝑧𝐴} ↔ 𝑥𝐴)
5 breq1 5095 . . . . . 6 (𝑧 = 𝑦 → (𝑧𝐴𝑦𝐴))
65ralab 3653 . . . . 5 (∀𝑦 ∈ {𝑧𝑧𝐴} (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))
74, 6anbi12i 628 . . . 4 ((𝑥 ∈ {𝑧𝑧𝐴} ∧ ∀𝑦 ∈ {𝑧𝑧𝐴} (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ (𝑥𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦))))
87abbii 2796 . . 3 {𝑥 ∣ (𝑥 ∈ {𝑧𝑧𝐴} ∧ ∀𝑦 ∈ {𝑧𝑧𝐴} (rank‘𝑥) ⊆ (rank‘𝑦))} = {𝑥 ∣ (𝑥𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
91, 8eqtri 2752 . 2 {𝑥 ∈ {𝑧𝑧𝐴} ∣ ∀𝑦 ∈ {𝑧𝑧𝐴} (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥 ∣ (𝑥𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
10 scottex 9781 . 2 {𝑥 ∈ {𝑧𝑧𝐴} ∣ ∀𝑦 ∈ {𝑧𝑧𝐴} (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V
119, 10eqeltrri 2825 1 {𝑥 ∣ (𝑥𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538  wcel 2109  {cab 2707  wral 3044  {crab 3394  Vcvv 3436  wss 3903   class class class wbr 5092  cfv 6482  cen 8869  rankcrnk 9659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-reg 9484  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-r1 9660  df-rank 9661
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator