![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > kardex | Structured version Visualization version GIF version |
Description: The collection of all sets equinumerous to a set 𝐴 and having the least possible rank is a set. This is the part of the justification of the definition of kard of [Enderton] p. 222. (Contributed by NM, 14-Dec-2003.) |
Ref | Expression |
---|---|
kardex | ⊢ {𝑥 ∣ (𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3126 | . . 3 ⊢ {𝑥 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} ∣ ∀𝑦 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥 ∣ (𝑥 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} ∧ ∀𝑦 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} (rank‘𝑥) ⊆ (rank‘𝑦))} | |
2 | vex 3417 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | breq1 4878 | . . . . . 6 ⊢ (𝑧 = 𝑥 → (𝑧 ≈ 𝐴 ↔ 𝑥 ≈ 𝐴)) | |
4 | 2, 3 | elab 3571 | . . . . 5 ⊢ (𝑥 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} ↔ 𝑥 ≈ 𝐴) |
5 | breq1 4878 | . . . . . 6 ⊢ (𝑧 = 𝑦 → (𝑧 ≈ 𝐴 ↔ 𝑦 ≈ 𝐴)) | |
6 | 5 | ralab 3590 | . . . . 5 ⊢ (∀𝑦 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦))) |
7 | 4, 6 | anbi12i 620 | . . . 4 ⊢ ((𝑥 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} ∧ ∀𝑦 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ (𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))) |
8 | 7 | abbii 2944 | . . 3 ⊢ {𝑥 ∣ (𝑥 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} ∧ ∀𝑦 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} (rank‘𝑥) ⊆ (rank‘𝑦))} = {𝑥 ∣ (𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))} |
9 | 1, 8 | eqtri 2849 | . 2 ⊢ {𝑥 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} ∣ ∀𝑦 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥 ∣ (𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))} |
10 | scottex 9032 | . 2 ⊢ {𝑥 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} ∣ ∀𝑦 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V | |
11 | 9, 10 | eqeltrri 2903 | 1 ⊢ {𝑥 ∣ (𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∀wal 1654 ∈ wcel 2164 {cab 2811 ∀wral 3117 {crab 3121 Vcvv 3414 ⊆ wss 3798 class class class wbr 4875 ‘cfv 6127 ≈ cen 8225 rankcrnk 8910 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-reg 8773 ax-inf2 8822 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-om 7332 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-r1 8911 df-rank 8912 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |