Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rneq | Structured version Visualization version GIF version |
Description: Equality theorem for range. (Contributed by NM, 29-Dec-1996.) |
Ref | Expression |
---|---|
rneq | ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnveq 5719 | . . 3 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) | |
2 | 1 | dmeqd 5751 | . 2 ⊢ (𝐴 = 𝐵 → dom ◡𝐴 = dom ◡𝐵) |
3 | df-rn 5539 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
4 | df-rn 5539 | . 2 ⊢ ran 𝐵 = dom ◡𝐵 | |
5 | 2, 3, 4 | 3eqtr4g 2818 | 1 ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ◡ccnv 5527 dom cdm 5528 ran crn 5529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-un 3865 df-in 3867 df-ss 3877 df-sn 4526 df-pr 4528 df-op 4532 df-br 5037 df-opab 5099 df-cnv 5536 df-dm 5538 df-rn 5539 |
This theorem is referenced by: rneqi 5783 rneqd 5784 feq1 6484 foeq1 6577 fnrnfv 6718 fconst5 6965 frxp 7831 tz7.44-2 8059 tz7.44-3 8060 ixpsnf1o 8533 ordtypecbv 9027 ordtypelem3 9030 dfac8alem 9502 dfac8a 9503 dfac5lem3 9598 dfac9 9609 dfac12lem1 9616 dfac12r 9619 ackbij2 9716 isfin3ds 9802 fin23lem17 9811 fin23lem29 9814 fin23lem30 9815 fin23lem32 9817 fin23lem34 9819 fin23lem35 9820 fin23lem39 9823 fin23lem41 9825 isf33lem 9839 isf34lem6 9853 dcomex 9920 axdc2lem 9921 zorn2lem1 9969 zorn2g 9976 ttukey2g 9989 gruurn 10271 rpnnen1lem6 12435 relexp0g 14442 relexpsucnnr 14445 dfrtrcl2 14482 mpfrcl 20862 selvval 20895 ply1frcl 21051 pnrmopn 22057 isi1f 24388 itg1val 24397 axlowdimlem13 26861 axlowdim1 26866 ausgrusgri 27074 0uhgrsubgr 27182 cusgrsize 27357 ex-rn 28338 gidval 28408 grpoinvfval 28418 grpodivfval 28430 isablo 28442 vciOLD 28457 isvclem 28473 isnvlem 28506 isphg 28713 pj11i 29607 hmopidmch 30049 hmopidmpj 30050 pjss1coi 30059 padct 30591 tocyc01 30924 tocyccntz 30950 locfinreflem 31324 locfinref 31325 issibf 31832 sitgfval 31840 mrsubvrs 33013 rdgprc0 33298 rdgprc 33299 dfrdg2 33300 madeval 33631 brrangeg 33822 poimirlem24 35396 volsupnfl 35417 elghomlem1OLD 35638 isdivrngo 35703 iscom2 35748 elrefrels2 36232 elrefrels3 36233 refreleq 36235 elcnvrefrels2 36245 elcnvrefrels3 36246 dnnumch1 40406 aomclem3 40418 aomclem8 40423 rclexi 40733 rtrclex 40735 rtrclexi 40739 cnvrcl0 40743 dfrtrcl5 40747 dfrcl2 40793 csbima12gALTVD 42021 unirnmap 42252 ssmapsn 42260 sge0val 43416 vonvolmbl 43711 |
Copyright terms: Public domain | W3C validator |