| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rneq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for range. (Contributed by NM, 29-Dec-1996.) |
| Ref | Expression |
|---|---|
| rneq | ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnveq 5820 | . . 3 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) | |
| 2 | 1 | dmeqd 5852 | . 2 ⊢ (𝐴 = 𝐵 → dom ◡𝐴 = dom ◡𝐵) |
| 3 | df-rn 5634 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 4 | df-rn 5634 | . 2 ⊢ ran 𝐵 = dom ◡𝐵 | |
| 5 | 2, 3, 4 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ◡ccnv 5622 dom cdm 5623 ran crn 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-cnv 5631 df-dm 5633 df-rn 5634 |
| This theorem is referenced by: rneqi 5883 rneqd 5884 feq1 6634 foeq1 6736 fnrnfv 6886 fconst5 7146 frxp 8066 tz7.44-2 8336 tz7.44-3 8337 ixpsnf1o 8872 ordtypecbv 9428 ordtypelem3 9431 dfac8alem 9942 dfac8a 9943 dfac5lem3 10038 dfac9 10050 dfac12lem1 10057 dfac12r 10060 ackbij2 10155 isfin3ds 10242 fin23lem17 10251 fin23lem29 10254 fin23lem30 10255 fin23lem32 10257 fin23lem34 10259 fin23lem35 10260 fin23lem39 10263 fin23lem41 10265 isf33lem 10279 isf34lem6 10293 dcomex 10360 axdc2lem 10361 zorn2lem1 10409 zorn2g 10416 ttukey2g 10429 gruurn 10711 rpnnen1lem6 12901 relexp0g 14947 relexpsucnnr 14950 dfrtrcl2 14987 mpfrcl 22008 selvval 22038 ply1frcl 22221 pnrmopn 23246 isi1f 25591 itg1val 25600 madeval 27780 axlowdimlem13 28917 axlowdim1 28922 ausgrusgri 29131 0uhgrsubgr 29242 cusgrsize 29418 ex-rn 30402 gidval 30474 grpoinvfval 30484 grpodivfval 30496 isablo 30508 vciOLD 30523 isvclem 30539 isnvlem 30572 isphg 30779 pj11i 31673 hmopidmch 32115 hmopidmpj 32116 pjss1coi 32125 padct 32676 tocyc01 33073 tocyccntz 33099 unitprodclb 33339 locfinreflem 33809 locfinref 33810 issibf 34303 sitgfval 34311 onvf1odlem3 35080 mrsubvrs 35497 rdgprc0 35769 rdgprc 35770 dfrdg2 35771 brrangeg 35912 poimirlem24 37626 volsupnfl 37647 elghomlem1OLD 37867 isdivrngo 37932 iscom2 37977 elrefrels2 38497 elrefrels3 38498 refreleq 38500 elcnvrefrels2 38513 elcnvrefrels3 38514 dnnumch1 43020 aomclem3 43032 aomclem8 43037 rclexi 43591 rtrclex 43593 rtrclexi 43597 cnvrcl0 43601 dfrtrcl5 43605 dfrcl2 43650 csbima12gALTVD 44873 modelaxreplem1 44955 modelaxreplem2 44956 modelaxrep 44958 unirnmap 45189 ssmapsn 45197 sge0val 46351 vonvolmbl 46646 |
| Copyright terms: Public domain | W3C validator |