| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rneq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for range. (Contributed by NM, 29-Dec-1996.) |
| Ref | Expression |
|---|---|
| rneq | ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnveq 5817 | . . 3 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) | |
| 2 | 1 | dmeqd 5849 | . 2 ⊢ (𝐴 = 𝐵 → dom ◡𝐴 = dom ◡𝐵) |
| 3 | df-rn 5630 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 4 | df-rn 5630 | . 2 ⊢ ran 𝐵 = dom ◡𝐵 | |
| 5 | 2, 3, 4 | 3eqtr4g 2793 | 1 ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ◡ccnv 5618 dom cdm 5619 ran crn 5620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-cnv 5627 df-dm 5629 df-rn 5630 |
| This theorem is referenced by: rneqi 5881 rneqd 5882 feq1 6634 foeq1 6736 fnrnfv 6887 fconst5 7146 frxp 8062 tz7.44-2 8332 tz7.44-3 8333 ixpsnf1o 8868 ordtypecbv 9410 ordtypelem3 9413 dfac8alem 9927 dfac8a 9928 dfac5lem3 10023 dfac9 10035 dfac12lem1 10042 dfac12r 10045 ackbij2 10140 isfin3ds 10227 fin23lem17 10236 fin23lem29 10239 fin23lem30 10240 fin23lem32 10242 fin23lem34 10244 fin23lem35 10245 fin23lem39 10248 fin23lem41 10250 isf33lem 10264 isf34lem6 10278 dcomex 10345 axdc2lem 10346 zorn2lem1 10394 zorn2g 10401 ttukey2g 10414 gruurn 10696 rpnnen1lem6 12882 relexp0g 14931 relexpsucnnr 14934 dfrtrcl2 14971 mpfrcl 22021 selvval 22051 ply1frcl 22234 pnrmopn 23259 isi1f 25603 itg1val 25612 madeval 27794 axlowdimlem13 28934 axlowdim1 28939 ausgrusgri 29148 0uhgrsubgr 29259 cusgrsize 29435 ex-rn 30422 gidval 30494 grpoinvfval 30504 grpodivfval 30516 isablo 30528 vciOLD 30543 isvclem 30559 isnvlem 30592 isphg 30799 pj11i 31693 hmopidmch 32135 hmopidmpj 32136 pjss1coi 32145 padct 32705 tocyc01 33094 tocyccntz 33120 unitprodclb 33361 esplyind 33613 locfinreflem 33874 locfinref 33875 issibf 34367 sitgfval 34375 onvf1odlem3 35170 mrsubvrs 35587 rdgprc0 35856 rdgprc 35857 dfrdg2 35858 brrangeg 35999 poimirlem24 37705 volsupnfl 37726 elghomlem1OLD 37946 isdivrngo 38011 iscom2 38056 elrefrels2 38631 elrefrels3 38632 refreleq 38634 elcnvrefrels2 38647 elcnvrefrels3 38648 dnnumch1 43162 aomclem3 43174 aomclem8 43179 rclexi 43733 rtrclex 43735 rtrclexi 43739 cnvrcl0 43743 dfrtrcl5 43747 dfrcl2 43792 csbima12gALTVD 45014 modelaxreplem1 45096 modelaxreplem2 45097 modelaxrep 45099 unirnmap 45330 ssmapsn 45338 sge0val 46489 vonvolmbl 46784 |
| Copyright terms: Public domain | W3C validator |