Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rneq | Structured version Visualization version GIF version |
Description: Equality theorem for range. (Contributed by NM, 29-Dec-1996.) |
Ref | Expression |
---|---|
rneq | ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnveq 5782 | . . 3 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) | |
2 | 1 | dmeqd 5814 | . 2 ⊢ (𝐴 = 𝐵 → dom ◡𝐴 = dom ◡𝐵) |
3 | df-rn 5600 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
4 | df-rn 5600 | . 2 ⊢ ran 𝐵 = dom ◡𝐵 | |
5 | 2, 3, 4 | 3eqtr4g 2803 | 1 ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ◡ccnv 5588 dom cdm 5589 ran crn 5590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-cnv 5597 df-dm 5599 df-rn 5600 |
This theorem is referenced by: rneqi 5846 rneqd 5847 feq1 6581 foeq1 6684 fnrnfv 6829 fconst5 7081 frxp 7967 tz7.44-2 8238 tz7.44-3 8239 ixpsnf1o 8726 ordtypecbv 9276 ordtypelem3 9279 dfac8alem 9785 dfac8a 9786 dfac5lem3 9881 dfac9 9892 dfac12lem1 9899 dfac12r 9902 ackbij2 9999 isfin3ds 10085 fin23lem17 10094 fin23lem29 10097 fin23lem30 10098 fin23lem32 10100 fin23lem34 10102 fin23lem35 10103 fin23lem39 10106 fin23lem41 10108 isf33lem 10122 isf34lem6 10136 dcomex 10203 axdc2lem 10204 zorn2lem1 10252 zorn2g 10259 ttukey2g 10272 gruurn 10554 rpnnen1lem6 12722 relexp0g 14733 relexpsucnnr 14736 dfrtrcl2 14773 mpfrcl 21295 selvval 21328 ply1frcl 21484 pnrmopn 22494 isi1f 24838 itg1val 24847 axlowdimlem13 27322 axlowdim1 27327 ausgrusgri 27538 0uhgrsubgr 27646 cusgrsize 27821 ex-rn 28804 gidval 28874 grpoinvfval 28884 grpodivfval 28896 isablo 28908 vciOLD 28923 isvclem 28939 isnvlem 28972 isphg 29179 pj11i 30073 hmopidmch 30515 hmopidmpj 30516 pjss1coi 30525 padct 31054 tocyc01 31385 tocyccntz 31411 locfinreflem 31790 locfinref 31791 issibf 32300 sitgfval 32308 mrsubvrs 33484 rdgprc0 33769 rdgprc 33770 dfrdg2 33771 madeval 34036 brrangeg 34238 poimirlem24 35801 volsupnfl 35822 elghomlem1OLD 36043 isdivrngo 36108 iscom2 36153 elrefrels2 36635 elrefrels3 36636 refreleq 36638 elcnvrefrels2 36648 elcnvrefrels3 36649 dnnumch1 40869 aomclem3 40881 aomclem8 40886 rclexi 41223 rtrclex 41225 rtrclexi 41229 cnvrcl0 41233 dfrtrcl5 41237 dfrcl2 41282 csbima12gALTVD 42517 unirnmap 42748 ssmapsn 42756 sge0val 43904 vonvolmbl 44199 |
Copyright terms: Public domain | W3C validator |