| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rneq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for range. (Contributed by NM, 29-Dec-1996.) |
| Ref | Expression |
|---|---|
| rneq | ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnveq 5813 | . . 3 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) | |
| 2 | 1 | dmeqd 5845 | . 2 ⊢ (𝐴 = 𝐵 → dom ◡𝐴 = dom ◡𝐵) |
| 3 | df-rn 5627 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 4 | df-rn 5627 | . 2 ⊢ ran 𝐵 = dom ◡𝐵 | |
| 5 | 2, 3, 4 | 3eqtr4g 2791 | 1 ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ◡ccnv 5615 dom cdm 5616 ran crn 5617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-cnv 5624 df-dm 5626 df-rn 5627 |
| This theorem is referenced by: rneqi 5877 rneqd 5878 feq1 6629 foeq1 6731 fnrnfv 6881 fconst5 7140 frxp 8056 tz7.44-2 8326 tz7.44-3 8327 ixpsnf1o 8862 ordtypecbv 9403 ordtypelem3 9406 dfac8alem 9920 dfac8a 9921 dfac5lem3 10016 dfac9 10028 dfac12lem1 10035 dfac12r 10038 ackbij2 10133 isfin3ds 10220 fin23lem17 10229 fin23lem29 10232 fin23lem30 10233 fin23lem32 10235 fin23lem34 10237 fin23lem35 10238 fin23lem39 10241 fin23lem41 10243 isf33lem 10257 isf34lem6 10271 dcomex 10338 axdc2lem 10339 zorn2lem1 10387 zorn2g 10394 ttukey2g 10407 gruurn 10689 rpnnen1lem6 12880 relexp0g 14929 relexpsucnnr 14932 dfrtrcl2 14969 mpfrcl 22021 selvval 22051 ply1frcl 22234 pnrmopn 23259 isi1f 25603 itg1val 25612 madeval 27794 axlowdimlem13 28933 axlowdim1 28938 ausgrusgri 29147 0uhgrsubgr 29258 cusgrsize 29434 ex-rn 30418 gidval 30490 grpoinvfval 30500 grpodivfval 30512 isablo 30524 vciOLD 30539 isvclem 30555 isnvlem 30588 isphg 30795 pj11i 31689 hmopidmch 32131 hmopidmpj 32132 pjss1coi 32141 padct 32699 tocyc01 33085 tocyccntz 33111 unitprodclb 33352 locfinreflem 33851 locfinref 33852 issibf 34344 sitgfval 34352 onvf1odlem3 35147 mrsubvrs 35564 rdgprc0 35833 rdgprc 35834 dfrdg2 35835 brrangeg 35976 poimirlem24 37690 volsupnfl 37711 elghomlem1OLD 37931 isdivrngo 37996 iscom2 38041 elrefrels2 38561 elrefrels3 38562 refreleq 38564 elcnvrefrels2 38577 elcnvrefrels3 38578 dnnumch1 43083 aomclem3 43095 aomclem8 43100 rclexi 43654 rtrclex 43656 rtrclexi 43660 cnvrcl0 43664 dfrtrcl5 43668 dfrcl2 43713 csbima12gALTVD 44935 modelaxreplem1 45017 modelaxreplem2 45018 modelaxrep 45020 unirnmap 45251 ssmapsn 45259 sge0val 46410 vonvolmbl 46705 |
| Copyright terms: Public domain | W3C validator |