![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rneq | Structured version Visualization version GIF version |
Description: Equality theorem for range. (Contributed by NM, 29-Dec-1996.) |
Ref | Expression |
---|---|
rneq | ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnveq 5898 | . . 3 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) | |
2 | 1 | dmeqd 5930 | . 2 ⊢ (𝐴 = 𝐵 → dom ◡𝐴 = dom ◡𝐵) |
3 | df-rn 5711 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
4 | df-rn 5711 | . 2 ⊢ ran 𝐵 = dom ◡𝐵 | |
5 | 2, 3, 4 | 3eqtr4g 2805 | 1 ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ◡ccnv 5699 dom cdm 5700 ran crn 5701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-cnv 5708 df-dm 5710 df-rn 5711 |
This theorem is referenced by: rneqi 5962 rneqd 5963 feq1 6728 foeq1 6830 fnrnfv 6981 fconst5 7243 frxp 8167 tz7.44-2 8463 tz7.44-3 8464 ixpsnf1o 8996 ordtypecbv 9586 ordtypelem3 9589 dfac8alem 10098 dfac8a 10099 dfac5lem3 10194 dfac9 10206 dfac12lem1 10213 dfac12r 10216 ackbij2 10311 isfin3ds 10398 fin23lem17 10407 fin23lem29 10410 fin23lem30 10411 fin23lem32 10413 fin23lem34 10415 fin23lem35 10416 fin23lem39 10419 fin23lem41 10421 isf33lem 10435 isf34lem6 10449 dcomex 10516 axdc2lem 10517 zorn2lem1 10565 zorn2g 10572 ttukey2g 10585 gruurn 10867 rpnnen1lem6 13047 relexp0g 15071 relexpsucnnr 15074 dfrtrcl2 15111 mpfrcl 22132 selvval 22162 ply1frcl 22343 pnrmopn 23372 isi1f 25728 itg1val 25737 madeval 27909 axlowdimlem13 28987 axlowdim1 28992 ausgrusgri 29203 0uhgrsubgr 29314 cusgrsize 29490 ex-rn 30472 gidval 30544 grpoinvfval 30554 grpodivfval 30566 isablo 30578 vciOLD 30593 isvclem 30609 isnvlem 30642 isphg 30849 pj11i 31743 hmopidmch 32185 hmopidmpj 32186 pjss1coi 32195 padct 32733 tocyc01 33111 tocyccntz 33137 unitprodclb 33382 locfinreflem 33786 locfinref 33787 issibf 34298 sitgfval 34306 mrsubvrs 35490 rdgprc0 35757 rdgprc 35758 dfrdg2 35759 brrangeg 35900 poimirlem24 37604 volsupnfl 37625 elghomlem1OLD 37845 isdivrngo 37910 iscom2 37955 elrefrels2 38474 elrefrels3 38475 refreleq 38477 elcnvrefrels2 38490 elcnvrefrels3 38491 dnnumch1 43001 aomclem3 43013 aomclem8 43018 rclexi 43577 rtrclex 43579 rtrclexi 43583 cnvrcl0 43587 dfrtrcl5 43591 dfrcl2 43636 csbima12gALTVD 44868 unirnmap 45115 ssmapsn 45123 sge0val 46287 vonvolmbl 46582 |
Copyright terms: Public domain | W3C validator |