Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rneq | Structured version Visualization version GIF version |
Description: Equality theorem for range. (Contributed by NM, 29-Dec-1996.) |
Ref | Expression |
---|---|
rneq | ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnveq 5771 | . . 3 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) | |
2 | 1 | dmeqd 5803 | . 2 ⊢ (𝐴 = 𝐵 → dom ◡𝐴 = dom ◡𝐵) |
3 | df-rn 5591 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
4 | df-rn 5591 | . 2 ⊢ ran 𝐵 = dom ◡𝐵 | |
5 | 2, 3, 4 | 3eqtr4g 2804 | 1 ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ◡ccnv 5579 dom cdm 5580 ran crn 5581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-cnv 5588 df-dm 5590 df-rn 5591 |
This theorem is referenced by: rneqi 5835 rneqd 5836 feq1 6565 foeq1 6668 fnrnfv 6811 fconst5 7063 frxp 7938 tz7.44-2 8209 tz7.44-3 8210 ixpsnf1o 8684 ordtypecbv 9206 ordtypelem3 9209 dfac8alem 9716 dfac8a 9717 dfac5lem3 9812 dfac9 9823 dfac12lem1 9830 dfac12r 9833 ackbij2 9930 isfin3ds 10016 fin23lem17 10025 fin23lem29 10028 fin23lem30 10029 fin23lem32 10031 fin23lem34 10033 fin23lem35 10034 fin23lem39 10037 fin23lem41 10039 isf33lem 10053 isf34lem6 10067 dcomex 10134 axdc2lem 10135 zorn2lem1 10183 zorn2g 10190 ttukey2g 10203 gruurn 10485 rpnnen1lem6 12651 relexp0g 14661 relexpsucnnr 14664 dfrtrcl2 14701 mpfrcl 21205 selvval 21238 ply1frcl 21394 pnrmopn 22402 isi1f 24743 itg1val 24752 axlowdimlem13 27225 axlowdim1 27230 ausgrusgri 27441 0uhgrsubgr 27549 cusgrsize 27724 ex-rn 28705 gidval 28775 grpoinvfval 28785 grpodivfval 28797 isablo 28809 vciOLD 28824 isvclem 28840 isnvlem 28873 isphg 29080 pj11i 29974 hmopidmch 30416 hmopidmpj 30417 pjss1coi 30426 padct 30956 tocyc01 31287 tocyccntz 31313 locfinreflem 31692 locfinref 31693 issibf 32200 sitgfval 32208 mrsubvrs 33384 rdgprc0 33675 rdgprc 33676 dfrdg2 33677 madeval 33963 brrangeg 34165 poimirlem24 35728 volsupnfl 35749 elghomlem1OLD 35970 isdivrngo 36035 iscom2 36080 elrefrels2 36562 elrefrels3 36563 refreleq 36565 elcnvrefrels2 36575 elcnvrefrels3 36576 dnnumch1 40785 aomclem3 40797 aomclem8 40802 rclexi 41112 rtrclex 41114 rtrclexi 41118 cnvrcl0 41122 dfrtrcl5 41126 dfrcl2 41171 csbima12gALTVD 42406 unirnmap 42637 ssmapsn 42645 sge0val 43794 vonvolmbl 44089 |
Copyright terms: Public domain | W3C validator |