![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rneq | Structured version Visualization version GIF version |
Description: Equality theorem for range. (Contributed by NM, 29-Dec-1996.) |
Ref | Expression |
---|---|
rneq | ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnveq 5867 | . . 3 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) | |
2 | 1 | dmeqd 5899 | . 2 ⊢ (𝐴 = 𝐵 → dom ◡𝐴 = dom ◡𝐵) |
3 | df-rn 5680 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
4 | df-rn 5680 | . 2 ⊢ ran 𝐵 = dom ◡𝐵 | |
5 | 2, 3, 4 | 3eqtr4g 2791 | 1 ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ◡ccnv 5668 dom cdm 5669 ran crn 5670 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-cnv 5677 df-dm 5679 df-rn 5680 |
This theorem is referenced by: rneqi 5930 rneqd 5931 feq1 6692 foeq1 6795 fnrnfv 6945 fconst5 7203 frxp 8112 tz7.44-2 8408 tz7.44-3 8409 ixpsnf1o 8934 ordtypecbv 9514 ordtypelem3 9517 dfac8alem 10026 dfac8a 10027 dfac5lem3 10122 dfac9 10133 dfac12lem1 10140 dfac12r 10143 ackbij2 10240 isfin3ds 10326 fin23lem17 10335 fin23lem29 10338 fin23lem30 10339 fin23lem32 10341 fin23lem34 10343 fin23lem35 10344 fin23lem39 10347 fin23lem41 10349 isf33lem 10363 isf34lem6 10377 dcomex 10444 axdc2lem 10445 zorn2lem1 10493 zorn2g 10500 ttukey2g 10513 gruurn 10795 rpnnen1lem6 12970 relexp0g 14975 relexpsucnnr 14978 dfrtrcl2 15015 mpfrcl 21990 selvval 22020 ply1frcl 22192 pnrmopn 23202 isi1f 25558 itg1val 25567 madeval 27734 axlowdimlem13 28720 axlowdim1 28725 ausgrusgri 28936 0uhgrsubgr 29044 cusgrsize 29220 ex-rn 30202 gidval 30274 grpoinvfval 30284 grpodivfval 30296 isablo 30308 vciOLD 30323 isvclem 30339 isnvlem 30372 isphg 30579 pj11i 31473 hmopidmch 31915 hmopidmpj 31916 pjss1coi 31925 padct 32451 tocyc01 32783 tocyccntz 32809 locfinreflem 33350 locfinref 33351 issibf 33862 sitgfval 33870 mrsubvrs 35041 rdgprc0 35298 rdgprc 35299 dfrdg2 35300 brrangeg 35441 poimirlem24 37025 volsupnfl 37046 elghomlem1OLD 37266 isdivrngo 37331 iscom2 37376 elrefrels2 37901 elrefrels3 37902 refreleq 37904 elcnvrefrels2 37917 elcnvrefrels3 37918 dnnumch1 42369 aomclem3 42381 aomclem8 42386 rclexi 42947 rtrclex 42949 rtrclexi 42953 cnvrcl0 42957 dfrtrcl5 42961 dfrcl2 43006 csbima12gALTVD 44239 unirnmap 44484 ssmapsn 44492 sge0val 45659 vonvolmbl 45954 |
Copyright terms: Public domain | W3C validator |