| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rneq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for range. (Contributed by NM, 29-Dec-1996.) |
| Ref | Expression |
|---|---|
| rneq | ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnveq 5858 | . . 3 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) | |
| 2 | 1 | dmeqd 5890 | . 2 ⊢ (𝐴 = 𝐵 → dom ◡𝐴 = dom ◡𝐵) |
| 3 | df-rn 5670 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 4 | df-rn 5670 | . 2 ⊢ ran 𝐵 = dom ◡𝐵 | |
| 5 | 2, 3, 4 | 3eqtr4g 2796 | 1 ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ◡ccnv 5658 dom cdm 5659 ran crn 5660 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-cnv 5667 df-dm 5669 df-rn 5670 |
| This theorem is referenced by: rneqi 5922 rneqd 5923 feq1 6691 foeq1 6791 fnrnfv 6943 fconst5 7203 frxp 8130 tz7.44-2 8426 tz7.44-3 8427 ixpsnf1o 8957 ordtypecbv 9536 ordtypelem3 9539 dfac8alem 10048 dfac8a 10049 dfac5lem3 10144 dfac9 10156 dfac12lem1 10163 dfac12r 10166 ackbij2 10261 isfin3ds 10348 fin23lem17 10357 fin23lem29 10360 fin23lem30 10361 fin23lem32 10363 fin23lem34 10365 fin23lem35 10366 fin23lem39 10369 fin23lem41 10371 isf33lem 10385 isf34lem6 10399 dcomex 10466 axdc2lem 10467 zorn2lem1 10515 zorn2g 10522 ttukey2g 10535 gruurn 10817 rpnnen1lem6 13003 relexp0g 15046 relexpsucnnr 15049 dfrtrcl2 15086 mpfrcl 22048 selvval 22078 ply1frcl 22261 pnrmopn 23286 isi1f 25632 itg1val 25641 madeval 27817 axlowdimlem13 28938 axlowdim1 28943 ausgrusgri 29152 0uhgrsubgr 29263 cusgrsize 29439 ex-rn 30426 gidval 30498 grpoinvfval 30508 grpodivfval 30520 isablo 30532 vciOLD 30547 isvclem 30563 isnvlem 30596 isphg 30803 pj11i 31697 hmopidmch 32139 hmopidmpj 32140 pjss1coi 32149 padct 32702 tocyc01 33134 tocyccntz 33160 unitprodclb 33409 locfinreflem 33876 locfinref 33877 issibf 34370 sitgfval 34378 mrsubvrs 35549 rdgprc0 35816 rdgprc 35817 dfrdg2 35818 brrangeg 35959 poimirlem24 37673 volsupnfl 37694 elghomlem1OLD 37914 isdivrngo 37979 iscom2 38024 elrefrels2 38541 elrefrels3 38542 refreleq 38544 elcnvrefrels2 38557 elcnvrefrels3 38558 dnnumch1 43035 aomclem3 43047 aomclem8 43052 rclexi 43606 rtrclex 43608 rtrclexi 43612 cnvrcl0 43616 dfrtrcl5 43620 dfrcl2 43665 csbima12gALTVD 44888 modelaxreplem1 44970 modelaxreplem2 44971 modelaxrep 44973 unirnmap 45199 ssmapsn 45207 sge0val 46362 vonvolmbl 46657 |
| Copyright terms: Public domain | W3C validator |