| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rneq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for range. (Contributed by NM, 29-Dec-1996.) |
| Ref | Expression |
|---|---|
| rneq | ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnveq 5837 | . . 3 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) | |
| 2 | 1 | dmeqd 5869 | . 2 ⊢ (𝐴 = 𝐵 → dom ◡𝐴 = dom ◡𝐵) |
| 3 | df-rn 5649 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 4 | df-rn 5649 | . 2 ⊢ ran 𝐵 = dom ◡𝐵 | |
| 5 | 2, 3, 4 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ◡ccnv 5637 dom cdm 5638 ran crn 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-cnv 5646 df-dm 5648 df-rn 5649 |
| This theorem is referenced by: rneqi 5901 rneqd 5902 feq1 6666 foeq1 6768 fnrnfv 6920 fconst5 7180 frxp 8105 tz7.44-2 8375 tz7.44-3 8376 ixpsnf1o 8911 ordtypecbv 9470 ordtypelem3 9473 dfac8alem 9982 dfac8a 9983 dfac5lem3 10078 dfac9 10090 dfac12lem1 10097 dfac12r 10100 ackbij2 10195 isfin3ds 10282 fin23lem17 10291 fin23lem29 10294 fin23lem30 10295 fin23lem32 10297 fin23lem34 10299 fin23lem35 10300 fin23lem39 10303 fin23lem41 10305 isf33lem 10319 isf34lem6 10333 dcomex 10400 axdc2lem 10401 zorn2lem1 10449 zorn2g 10456 ttukey2g 10469 gruurn 10751 rpnnen1lem6 12941 relexp0g 14988 relexpsucnnr 14991 dfrtrcl2 15028 mpfrcl 21992 selvval 22022 ply1frcl 22205 pnrmopn 23230 isi1f 25575 itg1val 25584 madeval 27760 axlowdimlem13 28881 axlowdim1 28886 ausgrusgri 29095 0uhgrsubgr 29206 cusgrsize 29382 ex-rn 30369 gidval 30441 grpoinvfval 30451 grpodivfval 30463 isablo 30475 vciOLD 30490 isvclem 30506 isnvlem 30539 isphg 30746 pj11i 31640 hmopidmch 32082 hmopidmpj 32083 pjss1coi 32092 padct 32643 tocyc01 33075 tocyccntz 33101 unitprodclb 33360 locfinreflem 33830 locfinref 33831 issibf 34324 sitgfval 34332 onvf1odlem3 35092 mrsubvrs 35509 rdgprc0 35781 rdgprc 35782 dfrdg2 35783 brrangeg 35924 poimirlem24 37638 volsupnfl 37659 elghomlem1OLD 37879 isdivrngo 37944 iscom2 37989 elrefrels2 38509 elrefrels3 38510 refreleq 38512 elcnvrefrels2 38525 elcnvrefrels3 38526 dnnumch1 43033 aomclem3 43045 aomclem8 43050 rclexi 43604 rtrclex 43606 rtrclexi 43610 cnvrcl0 43614 dfrtrcl5 43618 dfrcl2 43663 csbima12gALTVD 44886 modelaxreplem1 44968 modelaxreplem2 44969 modelaxrep 44971 unirnmap 45202 ssmapsn 45210 sge0val 46364 vonvolmbl 46659 |
| Copyright terms: Public domain | W3C validator |