| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rneq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for range. (Contributed by NM, 29-Dec-1996.) |
| Ref | Expression |
|---|---|
| rneq | ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnveq 5884 | . . 3 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) | |
| 2 | 1 | dmeqd 5916 | . 2 ⊢ (𝐴 = 𝐵 → dom ◡𝐴 = dom ◡𝐵) |
| 3 | df-rn 5696 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 4 | df-rn 5696 | . 2 ⊢ ran 𝐵 = dom ◡𝐵 | |
| 5 | 2, 3, 4 | 3eqtr4g 2802 | 1 ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ◡ccnv 5684 dom cdm 5685 ran crn 5686 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-cnv 5693 df-dm 5695 df-rn 5696 |
| This theorem is referenced by: rneqi 5948 rneqd 5949 feq1 6716 foeq1 6816 fnrnfv 6968 fconst5 7226 frxp 8151 tz7.44-2 8447 tz7.44-3 8448 ixpsnf1o 8978 ordtypecbv 9557 ordtypelem3 9560 dfac8alem 10069 dfac8a 10070 dfac5lem3 10165 dfac9 10177 dfac12lem1 10184 dfac12r 10187 ackbij2 10282 isfin3ds 10369 fin23lem17 10378 fin23lem29 10381 fin23lem30 10382 fin23lem32 10384 fin23lem34 10386 fin23lem35 10387 fin23lem39 10390 fin23lem41 10392 isf33lem 10406 isf34lem6 10420 dcomex 10487 axdc2lem 10488 zorn2lem1 10536 zorn2g 10543 ttukey2g 10556 gruurn 10838 rpnnen1lem6 13024 relexp0g 15061 relexpsucnnr 15064 dfrtrcl2 15101 mpfrcl 22109 selvval 22139 ply1frcl 22322 pnrmopn 23351 isi1f 25709 itg1val 25718 madeval 27891 axlowdimlem13 28969 axlowdim1 28974 ausgrusgri 29185 0uhgrsubgr 29296 cusgrsize 29472 ex-rn 30459 gidval 30531 grpoinvfval 30541 grpodivfval 30553 isablo 30565 vciOLD 30580 isvclem 30596 isnvlem 30629 isphg 30836 pj11i 31730 hmopidmch 32172 hmopidmpj 32173 pjss1coi 32182 padct 32731 tocyc01 33138 tocyccntz 33164 unitprodclb 33417 locfinreflem 33839 locfinref 33840 issibf 34335 sitgfval 34343 mrsubvrs 35527 rdgprc0 35794 rdgprc 35795 dfrdg2 35796 brrangeg 35937 poimirlem24 37651 volsupnfl 37672 elghomlem1OLD 37892 isdivrngo 37957 iscom2 38002 elrefrels2 38519 elrefrels3 38520 refreleq 38522 elcnvrefrels2 38535 elcnvrefrels3 38536 dnnumch1 43056 aomclem3 43068 aomclem8 43073 rclexi 43628 rtrclex 43630 rtrclexi 43634 cnvrcl0 43638 dfrtrcl5 43642 dfrcl2 43687 csbima12gALTVD 44917 modelaxreplem1 44995 modelaxreplem2 44996 modelaxrep 44998 unirnmap 45213 ssmapsn 45221 sge0val 46381 vonvolmbl 46676 |
| Copyright terms: Public domain | W3C validator |