| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for Cartesian product. (Contributed by NM, 8-Dec-2013.) |
| Ref | Expression |
|---|---|
| xpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| xpeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| xpeq12d | ⊢ (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | xpeq12d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 3 | xpeq12 5666 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 × cxp 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-opab 5173 df-xp 5647 |
| This theorem is referenced by: sqxpeqd 5673 opeliunxp 5708 opeliun2xp 5709 mpomptsx 8046 dmmpossx 8048 fmpox 8049 ovmptss 8075 fparlem3 8096 fparlem4 8097 on2recsov 8635 naddcllem 8643 erssxp 8697 marypha2lem2 9394 ackbij1lem8 10186 r1om 10203 fictb 10204 axcc2lem 10396 axcc2 10397 axdc4lem 10415 fsum2dlem 15743 fsumcom2 15747 ackbijnn 15801 fprod2dlem 15953 fprodcom2 15957 homaval 18000 xpcval 18145 xpchom 18148 xpchom2 18154 1stfval 18159 2ndfval 18162 xpcpropd 18176 evlfval 18185 efmnd 18804 isga 19230 gsumcom2 19912 gsumxp 19913 ablfaclem3 20026 psrval 21831 mamufval 22286 mamudm 22289 mvmulfval 22436 mavmuldm 22444 mavmul0g 22447 txbas 23461 ptbasfi 23475 txindis 23528 tmsxps 24431 metustexhalf 24451 noxpordpred 27867 aciunf1lem 32593 gsumpart 33004 gsumwrd2dccatlem 33013 gsumwrd2dccat 33014 erlval 33216 rlocval 33217 fedgmullem1 33632 fldextrspunlsplem 33675 esum2dlem 34089 lpadval 34674 cvmliftlem15 35292 mexval 35496 mpstval 35529 mclsval 35557 mclsax 35563 mclsppslem 35577 filnetlem4 36376 poimirlem26 37647 poimirlem28 37649 heiborlem3 37814 cnvref4 38339 elrefrels2 38516 refreleq 38519 elcnvrefrels2 38532 dvhfset 41081 dvhset 41082 dibffval 41141 dibfval 41142 hdmap1fval 41797 dmmpossx2 48329 dmrnxp 48829 imasubclem3 49099 imaf1hom 49101 swapf2f1oaALT 49271 fucofvalg 49311 fucofvalne 49318 fucof21 49340 functhinclem1 49437 functhinclem3 49439 functhinclem4 49440 |
| Copyright terms: Public domain | W3C validator |