Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpeq12d | Structured version Visualization version GIF version |
Description: Equality deduction for Cartesian product. (Contributed by NM, 8-Dec-2013.) |
Ref | Expression |
---|---|
xpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
xpeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
xpeq12d | ⊢ (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | xpeq12d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
3 | xpeq12 5625 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) | |
4 | 1, 2, 3 | syl2anc 585 | 1 ⊢ (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 × cxp 5598 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-opab 5144 df-xp 5606 |
This theorem is referenced by: sqxpeqd 5632 opeliunxp 5665 mpomptsx 7936 dmmpossx 7938 fmpox 7939 ovmptss 7965 fparlem3 7986 fparlem4 7987 erssxp 8552 marypha2lem2 9243 ackbij1lem8 10033 r1om 10050 fictb 10051 axcc2lem 10242 axcc2 10243 axdc4lem 10261 fsum2dlem 15531 fsumcom2 15535 ackbijnn 15589 fprod2dlem 15739 fprodcom2 15743 homaval 17795 xpcval 17943 xpchom 17946 xpchom2 17952 1stfval 17957 2ndfval 17960 xpcpropd 17975 evlfval 17984 efmnd 18558 isga 18946 gsumcom2 19625 gsumxp 19626 ablfaclem3 19739 psrval 21167 mamufval 21583 mamudm 21586 mvmulfval 21740 mavmuldm 21748 mavmul0g 21751 txbas 22767 ptbasfi 22781 txindis 22834 tmsxps 23741 metustexhalf 23761 aciunf1lem 31048 gsumpart 31364 fedgmullem1 31759 esum2dlem 32109 lpadval 32705 cvmliftlem15 33309 mexval 33513 mpstval 33546 mclsval 33574 mclsax 33580 mclsppslem 33594 on2recsov 33876 naddcllem 33880 noxpordpred 34159 filnetlem4 34619 poimirlem26 35851 poimirlem28 35853 heiborlem3 36019 cnvref4 36563 elrefrels2 36732 refreleq 36735 elcnvrefrels2 36748 dvhfset 39294 dvhset 39295 dibffval 39354 dibfval 39355 hdmap1fval 40010 opeliun2xp 45912 dmmpossx2 45916 functhinclem1 46566 functhinclem3 46568 functhinclem4 46569 |
Copyright terms: Public domain | W3C validator |