| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for Cartesian product. (Contributed by NM, 8-Dec-2013.) |
| Ref | Expression |
|---|---|
| xpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| xpeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| xpeq12d | ⊢ (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | xpeq12d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 3 | xpeq12 5663 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 × cxp 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-opab 5170 df-xp 5644 |
| This theorem is referenced by: sqxpeqd 5670 opeliunxp 5705 opeliun2xp 5706 mpomptsx 8043 dmmpossx 8045 fmpox 8046 ovmptss 8072 fparlem3 8093 fparlem4 8094 on2recsov 8632 naddcllem 8640 erssxp 8694 marypha2lem2 9387 ackbij1lem8 10179 r1om 10196 fictb 10197 axcc2lem 10389 axcc2 10390 axdc4lem 10408 fsum2dlem 15736 fsumcom2 15740 ackbijnn 15794 fprod2dlem 15946 fprodcom2 15950 homaval 17993 xpcval 18138 xpchom 18141 xpchom2 18147 1stfval 18152 2ndfval 18155 xpcpropd 18169 evlfval 18178 efmnd 18797 isga 19223 gsumcom2 19905 gsumxp 19906 ablfaclem3 20019 psrval 21824 mamufval 22279 mamudm 22282 mvmulfval 22429 mavmuldm 22437 mavmul0g 22440 txbas 23454 ptbasfi 23468 txindis 23521 tmsxps 24424 metustexhalf 24444 noxpordpred 27860 aciunf1lem 32586 gsumpart 32997 gsumwrd2dccatlem 33006 gsumwrd2dccat 33007 erlval 33209 rlocval 33210 fedgmullem1 33625 fldextrspunlsplem 33668 esum2dlem 34082 lpadval 34667 cvmliftlem15 35285 mexval 35489 mpstval 35522 mclsval 35550 mclsax 35556 mclsppslem 35570 filnetlem4 36369 poimirlem26 37640 poimirlem28 37642 heiborlem3 37807 cnvref4 38332 elrefrels2 38509 refreleq 38512 elcnvrefrels2 38525 dvhfset 41074 dvhset 41075 dibffval 41134 dibfval 41135 hdmap1fval 41790 dmmpossx2 48325 dmrnxp 48825 imasubclem3 49095 imaf1hom 49097 swapf2f1oaALT 49267 fucofvalg 49307 fucofvalne 49314 fucof21 49336 functhinclem1 49433 functhinclem3 49435 functhinclem4 49436 |
| Copyright terms: Public domain | W3C validator |