| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for Cartesian product. (Contributed by NM, 8-Dec-2013.) |
| Ref | Expression |
|---|---|
| xpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| xpeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| xpeq12d | ⊢ (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | xpeq12d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 3 | xpeq12 5679 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 × cxp 5652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-opab 5182 df-xp 5660 |
| This theorem is referenced by: sqxpeqd 5686 opeliunxp 5721 opeliun2xp 5722 mpomptsx 8063 dmmpossx 8065 fmpox 8066 ovmptss 8092 fparlem3 8113 fparlem4 8114 on2recsov 8680 naddcllem 8688 erssxp 8742 marypha2lem2 9448 ackbij1lem8 10240 r1om 10257 fictb 10258 axcc2lem 10450 axcc2 10451 axdc4lem 10469 fsum2dlem 15786 fsumcom2 15790 ackbijnn 15844 fprod2dlem 15996 fprodcom2 16000 homaval 18044 xpcval 18189 xpchom 18192 xpchom2 18198 1stfval 18203 2ndfval 18206 xpcpropd 18220 evlfval 18229 efmnd 18848 isga 19274 gsumcom2 19956 gsumxp 19957 ablfaclem3 20070 psrval 21875 mamufval 22330 mamudm 22333 mvmulfval 22480 mavmuldm 22488 mavmul0g 22491 txbas 23505 ptbasfi 23519 txindis 23572 tmsxps 24475 metustexhalf 24495 noxpordpred 27912 aciunf1lem 32640 gsumpart 33051 gsumwrd2dccatlem 33060 gsumwrd2dccat 33061 erlval 33253 rlocval 33254 fedgmullem1 33669 fldextrspunlsplem 33714 esum2dlem 34123 lpadval 34708 cvmliftlem15 35320 mexval 35524 mpstval 35557 mclsval 35585 mclsax 35591 mclsppslem 35605 filnetlem4 36399 poimirlem26 37670 poimirlem28 37672 heiborlem3 37837 cnvref4 38368 elrefrels2 38536 refreleq 38539 elcnvrefrels2 38552 dvhfset 41099 dvhset 41100 dibffval 41159 dibfval 41160 hdmap1fval 41815 dmmpossx2 48312 dmrnxp 48815 imasubclem3 49065 imaf1hom 49067 swapf2f1oaALT 49195 fucofvalg 49229 fucofvalne 49236 fucof21 49258 functhinclem1 49330 functhinclem3 49332 functhinclem4 49333 |
| Copyright terms: Public domain | W3C validator |