Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpeq12d | Structured version Visualization version GIF version |
Description: Equality deduction for Cartesian product. (Contributed by NM, 8-Dec-2013.) |
Ref | Expression |
---|---|
xpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
xpeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
xpeq12d | ⊢ (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | xpeq12d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
3 | xpeq12 5615 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 × cxp 5588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-opab 5142 df-xp 5596 |
This theorem is referenced by: sqxpeqd 5622 opeliunxp 5655 mpomptsx 7897 dmmpossx 7899 fmpox 7900 ovmptss 7924 fparlem3 7945 fparlem4 7946 erssxp 8504 marypha2lem2 9173 ackbij1lem8 9984 r1om 10001 fictb 10002 axcc2lem 10193 axcc2 10194 axdc4lem 10212 fsum2dlem 15480 fsumcom2 15484 ackbijnn 15538 fprod2dlem 15688 fprodcom2 15692 homaval 17744 xpcval 17892 xpchom 17895 xpchom2 17901 1stfval 17906 2ndfval 17909 xpcpropd 17924 evlfval 17933 efmnd 18507 isga 18895 gsumcom2 19574 gsumxp 19575 ablfaclem3 19688 psrval 21116 mamufval 21532 mamudm 21535 mvmulfval 21689 mavmuldm 21697 mavmul0g 21700 txbas 22716 ptbasfi 22730 txindis 22783 tmsxps 23690 metustexhalf 23710 aciunf1lem 30995 gsumpart 31311 fedgmullem1 31706 esum2dlem 32056 lpadval 32652 cvmliftlem15 33256 mexval 33460 mpstval 33493 mclsval 33521 mclsax 33527 mclsppslem 33541 on2recsov 33823 naddcllem 33827 noxpordpred 34106 filnetlem4 34566 poimirlem26 35799 poimirlem28 35801 heiborlem3 35967 elrefrels2 36631 refreleq 36634 elcnvrefrels2 36644 dvhfset 39090 dvhset 39091 dibffval 39150 dibfval 39151 hdmap1fval 39806 opeliun2xp 45637 dmmpossx2 45641 functhinclem1 46291 functhinclem3 46293 functhinclem4 46294 |
Copyright terms: Public domain | W3C validator |