![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpeq12d | Structured version Visualization version GIF version |
Description: Equality deduction for Cartesian product. (Contributed by NM, 8-Dec-2013.) |
Ref | Expression |
---|---|
xpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
xpeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
xpeq12d | ⊢ (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | xpeq12d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
3 | xpeq12 5725 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 × cxp 5698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-opab 5229 df-xp 5706 |
This theorem is referenced by: sqxpeqd 5732 opeliunxp 5767 mpomptsx 8105 dmmpossx 8107 fmpox 8108 ovmptss 8134 fparlem3 8155 fparlem4 8156 on2recsov 8724 naddcllem 8732 erssxp 8786 marypha2lem2 9505 ackbij1lem8 10295 r1om 10312 fictb 10313 axcc2lem 10505 axcc2 10506 axdc4lem 10524 fsum2dlem 15818 fsumcom2 15822 ackbijnn 15876 fprod2dlem 16028 fprodcom2 16032 homaval 18098 xpcval 18246 xpchom 18249 xpchom2 18255 1stfval 18260 2ndfval 18263 xpcpropd 18278 evlfval 18287 efmnd 18905 isga 19331 gsumcom2 20017 gsumxp 20018 ablfaclem3 20131 psrval 21958 mamufval 22417 mamudm 22420 mvmulfval 22569 mavmuldm 22577 mavmul0g 22580 txbas 23596 ptbasfi 23610 txindis 23663 tmsxps 24570 metustexhalf 24590 noxpordpred 28004 aciunf1lem 32680 gsumpart 33038 erlval 33230 rlocval 33231 fedgmullem1 33642 esum2dlem 34056 lpadval 34653 cvmliftlem15 35266 mexval 35470 mpstval 35503 mclsval 35531 mclsax 35537 mclsppslem 35551 filnetlem4 36347 poimirlem26 37606 poimirlem28 37608 heiborlem3 37773 cnvref4 38306 elrefrels2 38474 refreleq 38477 elcnvrefrels2 38490 dvhfset 41037 dvhset 41038 dibffval 41097 dibfval 41098 hdmap1fval 41753 opeliun2xp 48057 dmmpossx2 48061 functhinclem1 48708 functhinclem3 48710 functhinclem4 48711 |
Copyright terms: Public domain | W3C validator |