| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for Cartesian product. (Contributed by NM, 8-Dec-2013.) |
| Ref | Expression |
|---|---|
| xpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| xpeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| xpeq12d | ⊢ (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | xpeq12d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 3 | xpeq12 5641 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 × cxp 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-opab 5154 df-xp 5622 |
| This theorem is referenced by: sqxpeqd 5648 opeliunxp 5683 opeliun2xp 5684 mpomptsx 7996 dmmpossx 7998 fmpox 7999 ovmptss 8023 fparlem3 8044 fparlem4 8045 on2recsov 8583 naddcllem 8591 erssxp 8645 marypha2lem2 9320 ackbij1lem8 10114 r1om 10131 fictb 10132 axcc2lem 10324 axcc2 10325 axdc4lem 10343 fsum2dlem 15674 fsumcom2 15678 ackbijnn 15732 fprod2dlem 15884 fprodcom2 15888 homaval 17935 xpcval 18080 xpchom 18083 xpchom2 18089 1stfval 18094 2ndfval 18097 xpcpropd 18111 evlfval 18120 efmnd 18775 isga 19201 gsumcom2 19885 gsumxp 19886 ablfaclem3 19999 psrval 21850 mamufval 22305 mamudm 22308 mvmulfval 22455 mavmuldm 22463 mavmul0g 22466 txbas 23480 ptbasfi 23494 txindis 23547 tmsxps 24449 metustexhalf 24469 noxpordpred 27894 aciunf1lem 32639 gsumpart 33032 gsumwrd2dccatlem 33041 gsumwrd2dccat 33042 erlval 33220 rlocval 33221 fedgmullem1 33637 fldextrspunlsplem 33681 esum2dlem 34100 lpadval 34684 cvmliftlem15 35330 mexval 35534 mpstval 35567 mclsval 35595 mclsax 35601 mclsppslem 35615 filnetlem4 36414 poimirlem26 37685 poimirlem28 37687 heiborlem3 37852 cnvref4 38377 elrefrels2 38554 refreleq 38557 elcnvrefrels2 38570 dvhfset 41118 dvhset 41119 dibffval 41178 dibfval 41179 hdmap1fval 41834 dmmpossx2 48367 dmrnxp 48867 imasubclem3 49137 imaf1hom 49139 swapf2f1oaALT 49309 fucofvalg 49349 fucofvalne 49356 fucof21 49378 functhinclem1 49475 functhinclem3 49477 functhinclem4 49478 |
| Copyright terms: Public domain | W3C validator |