![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpeq12d | Structured version Visualization version GIF version |
Description: Equality deduction for Cartesian product. (Contributed by NM, 8-Dec-2013.) |
Ref | Expression |
---|---|
xpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
xpeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
xpeq12d | ⊢ (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | xpeq12d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
3 | xpeq12 5713 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 × cxp 5686 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-opab 5210 df-xp 5694 |
This theorem is referenced by: sqxpeqd 5720 opeliunxp 5755 mpomptsx 8087 dmmpossx 8089 fmpox 8090 ovmptss 8116 fparlem3 8137 fparlem4 8138 on2recsov 8704 naddcllem 8712 erssxp 8766 marypha2lem2 9473 ackbij1lem8 10263 r1om 10280 fictb 10281 axcc2lem 10473 axcc2 10474 axdc4lem 10492 fsum2dlem 15802 fsumcom2 15806 ackbijnn 15860 fprod2dlem 16012 fprodcom2 16016 homaval 18084 xpcval 18232 xpchom 18235 xpchom2 18241 1stfval 18246 2ndfval 18249 xpcpropd 18264 evlfval 18273 efmnd 18895 isga 19321 gsumcom2 20007 gsumxp 20008 ablfaclem3 20121 psrval 21952 mamufval 22411 mamudm 22414 mvmulfval 22563 mavmuldm 22571 mavmul0g 22574 txbas 23590 ptbasfi 23604 txindis 23657 tmsxps 24564 metustexhalf 24584 noxpordpred 28000 aciunf1lem 32678 gsumpart 33042 gsumwrd2dccatlem 33051 gsumwrd2dccat 33052 erlval 33244 rlocval 33245 fedgmullem1 33656 esum2dlem 34072 lpadval 34669 cvmliftlem15 35282 mexval 35486 mpstval 35519 mclsval 35547 mclsax 35553 mclsppslem 35567 filnetlem4 36363 poimirlem26 37632 poimirlem28 37634 heiborlem3 37799 cnvref4 38331 elrefrels2 38499 refreleq 38502 elcnvrefrels2 38515 dvhfset 41062 dvhset 41063 dibffval 41122 dibfval 41123 hdmap1fval 41778 opeliun2xp 48177 dmmpossx2 48181 functhinclem1 48840 functhinclem3 48842 functhinclem4 48843 |
Copyright terms: Public domain | W3C validator |