Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpeq12d | Structured version Visualization version GIF version |
Description: Equality deduction for Cartesian product. (Contributed by NM, 8-Dec-2013.) |
Ref | Expression |
---|---|
xpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
xpeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
xpeq12d | ⊢ (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | xpeq12d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
3 | xpeq12 5613 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 × cxp 5586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-opab 5141 df-xp 5594 |
This theorem is referenced by: sqxpeqd 5620 opeliunxp 5653 mpomptsx 7890 dmmpossx 7892 fmpox 7893 ovmptss 7917 fparlem3 7938 fparlem4 7939 erssxp 8495 marypha2lem2 9156 ackbij1lem8 9967 r1om 9984 fictb 9985 axcc2lem 10176 axcc2 10177 axdc4lem 10195 fsum2dlem 15463 fsumcom2 15467 ackbijnn 15521 fprod2dlem 15671 fprodcom2 15675 homaval 17727 xpcval 17875 xpchom 17878 xpchom2 17884 1stfval 17889 2ndfval 17892 xpcpropd 17907 evlfval 17916 efmnd 18490 isga 18878 gsumcom2 19557 gsumxp 19558 ablfaclem3 19671 psrval 21099 mamufval 21515 mamudm 21518 mvmulfval 21672 mavmuldm 21680 mavmul0g 21683 txbas 22699 ptbasfi 22713 txindis 22766 tmsxps 23673 metustexhalf 23693 aciunf1lem 30978 gsumpart 31294 fedgmullem1 31689 esum2dlem 32039 lpadval 32635 cvmliftlem15 33239 mexval 33443 mpstval 33476 mclsval 33504 mclsax 33510 mclsppslem 33524 on2recsov 33806 naddcllem 33810 noxpordpred 34089 filnetlem4 34549 poimirlem26 35782 poimirlem28 35784 heiborlem3 35950 elrefrels2 36614 refreleq 36617 elcnvrefrels2 36627 dvhfset 39073 dvhset 39074 dibffval 39133 dibfval 39134 hdmap1fval 39789 opeliun2xp 45620 dmmpossx2 45624 functhinclem1 46274 functhinclem3 46276 functhinclem4 46277 |
Copyright terms: Public domain | W3C validator |