| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for Cartesian product. (Contributed by NM, 8-Dec-2013.) |
| Ref | Expression |
|---|---|
| xpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| xpeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| xpeq12d | ⊢ (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | xpeq12d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 3 | xpeq12 5644 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 × cxp 5617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-opab 5156 df-xp 5625 |
| This theorem is referenced by: sqxpeqd 5651 opeliunxp 5686 opeliun2xp 5687 mpomptsx 8002 dmmpossx 8004 fmpox 8005 ovmptss 8029 fparlem3 8050 fparlem4 8051 on2recsov 8589 naddcllem 8597 erssxp 8651 marypha2lem2 9327 ackbij1lem8 10124 r1om 10141 fictb 10142 axcc2lem 10334 axcc2 10335 axdc4lem 10353 fsum2dlem 15679 fsumcom2 15683 ackbijnn 15737 fprod2dlem 15889 fprodcom2 15893 homaval 17940 xpcval 18085 xpchom 18088 xpchom2 18094 1stfval 18099 2ndfval 18102 xpcpropd 18116 evlfval 18125 efmnd 18780 isga 19205 gsumcom2 19889 gsumxp 19890 ablfaclem3 20003 psrval 21854 mamufval 22308 mamudm 22311 mvmulfval 22458 mavmuldm 22466 mavmul0g 22469 txbas 23483 ptbasfi 23497 txindis 23550 tmsxps 24452 metustexhalf 24472 noxpordpred 27897 aciunf1lem 32646 gsumpart 33044 gsumwrd2dccatlem 33053 gsumwrd2dccat 33054 erlval 33232 rlocval 33233 fedgmullem1 33663 fldextrspunlsplem 33707 esum2dlem 34126 lpadval 34710 cvmliftlem15 35363 mexval 35567 mpstval 35600 mclsval 35628 mclsax 35634 mclsppslem 35648 filnetlem4 36446 poimirlem26 37706 poimirlem28 37708 heiborlem3 37873 cnvref4 38402 elrefrels2 38630 refreleq 38633 elcnvrefrels2 38646 dvhfset 41199 dvhset 41200 dibffval 41259 dibfval 41260 hdmap1fval 41915 dmmpossx2 48461 dmrnxp 48961 imasubclem3 49231 imaf1hom 49233 swapf2f1oaALT 49403 fucofvalg 49443 fucofvalne 49450 fucof21 49472 functhinclem1 49569 functhinclem3 49571 functhinclem4 49572 |
| Copyright terms: Public domain | W3C validator |