| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for Cartesian product. (Contributed by NM, 8-Dec-2013.) |
| Ref | Expression |
|---|---|
| xpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| xpeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| xpeq12d | ⊢ (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | xpeq12d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 3 | xpeq12 5648 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 × cxp 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-opab 5158 df-xp 5629 |
| This theorem is referenced by: sqxpeqd 5655 opeliunxp 5690 opeliun2xp 5691 mpomptsx 8006 dmmpossx 8008 fmpox 8009 ovmptss 8033 fparlem3 8054 fparlem4 8055 on2recsov 8593 naddcllem 8601 erssxp 8655 marypha2lem2 9345 ackbij1lem8 10139 r1om 10156 fictb 10157 axcc2lem 10349 axcc2 10350 axdc4lem 10368 fsum2dlem 15695 fsumcom2 15699 ackbijnn 15753 fprod2dlem 15905 fprodcom2 15909 homaval 17956 xpcval 18101 xpchom 18104 xpchom2 18110 1stfval 18115 2ndfval 18118 xpcpropd 18132 evlfval 18141 efmnd 18762 isga 19188 gsumcom2 19872 gsumxp 19873 ablfaclem3 19986 psrval 21840 mamufval 22295 mamudm 22298 mvmulfval 22445 mavmuldm 22453 mavmul0g 22456 txbas 23470 ptbasfi 23484 txindis 23537 tmsxps 24440 metustexhalf 24460 noxpordpred 27883 aciunf1lem 32619 gsumpart 33023 gsumwrd2dccatlem 33032 gsumwrd2dccat 33033 erlval 33208 rlocval 33209 fedgmullem1 33601 fldextrspunlsplem 33644 esum2dlem 34058 lpadval 34643 cvmliftlem15 35270 mexval 35474 mpstval 35507 mclsval 35535 mclsax 35541 mclsppslem 35555 filnetlem4 36354 poimirlem26 37625 poimirlem28 37627 heiborlem3 37792 cnvref4 38317 elrefrels2 38494 refreleq 38497 elcnvrefrels2 38510 dvhfset 41059 dvhset 41060 dibffval 41119 dibfval 41120 hdmap1fval 41775 dmmpossx2 48322 dmrnxp 48822 imasubclem3 49092 imaf1hom 49094 swapf2f1oaALT 49264 fucofvalg 49304 fucofvalne 49311 fucof21 49333 functhinclem1 49430 functhinclem3 49432 functhinclem4 49433 |
| Copyright terms: Public domain | W3C validator |