![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relresdm1 | Structured version Visualization version GIF version |
Description: Restriction of a disjoint union to the domain of the first term. (Contributed by Thierry Arnoux, 9-Dec-2021.) |
Ref | Expression |
---|---|
relresdm1 | ⊢ ((Rel 𝐴 ∧ (dom 𝐴 ∩ dom 𝐵) = ∅) → ((𝐴 ∪ 𝐵) ↾ dom 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resundir 6004 | . 2 ⊢ ((𝐴 ∪ 𝐵) ↾ dom 𝐴) = ((𝐴 ↾ dom 𝐴) ∪ (𝐵 ↾ dom 𝐴)) | |
2 | resdm 6035 | . . . . 5 ⊢ (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴) | |
3 | 2 | adantr 479 | . . . 4 ⊢ ((Rel 𝐴 ∧ (dom 𝐴 ∩ dom 𝐵) = ∅) → (𝐴 ↾ dom 𝐴) = 𝐴) |
4 | dmres 6021 | . . . . . 6 ⊢ dom (𝐵 ↾ dom 𝐴) = (dom 𝐴 ∩ dom 𝐵) | |
5 | simpr 483 | . . . . . 6 ⊢ ((Rel 𝐴 ∧ (dom 𝐴 ∩ dom 𝐵) = ∅) → (dom 𝐴 ∩ dom 𝐵) = ∅) | |
6 | 4, 5 | eqtrid 2778 | . . . . 5 ⊢ ((Rel 𝐴 ∧ (dom 𝐴 ∩ dom 𝐵) = ∅) → dom (𝐵 ↾ dom 𝐴) = ∅) |
7 | relres 6015 | . . . . . 6 ⊢ Rel (𝐵 ↾ dom 𝐴) | |
8 | reldm0 5934 | . . . . . 6 ⊢ (Rel (𝐵 ↾ dom 𝐴) → ((𝐵 ↾ dom 𝐴) = ∅ ↔ dom (𝐵 ↾ dom 𝐴) = ∅)) | |
9 | 7, 8 | ax-mp 5 | . . . . 5 ⊢ ((𝐵 ↾ dom 𝐴) = ∅ ↔ dom (𝐵 ↾ dom 𝐴) = ∅) |
10 | 6, 9 | sylibr 233 | . . . 4 ⊢ ((Rel 𝐴 ∧ (dom 𝐴 ∩ dom 𝐵) = ∅) → (𝐵 ↾ dom 𝐴) = ∅) |
11 | 3, 10 | uneq12d 4164 | . . 3 ⊢ ((Rel 𝐴 ∧ (dom 𝐴 ∩ dom 𝐵) = ∅) → ((𝐴 ↾ dom 𝐴) ∪ (𝐵 ↾ dom 𝐴)) = (𝐴 ∪ ∅)) |
12 | un0 4395 | . . 3 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
13 | 11, 12 | eqtrdi 2782 | . 2 ⊢ ((Rel 𝐴 ∧ (dom 𝐴 ∩ dom 𝐵) = ∅) → ((𝐴 ↾ dom 𝐴) ∪ (𝐵 ↾ dom 𝐴)) = 𝐴) |
14 | 1, 13 | eqtrid 2778 | 1 ⊢ ((Rel 𝐴 ∧ (dom 𝐴 ∩ dom 𝐵) = ∅) → ((𝐴 ∪ 𝐵) ↾ dom 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∪ cun 3945 ∩ cin 3946 ∅c0 4325 dom cdm 5682 ↾ cres 5684 Rel wrel 5687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-br 5154 df-opab 5216 df-xp 5688 df-rel 5689 df-dm 5692 df-res 5694 |
This theorem is referenced by: fnunres1 6672 |
Copyright terms: Public domain | W3C validator |