MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relresdm1 Structured version   Visualization version   GIF version

Theorem relresdm1 6023
Description: Restriction of a disjoint union to the domain of the first term. (Contributed by Thierry Arnoux, 9-Dec-2021.)
Assertion
Ref Expression
relresdm1 ((Rel 𝐴 ∧ (dom 𝐴 ∩ dom 𝐵) = ∅) → ((𝐴𝐵) ↾ dom 𝐴) = 𝐴)

Proof of Theorem relresdm1
StepHypRef Expression
1 resundir 5986 . 2 ((𝐴𝐵) ↾ dom 𝐴) = ((𝐴 ↾ dom 𝐴) ∪ (𝐵 ↾ dom 𝐴))
2 resdm 6016 . . . . 5 (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴)
32adantr 480 . . . 4 ((Rel 𝐴 ∧ (dom 𝐴 ∩ dom 𝐵) = ∅) → (𝐴 ↾ dom 𝐴) = 𝐴)
4 dmres 5993 . . . . . 6 dom (𝐵 ↾ dom 𝐴) = (dom 𝐴 ∩ dom 𝐵)
5 simpr 484 . . . . . 6 ((Rel 𝐴 ∧ (dom 𝐴 ∩ dom 𝐵) = ∅) → (dom 𝐴 ∩ dom 𝐵) = ∅)
64, 5eqtrid 2776 . . . . 5 ((Rel 𝐴 ∧ (dom 𝐴 ∩ dom 𝐵) = ∅) → dom (𝐵 ↾ dom 𝐴) = ∅)
7 relres 6000 . . . . . 6 Rel (𝐵 ↾ dom 𝐴)
8 reldm0 5917 . . . . . 6 (Rel (𝐵 ↾ dom 𝐴) → ((𝐵 ↾ dom 𝐴) = ∅ ↔ dom (𝐵 ↾ dom 𝐴) = ∅))
97, 8ax-mp 5 . . . . 5 ((𝐵 ↾ dom 𝐴) = ∅ ↔ dom (𝐵 ↾ dom 𝐴) = ∅)
106, 9sylibr 233 . . . 4 ((Rel 𝐴 ∧ (dom 𝐴 ∩ dom 𝐵) = ∅) → (𝐵 ↾ dom 𝐴) = ∅)
113, 10uneq12d 4156 . . 3 ((Rel 𝐴 ∧ (dom 𝐴 ∩ dom 𝐵) = ∅) → ((𝐴 ↾ dom 𝐴) ∪ (𝐵 ↾ dom 𝐴)) = (𝐴 ∪ ∅))
12 un0 4382 . . 3 (𝐴 ∪ ∅) = 𝐴
1311, 12eqtrdi 2780 . 2 ((Rel 𝐴 ∧ (dom 𝐴 ∩ dom 𝐵) = ∅) → ((𝐴 ↾ dom 𝐴) ∪ (𝐵 ↾ dom 𝐴)) = 𝐴)
141, 13eqtrid 2776 1 ((Rel 𝐴 ∧ (dom 𝐴 ∩ dom 𝐵) = ∅) → ((𝐴𝐵) ↾ dom 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  cun 3938  cin 3939  c0 4314  dom cdm 5666  cres 5668  Rel wrel 5671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-br 5139  df-opab 5201  df-xp 5672  df-rel 5673  df-dm 5676  df-res 5678
This theorem is referenced by:  fnunres1  6651
  Copyright terms: Public domain W3C validator