| Metamath
Proof Explorer Theorem List (p. 497 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30898) |
(30899-32421) |
(32422-49905) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | dfinito4 49601* | An alternate definition of df-inito 17891 using universal property. See also the "Equivalent formulations" section of https://en.wikipedia.org/wiki/Initial_and_terminal_objects 17891. (Contributed by Zhi Wang, 23-Oct-2025.) |
| ⊢ InitO = (𝑐 ∈ Cat ↦ ⦋(SetCat‘1o) / 𝑑⦌⦋((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓⦌dom (𝑓(𝑐 UP 𝑑)∅)) | ||
| Theorem | dftermo4 49602* | An alternate definition of df-termo 17892 using universal property. See also the "Equivalent formulations" section of https://en.wikipedia.org/wiki/Initial_and_terminal_objects 17892. (Contributed by Zhi Wang, 23-Oct-2025.) |
| ⊢ TermO = (𝑐 ∈ Cat ↦ ⦋(oppCat‘𝑐) / 𝑜⦌⦋(SetCat‘1o) / 𝑑⦌⦋((1st ‘(𝑑Δfunc𝑜))‘∅) / 𝑓⦌dom (𝑓(𝑜 UP 𝑑)∅)) | ||
| Theorem | termcpropd 49603 | Two structures with the same base, hom-sets and composition operation are either both terminal categories or neither. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐶 ∈ TermCat ↔ 𝐷 ∈ TermCat)) | ||
| Theorem | oppctermhom 49604 | The opposite category of a terminal category has the same base and hom-sets as the original category. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ TermCat) ⇒ ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝑂)) | ||
| Theorem | oppctermco 49605 | The opposite category of a terminal category has the same base, hom-sets and composition operation as the original category. Note that 𝐶 = 𝑂 cannot be proved because 𝐶 might not even be a function. For example, let 𝐶 be ({〈(Base‘ndx), {∅}〉, 〈(Hom ‘ndx), ((V × V) × {{∅}})〉} ∪ {〈(comp‘ndx), {∅}〉, 〈(comp‘ndx), 2o〉}); it should be a terminal category, but the opposite category is not itself. See the definitions df-oppc 17618 and df-sets 17075. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ TermCat) ⇒ ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝑂)) | ||
| Theorem | oppcterm 49606 | The opposite category of a terminal category is a terminal category. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ TermCat) ⇒ ⊢ (𝜑 → 𝑂 ∈ TermCat) | ||
| Theorem | functermclem 49607 | Lemma for functermc 49608. (Contributed by Zhi Wang, 17-Oct-2025.) |
| ⊢ ((𝜑 ∧ 𝐾𝑅𝐿) → 𝐾 = 𝐹) & ⊢ (𝜑 → (𝐹𝑅𝐿 ↔ 𝐿 = 𝐺)) ⇒ ⊢ (𝜑 → (𝐾𝑅𝐿 ↔ (𝐾 = 𝐹 ∧ 𝐿 = 𝐺))) | ||
| Theorem | functermc 49608* | Functor to a terminal category. (Contributed by Zhi Wang, 17-Oct-2025.) |
| ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐸 ∈ TermCat) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ 𝐹 = (𝐵 × 𝐶) & ⊢ 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) ⇒ ⊢ (𝜑 → (𝐾(𝐷 Func 𝐸)𝐿 ↔ (𝐾 = 𝐹 ∧ 𝐿 = 𝐺))) | ||
| Theorem | functermc2 49609* | Functor to a terminal category. (Contributed by Zhi Wang, 17-Oct-2025.) |
| ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐸 ∈ TermCat) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ 𝐹 = (𝐵 × 𝐶) & ⊢ 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) ⇒ ⊢ (𝜑 → (𝐷 Func 𝐸) = {〈𝐹, 𝐺〉}) | ||
| Theorem | functermceu 49610* | There exists a unique functor to a terminal category. (Contributed by Zhi Wang, 17-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ TermCat) ⇒ ⊢ (𝜑 → ∃!𝑓 𝑓 ∈ (𝐶 Func 𝐷)) | ||
| Theorem | fulltermc 49611* | A functor to a terminal category is full iff all hom-sets of the source category are non-empty. (Contributed by Zhi Wang, 17-Oct-2025.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐷 ∈ TermCat) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) ⇒ ⊢ (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ (𝑥𝐻𝑦) = ∅)) | ||
| Theorem | fulltermc2 49612 | Given a full functor to a terminal category, the source category must not have empty hom-sets. (Contributed by Zhi Wang, 17-Oct-2025.) (Proof shortened by Zhi Wang, 6-Nov-2025.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐷 ∈ TermCat) & ⊢ (𝜑 → 𝐹(𝐶 Full 𝐷)𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ¬ (𝑋𝐻𝑌) = ∅) | ||
| Theorem | termcterm 49613 | A terminal category is a terminal object of the category of small categories. (Contributed by Zhi Wang, 17-Oct-2025.) |
| ⊢ 𝐸 = (CatCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) & ⊢ (𝜑 → 𝐶 ∈ TermCat) ⇒ ⊢ (𝜑 → 𝐶 ∈ (TermO‘𝐸)) | ||
| Theorem | termcterm2 49614 | A terminal object of the category of small categories is a terminal category. (Contributed by Zhi Wang, 18-Oct-2025.) (Proof shortened by Zhi Wang, 23-Oct-2025.) |
| ⊢ 𝐸 = (CatCat‘𝑈) & ⊢ (𝜑 → (𝑈 ∩ TermCat) ≠ ∅) & ⊢ (𝜑 → 𝐶 ∈ (TermO‘𝐸)) ⇒ ⊢ (𝜑 → 𝐶 ∈ TermCat) | ||
| Theorem | termcterm3 49615 | In the category of small categories, a terminal object is equivalent to a terminal category. (Contributed by Zhi Wang, 18-Oct-2025.) |
| ⊢ 𝐸 = (CatCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) & ⊢ (𝜑 → (SetCat‘1o) ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝐶 ∈ TermCat ↔ 𝐶 ∈ (TermO‘𝐸))) | ||
| Theorem | termcciso 49616 | A category is isomorphic to a terminal category iff it itself is terminal. (Contributed by Zhi Wang, 26-Oct-2025.) |
| ⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ TermCat) ⇒ ⊢ (𝜑 → (𝑌 ∈ TermCat ↔ 𝑋( ≃𝑐 ‘𝐶)𝑌)) | ||
| Theorem | termccisoeu 49617* | The isomorphism between terminal categories is unique. (Contributed by Zhi Wang, 26-Oct-2025.) |
| ⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ TermCat) & ⊢ (𝜑 → 𝑌 ∈ TermCat) ⇒ ⊢ (𝜑 → ∃!𝑓 𝑓 ∈ (𝑋(Iso‘𝐶)𝑌)) | ||
| Theorem | termc2 49618* | If there exists a unique functor from both the category itself and the trivial category, then the category is terminal. Note that the converse also holds, so that it is a biconditional. See the proof of termc 49619 for hints. See also eufunc 49622 and euendfunc2 49627 for some insights on why two categories are sufficient. (Contributed by Zhi Wang, 18-Oct-2025.) (Proof shortened by Zhi Wang, 20-Oct-2025.) |
| ⊢ (∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) → 𝐶 ∈ TermCat) | ||
| Theorem | termc 49619* | Alternate definition of TermCat. See also df-termc 49573. (Contributed by Zhi Wang, 18-Oct-2025.) |
| ⊢ (𝐶 ∈ TermCat ↔ ∀𝑑 ∈ Cat ∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶)) | ||
| Theorem | dftermc2 49620* | Alternate definition of TermCat. See also df-termc 49573 and dftermc3 49631. (Contributed by Zhi Wang, 18-Oct-2025.) |
| ⊢ TermCat = {𝑐 ∣ ∀𝑑 ∈ Cat ∃!𝑓 𝑓 ∈ (𝑑 Func 𝑐)} | ||
| Theorem | eufunclem 49621* | If there exists a unique functor from a non-empty category, then the base of the target category is at most a singleton. (Contributed by Zhi Wang, 19-Oct-2025.) |
| ⊢ (𝜑 → ∃!𝑓 𝑓 ∈ (𝐶 Func 𝐷)) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ 𝐵 = (Base‘𝐷) ⇒ ⊢ (𝜑 → 𝐵 ≼ 1o) | ||
| Theorem | eufunc 49622* | If there exists a unique functor from a non-empty category, then the base of the target category is a singleton. (Contributed by Zhi Wang, 19-Oct-2025.) |
| ⊢ (𝜑 → ∃!𝑓 𝑓 ∈ (𝐶 Func 𝐷)) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ 𝐵 = (Base‘𝐷) ⇒ ⊢ (𝜑 → ∃!𝑥 𝑥 ∈ 𝐵) | ||
| Theorem | idfudiag1lem 49623 | Lemma for idfudiag1bas 49624 and idfudiag1 49625. (Contributed by Zhi Wang, 19-Oct-2025.) |
| ⊢ (𝜑 → ( I ↾ 𝐴) = (𝐴 × {𝐵})) & ⊢ (𝜑 → 𝐴 ≠ ∅) ⇒ ⊢ (𝜑 → 𝐴 = {𝐵}) | ||
| Theorem | idfudiag1bas 49624 | If the identity functor of a category is the same as a constant functor to the category, then the base is a singleton. (Contributed by Zhi Wang, 19-Oct-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐶) & ⊢ 𝐿 = (𝐶Δfunc𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) & ⊢ (𝜑 → 𝐼 = 𝐾) ⇒ ⊢ (𝜑 → 𝐵 = {𝑋}) | ||
| Theorem | idfudiag1 49625 | If the identity functor of a category is the same as a constant functor to the category, then the category is terminal. (Contributed by Zhi Wang, 19-Oct-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐶) & ⊢ 𝐿 = (𝐶Δfunc𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) & ⊢ (𝜑 → 𝐼 = 𝐾) ⇒ ⊢ (𝜑 → 𝐶 ∈ TermCat) | ||
| Theorem | euendfunc 49626* | If there exists a unique endofunctor (a functor from a category to itself) for a non-empty category, then the category is terminal. This partially explains why two categories are sufficient in termc2 49618. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ (𝜑 → ∃!𝑓 𝑓 ∈ (𝐶 Func 𝐶)) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝐵 ≠ ∅) ⇒ ⊢ (𝜑 → 𝐶 ∈ TermCat) | ||
| Theorem | euendfunc2 49627 | If there exists a unique endofunctor (a functor from a category to itself) for a category, then it is either initial (empty) or terminal. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ ((𝐶 Func 𝐶) ≈ 1o → ((Base‘𝐶) = ∅ ∨ 𝐶 ∈ TermCat)) | ||
| Theorem | termcarweu 49628* | There exists a unique disjointified arrow in a terminal category. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ (𝐶 ∈ TermCat → ∃!𝑎 𝑎 ∈ (Arrow‘𝐶)) | ||
| Theorem | arweuthinc 49629* | If a structure has a unique disjointified arrow, then the structure is a thin category. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ ThinCat) | ||
| Theorem | arweutermc 49630* | If a structure has a unique disjointified arrow, then the structure is a terminal category. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ TermCat) | ||
| Theorem | dftermc3 49631 | Alternate definition of TermCat. See also df-termc 49573, dftermc2 49620. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ TermCat = {𝑐 ∣ (Arrow‘𝑐) ≈ 1o} | ||
| Theorem | termcfuncval 49632 | The value of a functor from a terminal category. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝐷 ∈ TermCat) & ⊢ (𝜑 → 𝐾 ∈ (𝐷 Func 𝐶)) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑋 = ((1st ‘𝐾)‘𝑌) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝐼 = (Id‘𝐷) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝐴 ∧ 𝐾 = 〈{〈𝑌, 𝑋〉}, {〈〈𝑌, 𝑌〉, {〈(𝐼‘𝑌), ( 1 ‘𝑋)〉}〉}〉)) | ||
| Theorem | diag1f1olem 49633 | To any functor from a terminal category can an object in the target base be assigned. (Contributed by Zhi Wang, 21-Oct-2025.) |
| ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝐷 ∈ TermCat) & ⊢ (𝜑 → 𝐾 ∈ (𝐷 Func 𝐶)) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑋 = ((1st ‘𝐾)‘𝑌) & ⊢ 𝐿 = (𝐶Δfunc𝐷) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝐴 ∧ 𝐾 = ((1st ‘𝐿)‘𝑋))) | ||
| Theorem | diag1f1o 49634 | The object part of the diagonal functor is a bijection if 𝐷 is terminal. So any functor from a terminal category is one-to-one correspondent to an object of the target base. (Contributed by Zhi Wang, 21-Oct-2025.) |
| ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝐷 ∈ TermCat) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝐿 = (𝐶Δfunc𝐷) ⇒ ⊢ (𝜑 → (1st ‘𝐿):𝐴–1-1-onto→(𝐷 Func 𝐶)) | ||
| Theorem | termcnatval 49635 | Value of natural transformations for a terminal category. (Contributed by Zhi Wang, 21-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ TermCat) & ⊢ 𝑁 = (𝐶 Nat 𝐷) & ⊢ (𝜑 → 𝐴 ∈ (𝐹𝑁𝐺)) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝑅 = (𝐴‘𝑋) ⇒ ⊢ (𝜑 → 𝐴 = {〈𝑋, 𝑅〉}) | ||
| Theorem | diag2f1olem 49636 | Lemma for diag2f1o 49637. (Contributed by Zhi Wang, 21-Oct-2025.) |
| ⊢ 𝐿 = (𝐶Δfunc𝐷) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ 𝑁 = (𝐷 Nat 𝐶) & ⊢ (𝜑 → 𝐷 ∈ TermCat) & ⊢ (𝜑 → 𝑀 ∈ (((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ 𝐹 = (𝑀‘𝑍) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑀 = ((𝑋(2nd ‘𝐿)𝑌)‘𝐹))) | ||
| Theorem | diag2f1o 49637 | If 𝐷 is terminal, the morphism part of a diagonal functor is bijective functions from hom-sets into sets of natural transformations. (Contributed by Zhi Wang, 21-Oct-2025.) |
| ⊢ 𝐿 = (𝐶Δfunc𝐷) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ 𝑁 = (𝐷 Nat 𝐶) & ⊢ (𝜑 → 𝐷 ∈ TermCat) & ⊢ (𝜑 → 𝐶 ∈ Cat) ⇒ ⊢ (𝜑 → (𝑋(2nd ‘𝐿)𝑌):(𝑋𝐻𝑌)–1-1-onto→(((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) | ||
| Theorem | diagffth 49638 | The diagonal functor is a fully faithful functor from a category 𝐶 to the category of functors from a terminal category to 𝐶. (Contributed by Zhi Wang, 21-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ TermCat) & ⊢ 𝑄 = (𝐷 FuncCat 𝐶) & ⊢ 𝐿 = (𝐶Δfunc𝐷) ⇒ ⊢ (𝜑 → 𝐿 ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄))) | ||
| Theorem | diagciso 49639 |
The diagonal functor is an isomorphism from a category 𝐶 to the
category of functors from a terminal category to 𝐶.
It is provable that the inverse of the diagonal functor is the mapped object by the transposed curry of (𝐷 evalF 𝐶), i.e., ∪ ran (1st ‘(〈𝐷, 𝑄〉 curryF ((𝐷 evalF 𝐶) ∘func (𝐷 swapF 𝑄)))). (Contributed by Zhi Wang, 21-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ TermCat) & ⊢ 𝑄 = (𝐷 FuncCat 𝐶) & ⊢ 𝐸 = (CatCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) & ⊢ (𝜑 → 𝑄 ∈ 𝑈) & ⊢ 𝐼 = (Iso‘𝐸) & ⊢ 𝐿 = (𝐶Δfunc𝐷) ⇒ ⊢ (𝜑 → 𝐿 ∈ (𝐶𝐼𝑄)) | ||
| Theorem | diagcic 49640 | Any category 𝐶 is isomorphic to the category of functors from a terminal category to 𝐶. See also the "Properties" section of https://ncatlab.org/nlab/show/terminal+category. Therefore the number of categories isomorphic to a non-empty category is at least the number of singletons, so large (snnex 7691) that these isomorphic categories form a proper class. (Contributed by Zhi Wang, 21-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ TermCat) & ⊢ 𝑄 = (𝐷 FuncCat 𝐶) & ⊢ 𝐸 = (CatCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) & ⊢ (𝜑 → 𝑄 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝐶( ≃𝑐 ‘𝐸)𝑄) | ||
| Theorem | funcsn 49641 | The category of one functor to a thin category is terminal. (Contributed by Zhi Wang, 17-Nov-2025.) |
| ⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → (𝐶 Func 𝐷) = {𝐹}) & ⊢ (𝜑 → 𝐷 ∈ ThinCat) ⇒ ⊢ (𝜑 → 𝑄 ∈ TermCat) | ||
| Theorem | fucterm 49642 | The category of functors to a terminal category is terminal. (Contributed by Zhi Wang, 17-Nov-2025.) |
| ⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ TermCat) ⇒ ⊢ (𝜑 → 𝑄 ∈ TermCat) | ||
| Theorem | 0fucterm 49643 | The category of functors from an initial category is terminal. (Contributed by Zhi Wang, 17-Nov-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → ∅ = (Base‘𝐶)) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑄 = (𝐶 FuncCat 𝐷) ⇒ ⊢ (𝜑 → 𝑄 ∈ TermCat) | ||
| Theorem | termfucterm 49644 | All functors between two terminal categories are isomorphisms. (Contributed by Zhi Wang, 17-Nov-2025.) |
| ⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐼 = (Iso‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ TermCat) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ TermCat) ⇒ ⊢ (𝜑 → (𝑋 Func 𝑌) = (𝑋𝐼𝑌)) | ||
| Theorem | cofuterm 49645 | Post-compose with a functor to a terminal category. (Contributed by Zhi Wang, 17-Nov-2025.) |
| ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → 𝐾 ∈ (𝐶 Func 𝐸)) & ⊢ (𝜑 → 𝐸 ∈ TermCat) ⇒ ⊢ (𝜑 → (𝐺 ∘func 𝐹) = 𝐾) | ||
| Theorem | uobeqterm 49646 | Universal objects and terminal categories. (Contributed by Zhi Wang, 17-Nov-2025.) |
| ⊢ 𝐴 = (Base‘𝐷) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) & ⊢ (𝜑 → 𝐷 ∈ TermCat) & ⊢ (𝜑 → 𝐸 ∈ TermCat) ⇒ ⊢ (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌)) | ||
| Theorem | isinito4 49647 | The predicate "is an initial object" of a category, using universal property. (Contributed by Zhi Wang, 17-Nov-2025.) |
| ⊢ (𝜑 → 1 ∈ TermCat) & ⊢ (𝜑 → 𝑋 ∈ (Base‘ 1 )) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 1 )) ⇒ ⊢ (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ 𝐼 ∈ dom (𝐹(𝐶 UP 1 )𝑋))) | ||
| Theorem | isinito4a 49648 | The predicate "is an initial object" of a category, using universal property. (Contributed by Zhi Wang, 17-Nov-2025.) |
| ⊢ (𝜑 → 1 ∈ TermCat) & ⊢ (𝜑 → 𝑋 ∈ (Base‘ 1 )) & ⊢ 𝐹 = ((1st ‘( 1 Δfunc𝐶))‘𝑋) ⇒ ⊢ (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ 𝐼 ∈ dom (𝐹(𝐶 UP 1 )𝑋))) | ||
| Syntax | cprstc 49649 | Class function defining preordered sets as categories. |
| class ProsetToCat | ||
| Definition | df-prstc 49650 |
Definition of the function converting a preordered set to a category.
Justified by prsthinc 49564.
This definition is somewhat arbitrary. Example 3.3(4.d) of [Adamek] p. 24 demonstrates an alternate definition with pairwise disjoint hom-sets. The behavior of the function is defined entirely, up to isomorphism (thincciso 49553), by prstcnid 49653, prstchom 49662, and prstcthin 49661. Other important properties include prstcbas 49654, prstcleval 49655, prstcle 49656, prstcocval 49657, prstcoc 49658, prstchom2 49663, and prstcprs 49660. Use those instead. Note that the defining property prstchom 49662 is equivalent to prstchom2 49663 given prstcthin 49661. See thincn0eu 49531 for justification. "ProsetToCat" was taken instead of "ProsetCat" because the latter might mean the category of preordered sets (classes). However, "ProsetToCat" seems too long. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.) |
| ⊢ ProsetToCat = (𝑘 ∈ Proset ↦ ((𝑘 sSet 〈(Hom ‘ndx), ((le‘𝑘) × {1o})〉) sSet 〈(comp‘ndx), ∅〉)) | ||
| Theorem | prstcval 49651 | Lemma for prstcnidlem 49652 and prstcthin 49661. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) ⇒ ⊢ (𝜑 → 𝐶 = ((𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉) sSet 〈(comp‘ndx), ∅〉)) | ||
| Theorem | prstcnidlem 49652 | Lemma for prstcnid 49653 and prstchomval 49659. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ (comp‘ndx) ⇒ ⊢ (𝜑 → (𝐸‘𝐶) = (𝐸‘(𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉))) | ||
| Theorem | prstcnid 49653 | Components other than Hom and comp are unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ (comp‘ndx) & ⊢ (𝐸‘ndx) ≠ (Hom ‘ndx) ⇒ ⊢ (𝜑 → (𝐸‘𝐾) = (𝐸‘𝐶)) | ||
| Theorem | prstcbas 49654 | The base set is unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | ||
| Theorem | prstcleval 49655 | Value of the less-than-or-equal-to relation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) (Proof shortened by AV, 12-Nov-2024.) |
| ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ (𝜑 → ≤ = (le‘𝐾)) ⇒ ⊢ (𝜑 → ≤ = (le‘𝐶)) | ||
| Theorem | prstcle 49656 | Value of the less-than-or-equal-to relation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ (𝜑 → ≤ = (le‘𝐾)) ⇒ ⊢ (𝜑 → (𝑋 ≤ 𝑌 ↔ 𝑋(le‘𝐶)𝑌)) | ||
| Theorem | prstcocval 49657 | Orthocomplementation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) (Proof shortened by AV, 12-Nov-2024.) |
| ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ (𝜑 → ⊥ = (oc‘𝐾)) ⇒ ⊢ (𝜑 → ⊥ = (oc‘𝐶)) | ||
| Theorem | prstcoc 49658 | Orthocomplementation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ (𝜑 → ⊥ = (oc‘𝐾)) ⇒ ⊢ (𝜑 → ( ⊥ ‘𝑋) = ((oc‘𝐶)‘𝑋)) | ||
| Theorem | prstchomval 49659 | Hom-sets of the constructed category which depend on an arbitrary definition. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ (𝜑 → ≤ = (le‘𝐶)) ⇒ ⊢ (𝜑 → ( ≤ × {1o}) = (Hom ‘𝐶)) | ||
| Theorem | prstcprs 49660 | The category is a preordered set. (Contributed by Zhi Wang, 20-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) ⇒ ⊢ (𝜑 → 𝐶 ∈ Proset ) | ||
| Theorem | prstcthin 49661 | The preordered set is equipped with a thin category. (Contributed by Zhi Wang, 20-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) ⇒ ⊢ (𝜑 → 𝐶 ∈ ThinCat) | ||
| Theorem | prstchom 49662 |
Hom-sets of the constructed category are dependent on the preorder.
Note that prstchom.x and prstchom.y are redundant here due to our definition of ProsetToCat. However, this should not be assumed as it is definition-dependent. Therefore, the two hypotheses are added for explicitness. (Contributed by Zhi Wang, 20-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ (𝜑 → ≤ = (le‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) ⇒ ⊢ (𝜑 → (𝑋 ≤ 𝑌 ↔ (𝑋𝐻𝑌) ≠ ∅)) | ||
| Theorem | prstchom2 49663* |
Hom-sets of the constructed category are dependent on the preorder.
Note that prstchom.x and prstchom.y are redundant here due to our definition of ProsetToCat ( see prstchom2ALT 49664). However, this should not be assumed as it is definition-dependent. Therefore, the two hypotheses are added for explicitness. (Contributed by Zhi Wang, 21-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ (𝜑 → ≤ = (le‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) ⇒ ⊢ (𝜑 → (𝑋 ≤ 𝑌 ↔ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌))) | ||
| Theorem | prstchom2ALT 49664* | Hom-sets of the constructed category are dependent on the preorder. This proof depends on the definition df-prstc 49650. See prstchom2 49663 for a version that does not depend on the definition. (Contributed by Zhi Wang, 20-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ (𝜑 → ≤ = (le‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) ⇒ ⊢ (𝜑 → (𝑋 ≤ 𝑌 ↔ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌))) | ||
| Theorem | oduoppcbas 49665 | The dual of a preordered set and the opposite category have the same set of objects. (Contributed by Zhi Wang, 22-Sep-2025.) |
| ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ (𝜑 → 𝐷 = (ProsetToCat‘(ODual‘𝐾))) & ⊢ 𝑂 = (oppCat‘𝐶) ⇒ ⊢ (𝜑 → (Base‘𝐷) = (Base‘𝑂)) | ||
| Theorem | oduoppcciso 49666 | The dual of a preordered set and the opposite category are category-isomorphic. Example 3.6(1) of [Adamek] p. 25. (Contributed by Zhi Wang, 22-Sep-2025.) |
| ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ (𝜑 → 𝐷 = (ProsetToCat‘(ODual‘𝐾))) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑈) & ⊢ (𝜑 → 𝑂 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝐷( ≃𝑐 ‘(CatCat‘𝑈))𝑂) | ||
| Theorem | postcpos 49667 | The converted category is a poset iff the original proset is a poset. (Contributed by Zhi Wang, 26-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) ⇒ ⊢ (𝜑 → (𝐾 ∈ Poset ↔ 𝐶 ∈ Poset)) | ||
| Theorem | postcposALT 49668 | Alternate proof of postcpos 49667. (Contributed by Zhi Wang, 25-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) ⇒ ⊢ (𝜑 → (𝐾 ∈ Poset ↔ 𝐶 ∈ Poset)) | ||
| Theorem | postc 49669* | The converted category is a poset iff no distinct objects are isomorphic. (Contributed by Zhi Wang, 25-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝜑 → (𝐶 ∈ Poset ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥( ≃𝑐 ‘𝐶)𝑦 → 𝑥 = 𝑦))) | ||
| Theorem | discsntermlem 49670* | A singlegon is an element of the class of singlegons. The converse (basrestermcfolem 49671) also holds. This is trivial if 𝐵 is 𝑏 (abid 2713). (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ (∃𝑥 𝐵 = {𝑥} → 𝐵 ∈ {𝑏 ∣ ∃𝑥 𝑏 = {𝑥}}) | ||
| Theorem | basrestermcfolem 49671* | An element of the class of singlegons is a singlegon. The converse (discsntermlem 49670) also holds. This is trivial if 𝐵 is 𝑏 (abid 2713). (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ (𝐵 ∈ {𝑏 ∣ ∃𝑥 𝑏 = {𝑥}} → ∃𝑥 𝐵 = {𝑥}) | ||
| Theorem | discbas 49672 | A discrete category (a category whose only morphisms are the identity morphisms) can be constructed for any base set. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(le‘ndx), ( I ↾ 𝐵)〉} & ⊢ 𝐶 = (ProsetToCat‘𝐾) ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐶)) | ||
| Theorem | discthin 49673 | A discrete category (a category whose only morphisms are the identity morphisms) is thin. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(le‘ndx), ( I ↾ 𝐵)〉} & ⊢ 𝐶 = (ProsetToCat‘𝐾) ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐶 ∈ ThinCat) | ||
| Theorem | discsnterm 49674* | A discrete category (a category whose only morphisms are the identity morphisms) with a singlegon base is terminal. Corollary of example 3.3(4)(c) of [Adamek] p. 24 and example 3.26(1) of [Adamek] p. 33. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(le‘ndx), ( I ↾ 𝐵)〉} & ⊢ 𝐶 = (ProsetToCat‘𝐾) ⇒ ⊢ (∃𝑥 𝐵 = {𝑥} → 𝐶 ∈ TermCat) | ||
| Theorem | basrestermcfo 49675* | The base function restricted to the class of terminal categories maps the class of terminal categories onto the class of singletons. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ (Base ↾ TermCat):TermCat–onto→{𝑏 ∣ ∃𝑥 𝑏 = {𝑥}} | ||
| Theorem | termcnex 49676 | The class of all terminal categories is a proper class. Therefore both the class of all thin categories and the class of all categories are proper classes. Note that snnex 7691 is equivalent to sngl V ∉ V. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ TermCat ∉ V | ||
| Syntax | cmndtc 49677 | Class function defining monoids as categories. |
| class MndToCat | ||
| Definition | df-mndtc 49678 |
Definition of the function converting a monoid to a category. Example
3.3(4.e) of [Adamek] p. 24.
The definition of the base set is arbitrary. The whole extensible structure becomes the object here (see mndtcbasval 49680), instead of just the base set, as is the case in Example 3.3(4.e) of [Adamek] p. 24. The resulting category is defined entirely, up to isomorphism, by mndtcbas 49681, mndtchom 49684, mndtcco 49685. Use those instead. See example 3.26(3) of [Adamek] p. 33 for more on isomorphism. "MndToCat" was taken instead of "MndCat" because the latter might mean the category of monoids. (Contributed by Zhi Wang, 22-Sep-2024.) (New usage is discouraged.) |
| ⊢ MndToCat = (𝑚 ∈ Mnd ↦ {〈(Base‘ndx), {𝑚}〉, 〈(Hom ‘ndx), {〈𝑚, 𝑚, (Base‘𝑚)〉}〉, 〈(comp‘ndx), {〈〈𝑚, 𝑚, 𝑚〉, (+g‘𝑚)〉}〉}) | ||
| Theorem | mndtcval 49679 | Value of the category built from a monoid. (Contributed by Zhi Wang, 22-Sep-2024.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ Mnd) ⇒ ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), {𝑀}〉, 〈(Hom ‘ndx), {〈𝑀, 𝑀, (Base‘𝑀)〉}〉, 〈(comp‘ndx), {〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉}〉}) | ||
| Theorem | mndtcbasval 49680 | The base set of the category built from a monoid. (Contributed by Zhi Wang, 22-Sep-2024.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ Mnd) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) ⇒ ⊢ (𝜑 → 𝐵 = {𝑀}) | ||
| Theorem | mndtcbas 49681* | The category built from a monoid contains precisely one object. (Contributed by Zhi Wang, 22-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ Mnd) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) ⇒ ⊢ (𝜑 → ∃!𝑥 𝑥 ∈ 𝐵) | ||
| Theorem | mndtcob 49682 | Lemma for mndtchom 49684 and mndtcco 49685. (Contributed by Zhi Wang, 22-Sep-2024.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ Mnd) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋 = 𝑀) | ||
| Theorem | mndtcbas2 49683 | Two objects in a category built from a monoid are identical. (Contributed by Zhi Wang, 24-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ Mnd) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
| Theorem | mndtchom 49684 | The only hom-set of the category built from a monoid is the base set of the monoid. (Contributed by Zhi Wang, 22-Sep-2024.) (Proof shortened by Zhi Wang, 22-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ Mnd) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) ⇒ ⊢ (𝜑 → (𝑋𝐻𝑌) = (Base‘𝑀)) | ||
| Theorem | mndtcco 49685 | The composition of the category built from a monoid is the monoid operation. (Contributed by Zhi Wang, 22-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ Mnd) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → · = (comp‘𝐶)) ⇒ ⊢ (𝜑 → (〈𝑋, 𝑌〉 · 𝑍) = (+g‘𝑀)) | ||
| Theorem | mndtcco2 49686 | The composition of the category built from a monoid is the monoid operation. (Contributed by Zhi Wang, 22-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ Mnd) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → · = (comp‘𝐶)) & ⊢ (𝜑 → ⚬ = (〈𝑋, 𝑌〉 · 𝑍)) ⇒ ⊢ (𝜑 → (𝐺 ⚬ 𝐹) = (𝐺(+g‘𝑀)𝐹)) | ||
| Theorem | mndtccatid 49687* | Lemma for mndtccat 49688 and mndtcid 49689. (Contributed by Zhi Wang, 22-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ Mnd) ⇒ ⊢ (𝜑 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦 ∈ (Base‘𝐶) ↦ (0g‘𝑀)))) | ||
| Theorem | mndtccat 49688 | The function value is a category. (Contributed by Zhi Wang, 22-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ Mnd) ⇒ ⊢ (𝜑 → 𝐶 ∈ Cat) | ||
| Theorem | mndtcid 49689 | The identity morphism, or identity arrow, of the category built from a monoid is the identity element of the monoid. (Contributed by Zhi Wang, 22-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ Mnd) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 1 = (Id‘𝐶)) ⇒ ⊢ (𝜑 → ( 1 ‘𝑋) = (0g‘𝑀)) | ||
| Theorem | oppgoppchom 49690 | The converted opposite monoid has the same hom-set as that of the opposite category. Example 3.6(2) of [Adamek] p. 25. (Contributed by Zhi Wang, 21-Sep-2025.) |
| ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ Mnd) & ⊢ (𝜑 → 𝐷 = (MndToCat‘(oppg‘𝑀))) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐷)) & ⊢ (𝜑 → 𝑌 ∈ (Base‘𝑂)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐷)) & ⊢ (𝜑 → 𝐽 = (Hom ‘𝑂)) ⇒ ⊢ (𝜑 → (𝑋𝐻𝑋) = (𝑌𝐽𝑌)) | ||
| Theorem | oppgoppcco 49691 | The converted opposite monoid has the same composition as that of the opposite category. Example 3.6(2) of [Adamek] p. 25. (Contributed by Zhi Wang, 22-Sep-2025.) |
| ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ Mnd) & ⊢ (𝜑 → 𝐷 = (MndToCat‘(oppg‘𝑀))) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐷)) & ⊢ (𝜑 → 𝑌 ∈ (Base‘𝑂)) & ⊢ (𝜑 → · = (comp‘𝐷)) & ⊢ (𝜑 → ∙ = (comp‘𝑂)) ⇒ ⊢ (𝜑 → (〈𝑋, 𝑋〉 · 𝑋) = (〈𝑌, 𝑌〉 ∙ 𝑌)) | ||
| Theorem | oppgoppcid 49692 | The converted opposite monoid has the same identity morphism as that of the opposite category. Example 3.6(2) of [Adamek] p. 25. (Contributed by Zhi Wang, 22-Sep-2025.) |
| ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ Mnd) & ⊢ (𝜑 → 𝐷 = (MndToCat‘(oppg‘𝑀))) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐷)) & ⊢ (𝜑 → 𝑌 ∈ (Base‘𝑂)) ⇒ ⊢ (𝜑 → ((Id‘𝐷)‘𝑋) = ((Id‘𝑂)‘𝑌)) | ||
| Theorem | grptcmon 49693 | All morphisms in a category converted from a group are monomorphisms. (Contributed by Zhi Wang, 23-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 = (MndToCat‘𝐺)) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ (𝜑 → 𝑀 = (Mono‘𝐶)) ⇒ ⊢ (𝜑 → (𝑋𝑀𝑌) = (𝑋𝐻𝑌)) | ||
| Theorem | grptcepi 49694 | All morphisms in a category converted from a group are epimorphisms. (Contributed by Zhi Wang, 23-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 = (MndToCat‘𝐺)) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ (𝜑 → 𝐸 = (Epi‘𝐶)) ⇒ ⊢ (𝜑 → (𝑋𝐸𝑌) = (𝑋𝐻𝑌)) | ||
| Theorem | 2arwcatlem1 49695 | Lemma for 2arwcat 49700. (Contributed by Zhi Wang, 5-Nov-2025.) |
| ⊢ (𝑋𝐻𝑋) = { 0 , 1 } ⇒ ⊢ ((((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 ))) ↔ ((𝑥 ∈ {𝑋} ∧ 𝑦 ∈ {𝑋}) ∧ (𝑧 ∈ {𝑋} ∧ 𝑤 ∈ {𝑋}) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) | ||
| Theorem | 2arwcatlem2 49696 | Lemma for 2arwcat 49700. (Contributed by Zhi Wang, 5-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 = 𝑋) & ⊢ (𝜑 → 𝐵 = 𝑌) & ⊢ (𝜑 → 𝐶 = 𝑍) & ⊢ (𝜑 → (𝐹 = 0 ∨ 𝐹 = 1 )) & ⊢ (𝜑 → ( 1 (〈𝑋, 𝑌〉 · 𝑍) 1 ) = 1 ) & ⊢ (𝜑 → ( 1 (〈𝑋, 𝑌〉 · 𝑍) 0 ) = 0 ) ⇒ ⊢ (𝜑 → ( 1 (〈𝐴, 𝐵〉 · 𝐶)𝐹) = 𝐹) | ||
| Theorem | 2arwcatlem3 49697 | Lemma for 2arwcat 49700. (Contributed by Zhi Wang, 5-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 = 𝑋) & ⊢ (𝜑 → 𝐵 = 𝑌) & ⊢ (𝜑 → 𝐶 = 𝑍) & ⊢ (𝜑 → (𝐹 = 0 ∨ 𝐹 = 1 )) & ⊢ (𝜑 → ( 1 (〈𝑋, 𝑌〉 · 𝑍) 1 ) = 1 ) & ⊢ (𝜑 → ( 0 (〈𝑋, 𝑌〉 · 𝑍) 1 ) = 0 ) ⇒ ⊢ (𝜑 → (𝐹(〈𝐴, 𝐵〉 · 𝐶) 1 ) = 𝐹) | ||
| Theorem | 2arwcatlem4 49698 | Lemma for 2arwcat 49700. (Contributed by Zhi Wang, 5-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 = 𝑋) & ⊢ (𝜑 → 𝐵 = 𝑌) & ⊢ (𝜑 → 𝐶 = 𝑍) & ⊢ (𝜑 → (𝐹 = 0 ∨ 𝐹 = 1 )) & ⊢ (𝜑 → ( 1 (〈𝑋, 𝑌〉 · 𝑍) 1 ) = 1 ) & ⊢ (𝜑 → ( 0 (〈𝑋, 𝑌〉 · 𝑍) 1 ) = 0 ) & ⊢ (𝜑 → ( 1 (〈𝑋, 𝑌〉 · 𝑍) 0 ) = 0 ) & ⊢ (𝜑 → ( 0 (〈𝑋, 𝑌〉 · 𝑍) 0 ) ∈ { 0 , 1 }) & ⊢ (𝜑 → (𝐺 = 0 ∨ 𝐺 = 1 )) ⇒ ⊢ (𝜑 → (𝐺(〈𝐴, 𝐵〉 · 𝐶)𝐹) ∈ { 0 , 1 }) | ||
| Theorem | 2arwcatlem5 49699 | Lemma for 2arwcat 49700. (Contributed by Zhi Wang, 5-Nov-2025.) |
| ⊢ (𝜑 → ( 1 · 0 ) = 0 ) & ⊢ (𝜑 → ( 0 · 1 ) = 0 ) & ⊢ (𝜑 → ( 0 · 0 ) ∈ { 0 , 1 }) ⇒ ⊢ (𝜑 → (( 0 · 0 ) · 0 ) = ( 0 · ( 0 · 0 ))) | ||
| Theorem | 2arwcat 49700* | The condition for a structure with at most one object and at most two morphisms being a category. "2arwcat.2" to "2arwcat.5" are also necessary conditions if 𝑋, 0, and 1 are all sets, due to catlid 17589, catrid 17590, and catcocl 17591. (Contributed by Zhi Wang, 5-Nov-2025.) |
| ⊢ (𝜑 → {𝑋} = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ (𝜑 → · = (comp‘𝐶)) & ⊢ (𝑋𝐻𝑋) = { 0 , 1 } & ⊢ (𝜑 → ( 1 (〈𝑋, 𝑋〉 · 𝑋) 1 ) = 1 ) & ⊢ (𝜑 → ( 1 (〈𝑋, 𝑋〉 · 𝑋) 0 ) = 0 ) & ⊢ (𝜑 → ( 0 (〈𝑋, 𝑋〉 · 𝑋) 1 ) = 0 ) & ⊢ (𝜑 → ( 0 (〈𝑋, 𝑋〉 · 𝑋) 0 ) ∈ { 0 , 1 }) ⇒ ⊢ (𝜑 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦 ∈ {𝑋} ↦ 1 ))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |