| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmoprab | Structured version Visualization version GIF version | ||
| Description: The domain of an operation class abstraction is a relation. (Contributed by NM, 17-Mar-1995.) |
| Ref | Expression |
|---|---|
| reldmoprab | ⊢ Rel dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmoprab 7456 | . 2 ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ ∃𝑧𝜑} | |
| 2 | 1 | relopabiv 5767 | 1 ⊢ Rel dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ∃wex 1779 dom cdm 5623 Rel wrel 5628 {coprab 7354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-dm 5633 df-oprab 7357 |
| This theorem is referenced by: oprabss 7461 reldmmpo 7487 tposoprab 8202 |
| Copyright terms: Public domain | W3C validator |