MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnoprab2 Structured version   Visualization version   GIF version

Theorem rnoprab2 7411
Description: The range of a restricted operation class abstraction. (Contributed by Scott Fenton, 21-Mar-2012.)
Assertion
Ref Expression
rnoprab2 ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝜑}
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑥,𝑧)   𝐵(𝑥,𝑦,𝑧)

Proof of Theorem rnoprab2
StepHypRef Expression
1 rnoprab 7410 . 2 ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} = {𝑧 ∣ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑)}
2 r2ex 3188 . . 3 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑))
32abbii 2806 . 2 {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝜑} = {𝑧 ∣ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑)}
41, 3eqtr4i 2767 1 ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 397   = wceq 1539  wex 1779  wcel 2104  {cab 2713  wrex 3070  ran crn 5601  {coprab 7308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ral 3062  df-rex 3071  df-rab 3333  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-cnv 5608  df-dm 5610  df-rn 5611  df-oprab 7311
This theorem is referenced by:  rnmpo  7439
  Copyright terms: Public domain W3C validator