MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnoprab2 Structured version   Visualization version   GIF version

Theorem rnoprab2 7370
Description: The range of a restricted operation class abstraction. (Contributed by Scott Fenton, 21-Mar-2012.)
Assertion
Ref Expression
rnoprab2 ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝜑}
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑥,𝑧)   𝐵(𝑥,𝑦,𝑧)

Proof of Theorem rnoprab2
StepHypRef Expression
1 rnoprab 7369 . 2 ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} = {𝑧 ∣ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑)}
2 r2ex 3233 . . 3 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑))
32abbii 2809 . 2 {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝜑} = {𝑧 ∣ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑)}
41, 3eqtr4i 2770 1 ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wex 1785  wcel 2109  {cab 2716  wrex 3066  ran crn 5589  {coprab 7269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-cnv 5596  df-dm 5598  df-rn 5599  df-oprab 7272
This theorem is referenced by:  rnmpo  7398
  Copyright terms: Public domain W3C validator