MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnoprab2 Structured version   Visualization version   GIF version

Theorem rnoprab2 7512
Description: The range of a restricted operation class abstraction. (Contributed by Scott Fenton, 21-Mar-2012.)
Assertion
Ref Expression
rnoprab2 ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝜑}
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑥,𝑧)   𝐵(𝑥,𝑦,𝑧)

Proof of Theorem rnoprab2
StepHypRef Expression
1 rnoprab 7511 . 2 ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} = {𝑧 ∣ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑)}
2 r2ex 3195 . . 3 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑))
32abbii 2802 . 2 {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝜑} = {𝑧 ∣ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑)}
41, 3eqtr4i 2763 1 ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1541  wex 1781  wcel 2106  {cab 2709  wrex 3070  ran crn 5677  {coprab 7409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-cnv 5684  df-dm 5686  df-rn 5687  df-oprab 7412
This theorem is referenced by:  rnmpo  7541
  Copyright terms: Public domain W3C validator