MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnoprab2 Structured version   Visualization version   GIF version

Theorem rnoprab2 7539
Description: The range of a restricted operation class abstraction. (Contributed by Scott Fenton, 21-Mar-2012.)
Assertion
Ref Expression
rnoprab2 ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝜑}
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑥,𝑧)   𝐵(𝑥,𝑦,𝑧)

Proof of Theorem rnoprab2
StepHypRef Expression
1 rnoprab 7538 . 2 ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} = {𝑧 ∣ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑)}
2 r2ex 3196 . . 3 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑))
32abbii 2809 . 2 {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝜑} = {𝑧 ∣ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑)}
41, 3eqtr4i 2768 1 ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  wcel 2108  {cab 2714  wrex 3070  ran crn 5686  {coprab 7432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-cnv 5693  df-dm 5695  df-rn 5696  df-oprab 7435
This theorem is referenced by:  rnmpo  7566
  Copyright terms: Public domain W3C validator