![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oprssdm | Structured version Visualization version GIF version |
Description: Domain of closure of an operation. (Contributed by NM, 24-Aug-1995.) |
Ref | Expression |
---|---|
oprssdm.1 | ⊢ ¬ ∅ ∈ 𝑆 |
oprssdm.2 | ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥𝐹𝑦) ∈ 𝑆) |
Ref | Expression |
---|---|
oprssdm | ⊢ (𝑆 × 𝑆) ⊆ dom 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relxp 5692 | . 2 ⊢ Rel (𝑆 × 𝑆) | |
2 | opelxp 5710 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ (𝑆 × 𝑆) ↔ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) | |
3 | df-ov 7419 | . . . . 5 ⊢ (𝑥𝐹𝑦) = (𝐹‘〈𝑥, 𝑦〉) | |
4 | oprssdm.2 | . . . . 5 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥𝐹𝑦) ∈ 𝑆) | |
5 | 3, 4 | eqeltrrid 2831 | . . . 4 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝐹‘〈𝑥, 𝑦〉) ∈ 𝑆) |
6 | oprssdm.1 | . . . . . 6 ⊢ ¬ ∅ ∈ 𝑆 | |
7 | ndmfv 6928 | . . . . . . 7 ⊢ (¬ 〈𝑥, 𝑦〉 ∈ dom 𝐹 → (𝐹‘〈𝑥, 𝑦〉) = ∅) | |
8 | 7 | eleq1d 2811 | . . . . . 6 ⊢ (¬ 〈𝑥, 𝑦〉 ∈ dom 𝐹 → ((𝐹‘〈𝑥, 𝑦〉) ∈ 𝑆 ↔ ∅ ∈ 𝑆)) |
9 | 6, 8 | mtbiri 326 | . . . . 5 ⊢ (¬ 〈𝑥, 𝑦〉 ∈ dom 𝐹 → ¬ (𝐹‘〈𝑥, 𝑦〉) ∈ 𝑆) |
10 | 9 | con4i 114 | . . . 4 ⊢ ((𝐹‘〈𝑥, 𝑦〉) ∈ 𝑆 → 〈𝑥, 𝑦〉 ∈ dom 𝐹) |
11 | 5, 10 | syl 17 | . . 3 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → 〈𝑥, 𝑦〉 ∈ dom 𝐹) |
12 | 2, 11 | sylbi 216 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ (𝑆 × 𝑆) → 〈𝑥, 𝑦〉 ∈ dom 𝐹) |
13 | 1, 12 | relssi 5785 | 1 ⊢ (𝑆 × 𝑆) ⊆ dom 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∈ wcel 2099 ⊆ wss 3946 ∅c0 4322 〈cop 4629 × cxp 5672 dom cdm 5674 ‘cfv 6546 (class class class)co 7416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pr 5425 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5146 df-opab 5208 df-xp 5680 df-rel 5681 df-dm 5684 df-iota 6498 df-fv 6554 df-ov 7419 |
This theorem is referenced by: dmaddsr 11119 dmmulsr 11120 axaddf 11179 axmulf 11180 |
Copyright terms: Public domain | W3C validator |