MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprssdm Structured version   Visualization version   GIF version

Theorem oprssdm 7331
Description: Domain of closure of an operation. (Contributed by NM, 24-Aug-1995.)
Hypotheses
Ref Expression
oprssdm.1 ¬ ∅ ∈ 𝑆
oprssdm.2 ((𝑥𝑆𝑦𝑆) → (𝑥𝐹𝑦) ∈ 𝑆)
Assertion
Ref Expression
oprssdm (𝑆 × 𝑆) ⊆ dom 𝐹
Distinct variable groups:   𝑥,𝑦,𝑆   𝑥,𝐹,𝑦

Proof of Theorem oprssdm
StepHypRef Expression
1 relxp 5575 . 2 Rel (𝑆 × 𝑆)
2 opelxp 5593 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝑆 × 𝑆) ↔ (𝑥𝑆𝑦𝑆))
3 df-ov 7161 . . . . 5 (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩)
4 oprssdm.2 . . . . 5 ((𝑥𝑆𝑦𝑆) → (𝑥𝐹𝑦) ∈ 𝑆)
53, 4eqeltrrid 2920 . . . 4 ((𝑥𝑆𝑦𝑆) → (𝐹‘⟨𝑥, 𝑦⟩) ∈ 𝑆)
6 oprssdm.1 . . . . . 6 ¬ ∅ ∈ 𝑆
7 ndmfv 6702 . . . . . . 7 (¬ ⟨𝑥, 𝑦⟩ ∈ dom 𝐹 → (𝐹‘⟨𝑥, 𝑦⟩) = ∅)
87eleq1d 2899 . . . . . 6 (¬ ⟨𝑥, 𝑦⟩ ∈ dom 𝐹 → ((𝐹‘⟨𝑥, 𝑦⟩) ∈ 𝑆 ↔ ∅ ∈ 𝑆))
96, 8mtbiri 329 . . . . 5 (¬ ⟨𝑥, 𝑦⟩ ∈ dom 𝐹 → ¬ (𝐹‘⟨𝑥, 𝑦⟩) ∈ 𝑆)
109con4i 114 . . . 4 ((𝐹‘⟨𝑥, 𝑦⟩) ∈ 𝑆 → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹)
115, 10syl 17 . . 3 ((𝑥𝑆𝑦𝑆) → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹)
122, 11sylbi 219 . 2 (⟨𝑥, 𝑦⟩ ∈ (𝑆 × 𝑆) → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹)
131, 12relssi 5662 1 (𝑆 × 𝑆) ⊆ dom 𝐹
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wcel 2114  wss 3938  c0 4293  cop 4575   × cxp 5555  dom cdm 5557  cfv 6357  (class class class)co 7158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-xp 5563  df-rel 5564  df-dm 5567  df-iota 6316  df-fv 6365  df-ov 7161
This theorem is referenced by:  dmaddsr  10509  dmmulsr  10510  axaddf  10569  axmulf  10570
  Copyright terms: Public domain W3C validator