| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oprssdm | Structured version Visualization version GIF version | ||
| Description: Domain of closure of an operation. (Contributed by NM, 24-Aug-1995.) |
| Ref | Expression |
|---|---|
| oprssdm.1 | ⊢ ¬ ∅ ∈ 𝑆 |
| oprssdm.2 | ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥𝐹𝑦) ∈ 𝑆) |
| Ref | Expression |
|---|---|
| oprssdm | ⊢ (𝑆 × 𝑆) ⊆ dom 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 5641 | . 2 ⊢ Rel (𝑆 × 𝑆) | |
| 2 | opelxp 5659 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ (𝑆 × 𝑆) ↔ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) | |
| 3 | df-ov 7356 | . . . . 5 ⊢ (𝑥𝐹𝑦) = (𝐹‘〈𝑥, 𝑦〉) | |
| 4 | oprssdm.2 | . . . . 5 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥𝐹𝑦) ∈ 𝑆) | |
| 5 | 3, 4 | eqeltrrid 2833 | . . . 4 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝐹‘〈𝑥, 𝑦〉) ∈ 𝑆) |
| 6 | oprssdm.1 | . . . . . 6 ⊢ ¬ ∅ ∈ 𝑆 | |
| 7 | ndmfv 6859 | . . . . . . 7 ⊢ (¬ 〈𝑥, 𝑦〉 ∈ dom 𝐹 → (𝐹‘〈𝑥, 𝑦〉) = ∅) | |
| 8 | 7 | eleq1d 2813 | . . . . . 6 ⊢ (¬ 〈𝑥, 𝑦〉 ∈ dom 𝐹 → ((𝐹‘〈𝑥, 𝑦〉) ∈ 𝑆 ↔ ∅ ∈ 𝑆)) |
| 9 | 6, 8 | mtbiri 327 | . . . . 5 ⊢ (¬ 〈𝑥, 𝑦〉 ∈ dom 𝐹 → ¬ (𝐹‘〈𝑥, 𝑦〉) ∈ 𝑆) |
| 10 | 9 | con4i 114 | . . . 4 ⊢ ((𝐹‘〈𝑥, 𝑦〉) ∈ 𝑆 → 〈𝑥, 𝑦〉 ∈ dom 𝐹) |
| 11 | 5, 10 | syl 17 | . . 3 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → 〈𝑥, 𝑦〉 ∈ dom 𝐹) |
| 12 | 2, 11 | sylbi 217 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ (𝑆 × 𝑆) → 〈𝑥, 𝑦〉 ∈ dom 𝐹) |
| 13 | 1, 12 | relssi 5734 | 1 ⊢ (𝑆 × 𝑆) ⊆ dom 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3905 ∅c0 4286 〈cop 4585 × cxp 5621 dom cdm 5623 ‘cfv 6486 (class class class)co 7353 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-dm 5633 df-iota 6442 df-fv 6494 df-ov 7356 |
| This theorem is referenced by: dmaddsr 10998 dmmulsr 10999 axaddf 11058 axmulf 11059 |
| Copyright terms: Public domain | W3C validator |