MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprssdm Structured version   Visualization version   GIF version

Theorem oprssdm 7631
Description: Domain of closure of an operation. (Contributed by NM, 24-Aug-1995.)
Hypotheses
Ref Expression
oprssdm.1 ¬ ∅ ∈ 𝑆
oprssdm.2 ((𝑥𝑆𝑦𝑆) → (𝑥𝐹𝑦) ∈ 𝑆)
Assertion
Ref Expression
oprssdm (𝑆 × 𝑆) ⊆ dom 𝐹
Distinct variable groups:   𝑥,𝑦,𝑆   𝑥,𝐹,𝑦

Proof of Theorem oprssdm
StepHypRef Expression
1 relxp 5718 . 2 Rel (𝑆 × 𝑆)
2 opelxp 5736 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝑆 × 𝑆) ↔ (𝑥𝑆𝑦𝑆))
3 df-ov 7451 . . . . 5 (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩)
4 oprssdm.2 . . . . 5 ((𝑥𝑆𝑦𝑆) → (𝑥𝐹𝑦) ∈ 𝑆)
53, 4eqeltrrid 2849 . . . 4 ((𝑥𝑆𝑦𝑆) → (𝐹‘⟨𝑥, 𝑦⟩) ∈ 𝑆)
6 oprssdm.1 . . . . . 6 ¬ ∅ ∈ 𝑆
7 ndmfv 6955 . . . . . . 7 (¬ ⟨𝑥, 𝑦⟩ ∈ dom 𝐹 → (𝐹‘⟨𝑥, 𝑦⟩) = ∅)
87eleq1d 2829 . . . . . 6 (¬ ⟨𝑥, 𝑦⟩ ∈ dom 𝐹 → ((𝐹‘⟨𝑥, 𝑦⟩) ∈ 𝑆 ↔ ∅ ∈ 𝑆))
96, 8mtbiri 327 . . . . 5 (¬ ⟨𝑥, 𝑦⟩ ∈ dom 𝐹 → ¬ (𝐹‘⟨𝑥, 𝑦⟩) ∈ 𝑆)
109con4i 114 . . . 4 ((𝐹‘⟨𝑥, 𝑦⟩) ∈ 𝑆 → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹)
115, 10syl 17 . . 3 ((𝑥𝑆𝑦𝑆) → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹)
122, 11sylbi 217 . 2 (⟨𝑥, 𝑦⟩ ∈ (𝑆 × 𝑆) → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹)
131, 12relssi 5811 1 (𝑆 × 𝑆) ⊆ dom 𝐹
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2108  wss 3976  c0 4352  cop 4654   × cxp 5698  dom cdm 5700  cfv 6573  (class class class)co 7448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-dm 5710  df-iota 6525  df-fv 6581  df-ov 7451
This theorem is referenced by:  dmaddsr  11154  dmmulsr  11155  axaddf  11214  axmulf  11215
  Copyright terms: Public domain W3C validator