MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprssdm Structured version   Visualization version   GIF version

Theorem oprssdm 7431
Description: Domain of closure of an operation. (Contributed by NM, 24-Aug-1995.)
Hypotheses
Ref Expression
oprssdm.1 ¬ ∅ ∈ 𝑆
oprssdm.2 ((𝑥𝑆𝑦𝑆) → (𝑥𝐹𝑦) ∈ 𝑆)
Assertion
Ref Expression
oprssdm (𝑆 × 𝑆) ⊆ dom 𝐹
Distinct variable groups:   𝑥,𝑦,𝑆   𝑥,𝐹,𝑦

Proof of Theorem oprssdm
StepHypRef Expression
1 relxp 5598 . 2 Rel (𝑆 × 𝑆)
2 opelxp 5616 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝑆 × 𝑆) ↔ (𝑥𝑆𝑦𝑆))
3 df-ov 7258 . . . . 5 (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩)
4 oprssdm.2 . . . . 5 ((𝑥𝑆𝑦𝑆) → (𝑥𝐹𝑦) ∈ 𝑆)
53, 4eqeltrrid 2844 . . . 4 ((𝑥𝑆𝑦𝑆) → (𝐹‘⟨𝑥, 𝑦⟩) ∈ 𝑆)
6 oprssdm.1 . . . . . 6 ¬ ∅ ∈ 𝑆
7 ndmfv 6786 . . . . . . 7 (¬ ⟨𝑥, 𝑦⟩ ∈ dom 𝐹 → (𝐹‘⟨𝑥, 𝑦⟩) = ∅)
87eleq1d 2823 . . . . . 6 (¬ ⟨𝑥, 𝑦⟩ ∈ dom 𝐹 → ((𝐹‘⟨𝑥, 𝑦⟩) ∈ 𝑆 ↔ ∅ ∈ 𝑆))
96, 8mtbiri 326 . . . . 5 (¬ ⟨𝑥, 𝑦⟩ ∈ dom 𝐹 → ¬ (𝐹‘⟨𝑥, 𝑦⟩) ∈ 𝑆)
109con4i 114 . . . 4 ((𝐹‘⟨𝑥, 𝑦⟩) ∈ 𝑆 → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹)
115, 10syl 17 . . 3 ((𝑥𝑆𝑦𝑆) → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹)
122, 11sylbi 216 . 2 (⟨𝑥, 𝑦⟩ ∈ (𝑆 × 𝑆) → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹)
131, 12relssi 5686 1 (𝑆 × 𝑆) ⊆ dom 𝐹
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2108  wss 3883  c0 4253  cop 4564   × cxp 5578  dom cdm 5580  cfv 6418  (class class class)co 7255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-dm 5590  df-iota 6376  df-fv 6426  df-ov 7258
This theorem is referenced by:  dmaddsr  10772  dmmulsr  10773  axaddf  10832  axmulf  10833
  Copyright terms: Public domain W3C validator