| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idssen | Structured version Visualization version GIF version | ||
| Description: Equality implies equinumerosity. (Contributed by NM, 30-Apr-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| Ref | Expression |
|---|---|
| idssen | ⊢ I ⊆ ≈ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reli 5765 | . 2 ⊢ Rel I | |
| 2 | vex 3440 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 3 | 2 | ideq 5791 | . . . 4 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
| 4 | eqeng 8908 | . . . . 5 ⊢ (𝑥 ∈ V → (𝑥 = 𝑦 → 𝑥 ≈ 𝑦)) | |
| 5 | 4 | elv 3441 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝑥 ≈ 𝑦) |
| 6 | 3, 5 | sylbi 217 | . . 3 ⊢ (𝑥 I 𝑦 → 𝑥 ≈ 𝑦) |
| 7 | df-br 5090 | . . 3 ⊢ (𝑥 I 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ I ) | |
| 8 | df-br 5090 | . . 3 ⊢ (𝑥 ≈ 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ ≈ ) | |
| 9 | 6, 7, 8 | 3imtr3i 291 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ I → 〈𝑥, 𝑦〉 ∈ ≈ ) |
| 10 | 1, 9 | relssi 5726 | 1 ⊢ I ⊆ ≈ |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 〈cop 4579 class class class wbr 5089 I cid 5508 ≈ cen 8866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-en 8870 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |