MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idssen Structured version   Visualization version   GIF version

Theorem idssen 8286
Description: Equality implies equinumerosity. (Contributed by NM, 30-Apr-1998.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
idssen I ⊆ ≈

Proof of Theorem idssen
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reli 5495 . 2 Rel I
2 vex 3401 . . . . 5 𝑦 ∈ V
32ideq 5520 . . . 4 (𝑥 I 𝑦𝑥 = 𝑦)
4 eqeng 8275 . . . . 5 (𝑥 ∈ V → (𝑥 = 𝑦𝑥𝑦))
54elv 3402 . . . 4 (𝑥 = 𝑦𝑥𝑦)
63, 5sylbi 209 . . 3 (𝑥 I 𝑦𝑥𝑦)
7 df-br 4887 . . 3 (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
8 df-br 4887 . . 3 (𝑥𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ ≈ )
96, 7, 83imtr3i 283 . 2 (⟨𝑥, 𝑦⟩ ∈ I → ⟨𝑥, 𝑦⟩ ∈ ≈ )
101, 9relssi 5458 1 I ⊆ ≈
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  Vcvv 3398  wss 3792  cop 4404   class class class wbr 4886   I cid 5260  cen 8238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-br 4887  df-opab 4949  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-en 8242
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator