| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idssen | Structured version Visualization version GIF version | ||
| Description: Equality implies equinumerosity. (Contributed by NM, 30-Apr-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| Ref | Expression |
|---|---|
| idssen | ⊢ I ⊆ ≈ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reli 5789 | . 2 ⊢ Rel I | |
| 2 | vex 3451 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 3 | 2 | ideq 5816 | . . . 4 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
| 4 | eqeng 8957 | . . . . 5 ⊢ (𝑥 ∈ V → (𝑥 = 𝑦 → 𝑥 ≈ 𝑦)) | |
| 5 | 4 | elv 3452 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝑥 ≈ 𝑦) |
| 6 | 3, 5 | sylbi 217 | . . 3 ⊢ (𝑥 I 𝑦 → 𝑥 ≈ 𝑦) |
| 7 | df-br 5108 | . . 3 ⊢ (𝑥 I 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ I ) | |
| 8 | df-br 5108 | . . 3 ⊢ (𝑥 ≈ 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ ≈ ) | |
| 9 | 6, 7, 8 | 3imtr3i 291 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ I → 〈𝑥, 𝑦〉 ∈ ≈ ) |
| 10 | 1, 9 | relssi 5750 | 1 ⊢ I ⊆ ≈ |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 〈cop 4595 class class class wbr 5107 I cid 5532 ≈ cen 8915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-en 8919 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |