MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idssen Structured version   Visualization version   GIF version

Theorem idssen 8968
Description: Equality implies equinumerosity. (Contributed by NM, 30-Apr-1998.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
idssen I ⊆ ≈

Proof of Theorem idssen
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reli 5789 . 2 Rel I
2 vex 3451 . . . . 5 𝑦 ∈ V
32ideq 5816 . . . 4 (𝑥 I 𝑦𝑥 = 𝑦)
4 eqeng 8957 . . . . 5 (𝑥 ∈ V → (𝑥 = 𝑦𝑥𝑦))
54elv 3452 . . . 4 (𝑥 = 𝑦𝑥𝑦)
63, 5sylbi 217 . . 3 (𝑥 I 𝑦𝑥𝑦)
7 df-br 5108 . . 3 (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
8 df-br 5108 . . 3 (𝑥𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ ≈ )
96, 7, 83imtr3i 291 . 2 (⟨𝑥, 𝑦⟩ ∈ I → ⟨𝑥, 𝑦⟩ ∈ ≈ )
101, 9relssi 5750 1 I ⊆ ≈
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3447  wss 3914  cop 4595   class class class wbr 5107   I cid 5532  cen 8915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-en 8919
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator