Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > idssen | Structured version Visualization version GIF version |
Description: Equality implies equinumerosity. (Contributed by NM, 30-Apr-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) |
Ref | Expression |
---|---|
idssen | ⊢ I ⊆ ≈ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reli 5769 | . 2 ⊢ Rel I | |
2 | vex 3445 | . . . . 5 ⊢ 𝑦 ∈ V | |
3 | 2 | ideq 5795 | . . . 4 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
4 | eqeng 8848 | . . . . 5 ⊢ (𝑥 ∈ V → (𝑥 = 𝑦 → 𝑥 ≈ 𝑦)) | |
5 | 4 | elv 3447 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝑥 ≈ 𝑦) |
6 | 3, 5 | sylbi 216 | . . 3 ⊢ (𝑥 I 𝑦 → 𝑥 ≈ 𝑦) |
7 | df-br 5094 | . . 3 ⊢ (𝑥 I 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ I ) | |
8 | df-br 5094 | . . 3 ⊢ (𝑥 ≈ 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ ≈ ) | |
9 | 6, 7, 8 | 3imtr3i 290 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ I → 〈𝑥, 𝑦〉 ∈ ≈ ) |
10 | 1, 9 | relssi 5730 | 1 ⊢ I ⊆ ≈ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 Vcvv 3441 ⊆ wss 3898 〈cop 4580 class class class wbr 5093 I cid 5518 ≈ cen 8802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-br 5094 df-opab 5156 df-id 5519 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-en 8806 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |