![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > idssen | Structured version Visualization version GIF version |
Description: Equality implies equinumerosity. (Contributed by NM, 30-Apr-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) |
Ref | Expression |
---|---|
idssen | ⊢ I ⊆ ≈ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reli 5850 | . 2 ⊢ Rel I | |
2 | vex 3492 | . . . . 5 ⊢ 𝑦 ∈ V | |
3 | 2 | ideq 5877 | . . . 4 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
4 | eqeng 9048 | . . . . 5 ⊢ (𝑥 ∈ V → (𝑥 = 𝑦 → 𝑥 ≈ 𝑦)) | |
5 | 4 | elv 3493 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝑥 ≈ 𝑦) |
6 | 3, 5 | sylbi 217 | . . 3 ⊢ (𝑥 I 𝑦 → 𝑥 ≈ 𝑦) |
7 | df-br 5167 | . . 3 ⊢ (𝑥 I 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ I ) | |
8 | df-br 5167 | . . 3 ⊢ (𝑥 ≈ 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ ≈ ) | |
9 | 6, 7, 8 | 3imtr3i 291 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ I → 〈𝑥, 𝑦〉 ∈ ≈ ) |
10 | 1, 9 | relssi 5811 | 1 ⊢ I ⊆ ≈ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 〈cop 4654 class class class wbr 5166 I cid 5592 ≈ cen 9002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-en 9006 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |