MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idssen Structured version   Visualization version   GIF version

Theorem idssen 9045
Description: Equality implies equinumerosity. (Contributed by NM, 30-Apr-1998.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
idssen I ⊆ ≈

Proof of Theorem idssen
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reli 5843 . 2 Rel I
2 vex 3485 . . . . 5 𝑦 ∈ V
32ideq 5870 . . . 4 (𝑥 I 𝑦𝑥 = 𝑦)
4 eqeng 9034 . . . . 5 (𝑥 ∈ V → (𝑥 = 𝑦𝑥𝑦))
54elv 3486 . . . 4 (𝑥 = 𝑦𝑥𝑦)
63, 5sylbi 217 . . 3 (𝑥 I 𝑦𝑥𝑦)
7 df-br 5152 . . 3 (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
8 df-br 5152 . . 3 (𝑥𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ ≈ )
96, 7, 83imtr3i 291 . 2 (⟨𝑥, 𝑦⟩ ∈ I → ⟨𝑥, 𝑦⟩ ∈ ≈ )
101, 9relssi 5804 1 I ⊆ ≈
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3481  wss 3966  cop 4640   class class class wbr 5151   I cid 5586  cen 8990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-en 8994
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator