MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txuni2 Structured version   Visualization version   GIF version

Theorem txuni2 22170
Description: The underlying set of the product of two topologies. (Contributed by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
txval.1 𝐵 = ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))
txuni2.1 𝑋 = 𝑅
txuni2.2 𝑌 = 𝑆
Assertion
Ref Expression
txuni2 (𝑋 × 𝑌) = 𝐵
Distinct variable groups:   𝑥,𝑦,𝑅   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem txuni2
Dummy variables 𝑟 𝑠 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 5537 . . 3 Rel (𝑋 × 𝑌)
2 txuni2.1 . . . . . . . 8 𝑋 = 𝑅
32eleq2i 2881 . . . . . . 7 (𝑧𝑋𝑧 𝑅)
4 eluni2 4804 . . . . . . 7 (𝑧 𝑅 ↔ ∃𝑟𝑅 𝑧𝑟)
53, 4bitri 278 . . . . . 6 (𝑧𝑋 ↔ ∃𝑟𝑅 𝑧𝑟)
6 txuni2.2 . . . . . . . 8 𝑌 = 𝑆
76eleq2i 2881 . . . . . . 7 (𝑤𝑌𝑤 𝑆)
8 eluni2 4804 . . . . . . 7 (𝑤 𝑆 ↔ ∃𝑠𝑆 𝑤𝑠)
97, 8bitri 278 . . . . . 6 (𝑤𝑌 ↔ ∃𝑠𝑆 𝑤𝑠)
105, 9anbi12i 629 . . . . 5 ((𝑧𝑋𝑤𝑌) ↔ (∃𝑟𝑅 𝑧𝑟 ∧ ∃𝑠𝑆 𝑤𝑠))
11 opelxp 5555 . . . . 5 (⟨𝑧, 𝑤⟩ ∈ (𝑋 × 𝑌) ↔ (𝑧𝑋𝑤𝑌))
12 reeanv 3320 . . . . 5 (∃𝑟𝑅𝑠𝑆 (𝑧𝑟𝑤𝑠) ↔ (∃𝑟𝑅 𝑧𝑟 ∧ ∃𝑠𝑆 𝑤𝑠))
1310, 11, 123bitr4i 306 . . . 4 (⟨𝑧, 𝑤⟩ ∈ (𝑋 × 𝑌) ↔ ∃𝑟𝑅𝑠𝑆 (𝑧𝑟𝑤𝑠))
14 opelxp 5555 . . . . . 6 (⟨𝑧, 𝑤⟩ ∈ (𝑟 × 𝑠) ↔ (𝑧𝑟𝑤𝑠))
15 eqid 2798 . . . . . . . . . 10 (𝑟 × 𝑠) = (𝑟 × 𝑠)
16 xpeq1 5533 . . . . . . . . . . . 12 (𝑥 = 𝑟 → (𝑥 × 𝑦) = (𝑟 × 𝑦))
1716eqeq2d 2809 . . . . . . . . . . 11 (𝑥 = 𝑟 → ((𝑟 × 𝑠) = (𝑥 × 𝑦) ↔ (𝑟 × 𝑠) = (𝑟 × 𝑦)))
18 xpeq2 5540 . . . . . . . . . . . 12 (𝑦 = 𝑠 → (𝑟 × 𝑦) = (𝑟 × 𝑠))
1918eqeq2d 2809 . . . . . . . . . . 11 (𝑦 = 𝑠 → ((𝑟 × 𝑠) = (𝑟 × 𝑦) ↔ (𝑟 × 𝑠) = (𝑟 × 𝑠)))
2017, 19rspc2ev 3583 . . . . . . . . . 10 ((𝑟𝑅𝑠𝑆 ∧ (𝑟 × 𝑠) = (𝑟 × 𝑠)) → ∃𝑥𝑅𝑦𝑆 (𝑟 × 𝑠) = (𝑥 × 𝑦))
2115, 20mp3an3 1447 . . . . . . . . 9 ((𝑟𝑅𝑠𝑆) → ∃𝑥𝑅𝑦𝑆 (𝑟 × 𝑠) = (𝑥 × 𝑦))
22 vex 3444 . . . . . . . . . . 11 𝑟 ∈ V
23 vex 3444 . . . . . . . . . . 11 𝑠 ∈ V
2422, 23xpex 7456 . . . . . . . . . 10 (𝑟 × 𝑠) ∈ V
25 eqeq1 2802 . . . . . . . . . . 11 (𝑧 = (𝑟 × 𝑠) → (𝑧 = (𝑥 × 𝑦) ↔ (𝑟 × 𝑠) = (𝑥 × 𝑦)))
26252rexbidv 3259 . . . . . . . . . 10 (𝑧 = (𝑟 × 𝑠) → (∃𝑥𝑅𝑦𝑆 𝑧 = (𝑥 × 𝑦) ↔ ∃𝑥𝑅𝑦𝑆 (𝑟 × 𝑠) = (𝑥 × 𝑦)))
27 txval.1 . . . . . . . . . . 11 𝐵 = ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))
28 eqid 2798 . . . . . . . . . . . 12 (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) = (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))
2928rnmpo 7263 . . . . . . . . . . 11 ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) = {𝑧 ∣ ∃𝑥𝑅𝑦𝑆 𝑧 = (𝑥 × 𝑦)}
3027, 29eqtri 2821 . . . . . . . . . 10 𝐵 = {𝑧 ∣ ∃𝑥𝑅𝑦𝑆 𝑧 = (𝑥 × 𝑦)}
3124, 26, 30elab2 3618 . . . . . . . . 9 ((𝑟 × 𝑠) ∈ 𝐵 ↔ ∃𝑥𝑅𝑦𝑆 (𝑟 × 𝑠) = (𝑥 × 𝑦))
3221, 31sylibr 237 . . . . . . . 8 ((𝑟𝑅𝑠𝑆) → (𝑟 × 𝑠) ∈ 𝐵)
33 elssuni 4830 . . . . . . . 8 ((𝑟 × 𝑠) ∈ 𝐵 → (𝑟 × 𝑠) ⊆ 𝐵)
3432, 33syl 17 . . . . . . 7 ((𝑟𝑅𝑠𝑆) → (𝑟 × 𝑠) ⊆ 𝐵)
3534sseld 3914 . . . . . 6 ((𝑟𝑅𝑠𝑆) → (⟨𝑧, 𝑤⟩ ∈ (𝑟 × 𝑠) → ⟨𝑧, 𝑤⟩ ∈ 𝐵))
3614, 35syl5bir 246 . . . . 5 ((𝑟𝑅𝑠𝑆) → ((𝑧𝑟𝑤𝑠) → ⟨𝑧, 𝑤⟩ ∈ 𝐵))
3736rexlimivv 3251 . . . 4 (∃𝑟𝑅𝑠𝑆 (𝑧𝑟𝑤𝑠) → ⟨𝑧, 𝑤⟩ ∈ 𝐵)
3813, 37sylbi 220 . . 3 (⟨𝑧, 𝑤⟩ ∈ (𝑋 × 𝑌) → ⟨𝑧, 𝑤⟩ ∈ 𝐵)
391, 38relssi 5624 . 2 (𝑋 × 𝑌) ⊆ 𝐵
40 elssuni 4830 . . . . . . . . . 10 (𝑥𝑅𝑥 𝑅)
4140, 2sseqtrrdi 3966 . . . . . . . . 9 (𝑥𝑅𝑥𝑋)
42 elssuni 4830 . . . . . . . . . 10 (𝑦𝑆𝑦 𝑆)
4342, 6sseqtrrdi 3966 . . . . . . . . 9 (𝑦𝑆𝑦𝑌)
44 xpss12 5534 . . . . . . . . 9 ((𝑥𝑋𝑦𝑌) → (𝑥 × 𝑦) ⊆ (𝑋 × 𝑌))
4541, 43, 44syl2an 598 . . . . . . . 8 ((𝑥𝑅𝑦𝑆) → (𝑥 × 𝑦) ⊆ (𝑋 × 𝑌))
46 vex 3444 . . . . . . . . . 10 𝑥 ∈ V
47 vex 3444 . . . . . . . . . 10 𝑦 ∈ V
4846, 47xpex 7456 . . . . . . . . 9 (𝑥 × 𝑦) ∈ V
4948elpw 4501 . . . . . . . 8 ((𝑥 × 𝑦) ∈ 𝒫 (𝑋 × 𝑌) ↔ (𝑥 × 𝑦) ⊆ (𝑋 × 𝑌))
5045, 49sylibr 237 . . . . . . 7 ((𝑥𝑅𝑦𝑆) → (𝑥 × 𝑦) ∈ 𝒫 (𝑋 × 𝑌))
5150rgen2 3168 . . . . . 6 𝑥𝑅𝑦𝑆 (𝑥 × 𝑦) ∈ 𝒫 (𝑋 × 𝑌)
5228fmpo 7748 . . . . . 6 (∀𝑥𝑅𝑦𝑆 (𝑥 × 𝑦) ∈ 𝒫 (𝑋 × 𝑌) ↔ (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)):(𝑅 × 𝑆)⟶𝒫 (𝑋 × 𝑌))
5351, 52mpbi 233 . . . . 5 (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)):(𝑅 × 𝑆)⟶𝒫 (𝑋 × 𝑌)
54 frn 6493 . . . . 5 ((𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)):(𝑅 × 𝑆)⟶𝒫 (𝑋 × 𝑌) → ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) ⊆ 𝒫 (𝑋 × 𝑌))
5553, 54ax-mp 5 . . . 4 ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) ⊆ 𝒫 (𝑋 × 𝑌)
5627, 55eqsstri 3949 . . 3 𝐵 ⊆ 𝒫 (𝑋 × 𝑌)
57 sspwuni 4985 . . 3 (𝐵 ⊆ 𝒫 (𝑋 × 𝑌) ↔ 𝐵 ⊆ (𝑋 × 𝑌))
5856, 57mpbi 233 . 2 𝐵 ⊆ (𝑋 × 𝑌)
5939, 58eqssi 3931 1 (𝑋 × 𝑌) = 𝐵
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1538  wcel 2111  {cab 2776  wral 3106  wrex 3107  wss 3881  𝒫 cpw 4497  cop 4531   cuni 4800   × cxp 5517  ran crn 5520  wf 6320  cmpo 7137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672
This theorem is referenced by:  txbasex  22171  txtopon  22196  sxsigon  31561
  Copyright terms: Public domain W3C validator