MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txuni2 Structured version   Visualization version   GIF version

Theorem txuni2 21746
Description: The underlying set of the product of two topologies. (Contributed by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
txval.1 𝐵 = ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))
txuni2.1 𝑋 = 𝑅
txuni2.2 𝑌 = 𝑆
Assertion
Ref Expression
txuni2 (𝑋 × 𝑌) = 𝐵
Distinct variable groups:   𝑥,𝑦,𝑅   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem txuni2
Dummy variables 𝑟 𝑠 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 5364 . . 3 Rel (𝑋 × 𝑌)
2 txuni2.1 . . . . . . . 8 𝑋 = 𝑅
32eleq2i 2898 . . . . . . 7 (𝑧𝑋𝑧 𝑅)
4 eluni2 4664 . . . . . . 7 (𝑧 𝑅 ↔ ∃𝑟𝑅 𝑧𝑟)
53, 4bitri 267 . . . . . 6 (𝑧𝑋 ↔ ∃𝑟𝑅 𝑧𝑟)
6 txuni2.2 . . . . . . . 8 𝑌 = 𝑆
76eleq2i 2898 . . . . . . 7 (𝑤𝑌𝑤 𝑆)
8 eluni2 4664 . . . . . . 7 (𝑤 𝑆 ↔ ∃𝑠𝑆 𝑤𝑠)
97, 8bitri 267 . . . . . 6 (𝑤𝑌 ↔ ∃𝑠𝑆 𝑤𝑠)
105, 9anbi12i 620 . . . . 5 ((𝑧𝑋𝑤𝑌) ↔ (∃𝑟𝑅 𝑧𝑟 ∧ ∃𝑠𝑆 𝑤𝑠))
11 opelxp 5382 . . . . 5 (⟨𝑧, 𝑤⟩ ∈ (𝑋 × 𝑌) ↔ (𝑧𝑋𝑤𝑌))
12 reeanv 3317 . . . . 5 (∃𝑟𝑅𝑠𝑆 (𝑧𝑟𝑤𝑠) ↔ (∃𝑟𝑅 𝑧𝑟 ∧ ∃𝑠𝑆 𝑤𝑠))
1310, 11, 123bitr4i 295 . . . 4 (⟨𝑧, 𝑤⟩ ∈ (𝑋 × 𝑌) ↔ ∃𝑟𝑅𝑠𝑆 (𝑧𝑟𝑤𝑠))
14 opelxp 5382 . . . . . 6 (⟨𝑧, 𝑤⟩ ∈ (𝑟 × 𝑠) ↔ (𝑧𝑟𝑤𝑠))
15 eqid 2825 . . . . . . . . . 10 (𝑟 × 𝑠) = (𝑟 × 𝑠)
16 xpeq1 5360 . . . . . . . . . . . 12 (𝑥 = 𝑟 → (𝑥 × 𝑦) = (𝑟 × 𝑦))
1716eqeq2d 2835 . . . . . . . . . . 11 (𝑥 = 𝑟 → ((𝑟 × 𝑠) = (𝑥 × 𝑦) ↔ (𝑟 × 𝑠) = (𝑟 × 𝑦)))
18 xpeq2 5367 . . . . . . . . . . . 12 (𝑦 = 𝑠 → (𝑟 × 𝑦) = (𝑟 × 𝑠))
1918eqeq2d 2835 . . . . . . . . . . 11 (𝑦 = 𝑠 → ((𝑟 × 𝑠) = (𝑟 × 𝑦) ↔ (𝑟 × 𝑠) = (𝑟 × 𝑠)))
2017, 19rspc2ev 3541 . . . . . . . . . 10 ((𝑟𝑅𝑠𝑆 ∧ (𝑟 × 𝑠) = (𝑟 × 𝑠)) → ∃𝑥𝑅𝑦𝑆 (𝑟 × 𝑠) = (𝑥 × 𝑦))
2115, 20mp3an3 1578 . . . . . . . . 9 ((𝑟𝑅𝑠𝑆) → ∃𝑥𝑅𝑦𝑆 (𝑟 × 𝑠) = (𝑥 × 𝑦))
22 vex 3417 . . . . . . . . . . 11 𝑟 ∈ V
23 vex 3417 . . . . . . . . . . 11 𝑠 ∈ V
2422, 23xpex 7228 . . . . . . . . . 10 (𝑟 × 𝑠) ∈ V
25 eqeq1 2829 . . . . . . . . . . 11 (𝑧 = (𝑟 × 𝑠) → (𝑧 = (𝑥 × 𝑦) ↔ (𝑟 × 𝑠) = (𝑥 × 𝑦)))
26252rexbidv 3267 . . . . . . . . . 10 (𝑧 = (𝑟 × 𝑠) → (∃𝑥𝑅𝑦𝑆 𝑧 = (𝑥 × 𝑦) ↔ ∃𝑥𝑅𝑦𝑆 (𝑟 × 𝑠) = (𝑥 × 𝑦)))
27 txval.1 . . . . . . . . . . 11 𝐵 = ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))
28 eqid 2825 . . . . . . . . . . . 12 (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) = (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))
2928rnmpt2 7035 . . . . . . . . . . 11 ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) = {𝑧 ∣ ∃𝑥𝑅𝑦𝑆 𝑧 = (𝑥 × 𝑦)}
3027, 29eqtri 2849 . . . . . . . . . 10 𝐵 = {𝑧 ∣ ∃𝑥𝑅𝑦𝑆 𝑧 = (𝑥 × 𝑦)}
3124, 26, 30elab2 3575 . . . . . . . . 9 ((𝑟 × 𝑠) ∈ 𝐵 ↔ ∃𝑥𝑅𝑦𝑆 (𝑟 × 𝑠) = (𝑥 × 𝑦))
3221, 31sylibr 226 . . . . . . . 8 ((𝑟𝑅𝑠𝑆) → (𝑟 × 𝑠) ∈ 𝐵)
33 elssuni 4691 . . . . . . . 8 ((𝑟 × 𝑠) ∈ 𝐵 → (𝑟 × 𝑠) ⊆ 𝐵)
3432, 33syl 17 . . . . . . 7 ((𝑟𝑅𝑠𝑆) → (𝑟 × 𝑠) ⊆ 𝐵)
3534sseld 3826 . . . . . 6 ((𝑟𝑅𝑠𝑆) → (⟨𝑧, 𝑤⟩ ∈ (𝑟 × 𝑠) → ⟨𝑧, 𝑤⟩ ∈ 𝐵))
3614, 35syl5bir 235 . . . . 5 ((𝑟𝑅𝑠𝑆) → ((𝑧𝑟𝑤𝑠) → ⟨𝑧, 𝑤⟩ ∈ 𝐵))
3736rexlimivv 3246 . . . 4 (∃𝑟𝑅𝑠𝑆 (𝑧𝑟𝑤𝑠) → ⟨𝑧, 𝑤⟩ ∈ 𝐵)
3813, 37sylbi 209 . . 3 (⟨𝑧, 𝑤⟩ ∈ (𝑋 × 𝑌) → ⟨𝑧, 𝑤⟩ ∈ 𝐵)
391, 38relssi 5449 . 2 (𝑋 × 𝑌) ⊆ 𝐵
40 elssuni 4691 . . . . . . . . . 10 (𝑥𝑅𝑥 𝑅)
4140, 2syl6sseqr 3877 . . . . . . . . 9 (𝑥𝑅𝑥𝑋)
42 elssuni 4691 . . . . . . . . . 10 (𝑦𝑆𝑦 𝑆)
4342, 6syl6sseqr 3877 . . . . . . . . 9 (𝑦𝑆𝑦𝑌)
44 xpss12 5361 . . . . . . . . 9 ((𝑥𝑋𝑦𝑌) → (𝑥 × 𝑦) ⊆ (𝑋 × 𝑌))
4541, 43, 44syl2an 589 . . . . . . . 8 ((𝑥𝑅𝑦𝑆) → (𝑥 × 𝑦) ⊆ (𝑋 × 𝑌))
46 vex 3417 . . . . . . . . . 10 𝑥 ∈ V
47 vex 3417 . . . . . . . . . 10 𝑦 ∈ V
4846, 47xpex 7228 . . . . . . . . 9 (𝑥 × 𝑦) ∈ V
4948elpw 4386 . . . . . . . 8 ((𝑥 × 𝑦) ∈ 𝒫 (𝑋 × 𝑌) ↔ (𝑥 × 𝑦) ⊆ (𝑋 × 𝑌))
5045, 49sylibr 226 . . . . . . 7 ((𝑥𝑅𝑦𝑆) → (𝑥 × 𝑦) ∈ 𝒫 (𝑋 × 𝑌))
5150rgen2 3184 . . . . . 6 𝑥𝑅𝑦𝑆 (𝑥 × 𝑦) ∈ 𝒫 (𝑋 × 𝑌)
5228fmpt2 7505 . . . . . 6 (∀𝑥𝑅𝑦𝑆 (𝑥 × 𝑦) ∈ 𝒫 (𝑋 × 𝑌) ↔ (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)):(𝑅 × 𝑆)⟶𝒫 (𝑋 × 𝑌))
5351, 52mpbi 222 . . . . 5 (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)):(𝑅 × 𝑆)⟶𝒫 (𝑋 × 𝑌)
54 frn 6288 . . . . 5 ((𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)):(𝑅 × 𝑆)⟶𝒫 (𝑋 × 𝑌) → ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) ⊆ 𝒫 (𝑋 × 𝑌))
5553, 54ax-mp 5 . . . 4 ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) ⊆ 𝒫 (𝑋 × 𝑌)
5627, 55eqsstri 3860 . . 3 𝐵 ⊆ 𝒫 (𝑋 × 𝑌)
57 sspwuni 4834 . . 3 (𝐵 ⊆ 𝒫 (𝑋 × 𝑌) ↔ 𝐵 ⊆ (𝑋 × 𝑌))
5856, 57mpbi 222 . 2 𝐵 ⊆ (𝑋 × 𝑌)
5939, 58eqssi 3843 1 (𝑋 × 𝑌) = 𝐵
Colors of variables: wff setvar class
Syntax hints:  wa 386   = wceq 1656  wcel 2164  {cab 2811  wral 3117  wrex 3118  wss 3798  𝒫 cpw 4380  cop 4405   cuni 4660   × cxp 5344  ran crn 5347  wf 6123  cmpt2 6912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-fv 6135  df-oprab 6914  df-mpt2 6915  df-1st 7433  df-2nd 7434
This theorem is referenced by:  txbasex  21747  txtopon  21772  sxsigon  30796
  Copyright terms: Public domain W3C validator