MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txuni2 Structured version   Visualization version   GIF version

Theorem txuni2 23573
Description: The underlying set of the product of two topologies. (Contributed by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
txval.1 𝐵 = ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))
txuni2.1 𝑋 = 𝑅
txuni2.2 𝑌 = 𝑆
Assertion
Ref Expression
txuni2 (𝑋 × 𝑌) = 𝐵
Distinct variable groups:   𝑥,𝑦,𝑅   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem txuni2
Dummy variables 𝑟 𝑠 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 5703 . . 3 Rel (𝑋 × 𝑌)
2 txuni2.1 . . . . . . . 8 𝑋 = 𝑅
32eleq2i 2833 . . . . . . 7 (𝑧𝑋𝑧 𝑅)
4 eluni2 4911 . . . . . . 7 (𝑧 𝑅 ↔ ∃𝑟𝑅 𝑧𝑟)
53, 4bitri 275 . . . . . 6 (𝑧𝑋 ↔ ∃𝑟𝑅 𝑧𝑟)
6 txuni2.2 . . . . . . . 8 𝑌 = 𝑆
76eleq2i 2833 . . . . . . 7 (𝑤𝑌𝑤 𝑆)
8 eluni2 4911 . . . . . . 7 (𝑤 𝑆 ↔ ∃𝑠𝑆 𝑤𝑠)
97, 8bitri 275 . . . . . 6 (𝑤𝑌 ↔ ∃𝑠𝑆 𝑤𝑠)
105, 9anbi12i 628 . . . . 5 ((𝑧𝑋𝑤𝑌) ↔ (∃𝑟𝑅 𝑧𝑟 ∧ ∃𝑠𝑆 𝑤𝑠))
11 opelxp 5721 . . . . 5 (⟨𝑧, 𝑤⟩ ∈ (𝑋 × 𝑌) ↔ (𝑧𝑋𝑤𝑌))
12 reeanv 3229 . . . . 5 (∃𝑟𝑅𝑠𝑆 (𝑧𝑟𝑤𝑠) ↔ (∃𝑟𝑅 𝑧𝑟 ∧ ∃𝑠𝑆 𝑤𝑠))
1310, 11, 123bitr4i 303 . . . 4 (⟨𝑧, 𝑤⟩ ∈ (𝑋 × 𝑌) ↔ ∃𝑟𝑅𝑠𝑆 (𝑧𝑟𝑤𝑠))
14 opelxp 5721 . . . . . 6 (⟨𝑧, 𝑤⟩ ∈ (𝑟 × 𝑠) ↔ (𝑧𝑟𝑤𝑠))
15 eqid 2737 . . . . . . . . . 10 (𝑟 × 𝑠) = (𝑟 × 𝑠)
16 xpeq1 5699 . . . . . . . . . . . 12 (𝑥 = 𝑟 → (𝑥 × 𝑦) = (𝑟 × 𝑦))
1716eqeq2d 2748 . . . . . . . . . . 11 (𝑥 = 𝑟 → ((𝑟 × 𝑠) = (𝑥 × 𝑦) ↔ (𝑟 × 𝑠) = (𝑟 × 𝑦)))
18 xpeq2 5706 . . . . . . . . . . . 12 (𝑦 = 𝑠 → (𝑟 × 𝑦) = (𝑟 × 𝑠))
1918eqeq2d 2748 . . . . . . . . . . 11 (𝑦 = 𝑠 → ((𝑟 × 𝑠) = (𝑟 × 𝑦) ↔ (𝑟 × 𝑠) = (𝑟 × 𝑠)))
2017, 19rspc2ev 3635 . . . . . . . . . 10 ((𝑟𝑅𝑠𝑆 ∧ (𝑟 × 𝑠) = (𝑟 × 𝑠)) → ∃𝑥𝑅𝑦𝑆 (𝑟 × 𝑠) = (𝑥 × 𝑦))
2115, 20mp3an3 1452 . . . . . . . . 9 ((𝑟𝑅𝑠𝑆) → ∃𝑥𝑅𝑦𝑆 (𝑟 × 𝑠) = (𝑥 × 𝑦))
22 vex 3484 . . . . . . . . . . 11 𝑟 ∈ V
23 vex 3484 . . . . . . . . . . 11 𝑠 ∈ V
2422, 23xpex 7773 . . . . . . . . . 10 (𝑟 × 𝑠) ∈ V
25 eqeq1 2741 . . . . . . . . . . 11 (𝑧 = (𝑟 × 𝑠) → (𝑧 = (𝑥 × 𝑦) ↔ (𝑟 × 𝑠) = (𝑥 × 𝑦)))
26252rexbidv 3222 . . . . . . . . . 10 (𝑧 = (𝑟 × 𝑠) → (∃𝑥𝑅𝑦𝑆 𝑧 = (𝑥 × 𝑦) ↔ ∃𝑥𝑅𝑦𝑆 (𝑟 × 𝑠) = (𝑥 × 𝑦)))
27 txval.1 . . . . . . . . . . 11 𝐵 = ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))
28 eqid 2737 . . . . . . . . . . . 12 (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) = (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))
2928rnmpo 7566 . . . . . . . . . . 11 ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) = {𝑧 ∣ ∃𝑥𝑅𝑦𝑆 𝑧 = (𝑥 × 𝑦)}
3027, 29eqtri 2765 . . . . . . . . . 10 𝐵 = {𝑧 ∣ ∃𝑥𝑅𝑦𝑆 𝑧 = (𝑥 × 𝑦)}
3124, 26, 30elab2 3682 . . . . . . . . 9 ((𝑟 × 𝑠) ∈ 𝐵 ↔ ∃𝑥𝑅𝑦𝑆 (𝑟 × 𝑠) = (𝑥 × 𝑦))
3221, 31sylibr 234 . . . . . . . 8 ((𝑟𝑅𝑠𝑆) → (𝑟 × 𝑠) ∈ 𝐵)
33 elssuni 4937 . . . . . . . 8 ((𝑟 × 𝑠) ∈ 𝐵 → (𝑟 × 𝑠) ⊆ 𝐵)
3432, 33syl 17 . . . . . . 7 ((𝑟𝑅𝑠𝑆) → (𝑟 × 𝑠) ⊆ 𝐵)
3534sseld 3982 . . . . . 6 ((𝑟𝑅𝑠𝑆) → (⟨𝑧, 𝑤⟩ ∈ (𝑟 × 𝑠) → ⟨𝑧, 𝑤⟩ ∈ 𝐵))
3614, 35biimtrrid 243 . . . . 5 ((𝑟𝑅𝑠𝑆) → ((𝑧𝑟𝑤𝑠) → ⟨𝑧, 𝑤⟩ ∈ 𝐵))
3736rexlimivv 3201 . . . 4 (∃𝑟𝑅𝑠𝑆 (𝑧𝑟𝑤𝑠) → ⟨𝑧, 𝑤⟩ ∈ 𝐵)
3813, 37sylbi 217 . . 3 (⟨𝑧, 𝑤⟩ ∈ (𝑋 × 𝑌) → ⟨𝑧, 𝑤⟩ ∈ 𝐵)
391, 38relssi 5797 . 2 (𝑋 × 𝑌) ⊆ 𝐵
40 elssuni 4937 . . . . . . . . . 10 (𝑥𝑅𝑥 𝑅)
4140, 2sseqtrrdi 4025 . . . . . . . . 9 (𝑥𝑅𝑥𝑋)
42 elssuni 4937 . . . . . . . . . 10 (𝑦𝑆𝑦 𝑆)
4342, 6sseqtrrdi 4025 . . . . . . . . 9 (𝑦𝑆𝑦𝑌)
44 xpss12 5700 . . . . . . . . 9 ((𝑥𝑋𝑦𝑌) → (𝑥 × 𝑦) ⊆ (𝑋 × 𝑌))
4541, 43, 44syl2an 596 . . . . . . . 8 ((𝑥𝑅𝑦𝑆) → (𝑥 × 𝑦) ⊆ (𝑋 × 𝑌))
46 vex 3484 . . . . . . . . . 10 𝑥 ∈ V
47 vex 3484 . . . . . . . . . 10 𝑦 ∈ V
4846, 47xpex 7773 . . . . . . . . 9 (𝑥 × 𝑦) ∈ V
4948elpw 4604 . . . . . . . 8 ((𝑥 × 𝑦) ∈ 𝒫 (𝑋 × 𝑌) ↔ (𝑥 × 𝑦) ⊆ (𝑋 × 𝑌))
5045, 49sylibr 234 . . . . . . 7 ((𝑥𝑅𝑦𝑆) → (𝑥 × 𝑦) ∈ 𝒫 (𝑋 × 𝑌))
5150rgen2 3199 . . . . . 6 𝑥𝑅𝑦𝑆 (𝑥 × 𝑦) ∈ 𝒫 (𝑋 × 𝑌)
5228fmpo 8093 . . . . . 6 (∀𝑥𝑅𝑦𝑆 (𝑥 × 𝑦) ∈ 𝒫 (𝑋 × 𝑌) ↔ (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)):(𝑅 × 𝑆)⟶𝒫 (𝑋 × 𝑌))
5351, 52mpbi 230 . . . . 5 (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)):(𝑅 × 𝑆)⟶𝒫 (𝑋 × 𝑌)
54 frn 6743 . . . . 5 ((𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)):(𝑅 × 𝑆)⟶𝒫 (𝑋 × 𝑌) → ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) ⊆ 𝒫 (𝑋 × 𝑌))
5553, 54ax-mp 5 . . . 4 ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) ⊆ 𝒫 (𝑋 × 𝑌)
5627, 55eqsstri 4030 . . 3 𝐵 ⊆ 𝒫 (𝑋 × 𝑌)
57 sspwuni 5100 . . 3 (𝐵 ⊆ 𝒫 (𝑋 × 𝑌) ↔ 𝐵 ⊆ (𝑋 × 𝑌))
5856, 57mpbi 230 . 2 𝐵 ⊆ (𝑋 × 𝑌)
5939, 58eqssi 4000 1 (𝑋 × 𝑌) = 𝐵
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2108  {cab 2714  wral 3061  wrex 3070  wss 3951  𝒫 cpw 4600  cop 4632   cuni 4907   × cxp 5683  ran crn 5686  wf 6557  cmpo 7433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015
This theorem is referenced by:  txbasex  23574  txtopon  23599  sxsigon  34193
  Copyright terms: Public domain W3C validator