![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > aoprssdm | Structured version Visualization version GIF version |
Description: Domain of closure of an operation. In contrast to oprssdm 7584, no additional property for S (¬ ∅ ∈ 𝑆) is required! (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
aoprssdm.1 | ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦)) ∈ 𝑆) |
Ref | Expression |
---|---|
aoprssdm | ⊢ (𝑆 × 𝑆) ⊆ dom 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relxp 5693 | . 2 ⊢ Rel (𝑆 × 𝑆) | |
2 | opelxp 5711 | . . 3 ⊢ (⟨𝑥, 𝑦⟩ ∈ (𝑆 × 𝑆) ↔ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) | |
3 | df-aov 45815 | . . . . 5 ⊢ ((𝑥𝐹𝑦)) = (𝐹'''⟨𝑥, 𝑦⟩) | |
4 | aoprssdm.1 | . . . . 5 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦)) ∈ 𝑆) | |
5 | 3, 4 | eqeltrrid 2838 | . . . 4 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝐹'''⟨𝑥, 𝑦⟩) ∈ 𝑆) |
6 | afvvdm 45835 | . . . 4 ⊢ ((𝐹'''⟨𝑥, 𝑦⟩) ∈ 𝑆 → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹) |
8 | 2, 7 | sylbi 216 | . 2 ⊢ (⟨𝑥, 𝑦⟩ ∈ (𝑆 × 𝑆) → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹) |
9 | 1, 8 | relssi 5785 | 1 ⊢ (𝑆 × 𝑆) ⊆ dom 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ⊆ wss 3947 ⟨cop 4633 × cxp 5673 dom cdm 5675 '''cafv 45811 ((caov 45812 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-res 5687 df-iota 6492 df-fun 6542 df-fv 6548 df-aiota 45779 df-dfat 45813 df-afv 45814 df-aov 45815 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |