![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > aoprssdm | Structured version Visualization version GIF version |
Description: Domain of closure of an operation. In contrast to oprssdm 7540, no additional property for S (¬ ∅ ∈ 𝑆) is required! (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
aoprssdm.1 | ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦)) ∈ 𝑆) |
Ref | Expression |
---|---|
aoprssdm | ⊢ (𝑆 × 𝑆) ⊆ dom 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relxp 5656 | . 2 ⊢ Rel (𝑆 × 𝑆) | |
2 | opelxp 5674 | . . 3 ⊢ (⟨𝑥, 𝑦⟩ ∈ (𝑆 × 𝑆) ↔ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) | |
3 | df-aov 45427 | . . . . 5 ⊢ ((𝑥𝐹𝑦)) = (𝐹'''⟨𝑥, 𝑦⟩) | |
4 | aoprssdm.1 | . . . . 5 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦)) ∈ 𝑆) | |
5 | 3, 4 | eqeltrrid 2843 | . . . 4 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝐹'''⟨𝑥, 𝑦⟩) ∈ 𝑆) |
6 | afvvdm 45447 | . . . 4 ⊢ ((𝐹'''⟨𝑥, 𝑦⟩) ∈ 𝑆 → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹) |
8 | 2, 7 | sylbi 216 | . 2 ⊢ (⟨𝑥, 𝑦⟩ ∈ (𝑆 × 𝑆) → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹) |
9 | 1, 8 | relssi 5748 | 1 ⊢ (𝑆 × 𝑆) ⊆ dom 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 ⊆ wss 3915 ⟨cop 4597 × cxp 5636 dom cdm 5638 '''cafv 45423 ((caov 45424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-int 4913 df-br 5111 df-opab 5173 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-res 5650 df-iota 6453 df-fun 6503 df-fv 6509 df-aiota 45391 df-dfat 45425 df-afv 45426 df-aov 45427 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |