| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aoprssdm | Structured version Visualization version GIF version | ||
| Description: Domain of closure of an operation. In contrast to oprssdm 7593, no additional property for S (¬ ∅ ∈ 𝑆) is required! (Contributed by Alexander van der Vekens, 26-May-2017.) |
| Ref | Expression |
|---|---|
| aoprssdm.1 | ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦)) ∈ 𝑆) |
| Ref | Expression |
|---|---|
| aoprssdm | ⊢ (𝑆 × 𝑆) ⊆ dom 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 5677 | . 2 ⊢ Rel (𝑆 × 𝑆) | |
| 2 | opelxp 5695 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ (𝑆 × 𝑆) ↔ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) | |
| 3 | df-aov 47130 | . . . . 5 ⊢ ((𝑥𝐹𝑦)) = (𝐹'''〈𝑥, 𝑦〉) | |
| 4 | aoprssdm.1 | . . . . 5 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦)) ∈ 𝑆) | |
| 5 | 3, 4 | eqeltrrid 2840 | . . . 4 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝐹'''〈𝑥, 𝑦〉) ∈ 𝑆) |
| 6 | afvvdm 47150 | . . . 4 ⊢ ((𝐹'''〈𝑥, 𝑦〉) ∈ 𝑆 → 〈𝑥, 𝑦〉 ∈ dom 𝐹) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → 〈𝑥, 𝑦〉 ∈ dom 𝐹) |
| 8 | 2, 7 | sylbi 217 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ (𝑆 × 𝑆) → 〈𝑥, 𝑦〉 ∈ dom 𝐹) |
| 9 | 1, 8 | relssi 5771 | 1 ⊢ (𝑆 × 𝑆) ⊆ dom 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3931 〈cop 4612 × cxp 5657 dom cdm 5659 '''cafv 47126 ((caov 47127 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-res 5671 df-iota 6489 df-fun 6538 df-fv 6544 df-aiota 47094 df-dfat 47128 df-afv 47129 df-aov 47130 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |