Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aoprssdm Structured version   Visualization version   GIF version

Theorem aoprssdm 47187
Description: Domain of closure of an operation. In contrast to oprssdm 7534, no additional property for S (¬ ∅ ∈ 𝑆) is required! (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypothesis
Ref Expression
aoprssdm.1 ((𝑥𝑆𝑦𝑆) → ((𝑥𝐹𝑦)) ∈ 𝑆)
Assertion
Ref Expression
aoprssdm (𝑆 × 𝑆) ⊆ dom 𝐹
Distinct variable groups:   𝑥,𝑦,𝑆   𝑥,𝐹,𝑦

Proof of Theorem aoprssdm
StepHypRef Expression
1 relxp 5641 . 2 Rel (𝑆 × 𝑆)
2 opelxp 5659 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝑆 × 𝑆) ↔ (𝑥𝑆𝑦𝑆))
3 df-aov 47106 . . . . 5 ((𝑥𝐹𝑦)) = (𝐹'''⟨𝑥, 𝑦⟩)
4 aoprssdm.1 . . . . 5 ((𝑥𝑆𝑦𝑆) → ((𝑥𝐹𝑦)) ∈ 𝑆)
53, 4eqeltrrid 2833 . . . 4 ((𝑥𝑆𝑦𝑆) → (𝐹'''⟨𝑥, 𝑦⟩) ∈ 𝑆)
6 afvvdm 47126 . . . 4 ((𝐹'''⟨𝑥, 𝑦⟩) ∈ 𝑆 → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹)
75, 6syl 17 . . 3 ((𝑥𝑆𝑦𝑆) → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹)
82, 7sylbi 217 . 2 (⟨𝑥, 𝑦⟩ ∈ (𝑆 × 𝑆) → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹)
91, 8relssi 5734 1 (𝑆 × 𝑆) ⊆ dom 𝐹
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wss 3905  cop 4585   × cxp 5621  dom cdm 5623  '''cafv 47102   ((caov 47103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-res 5635  df-iota 6442  df-fun 6488  df-fv 6494  df-aiota 47070  df-dfat 47104  df-afv 47105  df-aov 47106
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator