Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aoprssdm Structured version   Visualization version   GIF version

Theorem aoprssdm 47207
Description: Domain of closure of an operation. In contrast to oprssdm 7573, no additional property for S (¬ ∅ ∈ 𝑆) is required! (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypothesis
Ref Expression
aoprssdm.1 ((𝑥𝑆𝑦𝑆) → ((𝑥𝐹𝑦)) ∈ 𝑆)
Assertion
Ref Expression
aoprssdm (𝑆 × 𝑆) ⊆ dom 𝐹
Distinct variable groups:   𝑥,𝑦,𝑆   𝑥,𝐹,𝑦

Proof of Theorem aoprssdm
StepHypRef Expression
1 relxp 5659 . 2 Rel (𝑆 × 𝑆)
2 opelxp 5677 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝑆 × 𝑆) ↔ (𝑥𝑆𝑦𝑆))
3 df-aov 47126 . . . . 5 ((𝑥𝐹𝑦)) = (𝐹'''⟨𝑥, 𝑦⟩)
4 aoprssdm.1 . . . . 5 ((𝑥𝑆𝑦𝑆) → ((𝑥𝐹𝑦)) ∈ 𝑆)
53, 4eqeltrrid 2834 . . . 4 ((𝑥𝑆𝑦𝑆) → (𝐹'''⟨𝑥, 𝑦⟩) ∈ 𝑆)
6 afvvdm 47146 . . . 4 ((𝐹'''⟨𝑥, 𝑦⟩) ∈ 𝑆 → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹)
75, 6syl 17 . . 3 ((𝑥𝑆𝑦𝑆) → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹)
82, 7sylbi 217 . 2 (⟨𝑥, 𝑦⟩ ∈ (𝑆 × 𝑆) → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹)
91, 8relssi 5753 1 (𝑆 × 𝑆) ⊆ dom 𝐹
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wss 3917  cop 4598   × cxp 5639  dom cdm 5641  '''cafv 47122   ((caov 47123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-res 5653  df-iota 6467  df-fun 6516  df-fv 6522  df-aiota 47090  df-dfat 47124  df-afv 47125  df-aov 47126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator