| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aoprssdm | Structured version Visualization version GIF version | ||
| Description: Domain of closure of an operation. In contrast to oprssdm 7527, no additional property for S (¬ ∅ ∈ 𝑆) is required! (Contributed by Alexander van der Vekens, 26-May-2017.) |
| Ref | Expression |
|---|---|
| aoprssdm.1 | ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦)) ∈ 𝑆) |
| Ref | Expression |
|---|---|
| aoprssdm | ⊢ (𝑆 × 𝑆) ⊆ dom 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 5634 | . 2 ⊢ Rel (𝑆 × 𝑆) | |
| 2 | opelxp 5652 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ (𝑆 × 𝑆) ↔ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) | |
| 3 | df-aov 47151 | . . . . 5 ⊢ ((𝑥𝐹𝑦)) = (𝐹'''〈𝑥, 𝑦〉) | |
| 4 | aoprssdm.1 | . . . . 5 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦)) ∈ 𝑆) | |
| 5 | 3, 4 | eqeltrrid 2836 | . . . 4 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝐹'''〈𝑥, 𝑦〉) ∈ 𝑆) |
| 6 | afvvdm 47171 | . . . 4 ⊢ ((𝐹'''〈𝑥, 𝑦〉) ∈ 𝑆 → 〈𝑥, 𝑦〉 ∈ dom 𝐹) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → 〈𝑥, 𝑦〉 ∈ dom 𝐹) |
| 8 | 2, 7 | sylbi 217 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ (𝑆 × 𝑆) → 〈𝑥, 𝑦〉 ∈ dom 𝐹) |
| 9 | 1, 8 | relssi 5727 | 1 ⊢ (𝑆 × 𝑆) ⊆ dom 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ⊆ wss 3902 〈cop 4582 × cxp 5614 dom cdm 5616 '''cafv 47147 ((caov 47148 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-res 5628 df-iota 6437 df-fun 6483 df-fv 6489 df-aiota 47115 df-dfat 47149 df-afv 47150 df-aov 47151 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |