MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumrlimge0 Structured version   Visualization version   GIF version

Theorem dvfsumrlimge0 24310
Description: Lemma for dvfsumrlim 24311. Satisfy the assumption of dvfsumlem4 24309. (Contributed by Mario Carneiro, 18-May-2016.)
Hypotheses
Ref Expression
dvfsum.s 𝑆 = (𝑇(,)+∞)
dvfsum.z 𝑍 = (ℤ𝑀)
dvfsum.m (𝜑𝑀 ∈ ℤ)
dvfsum.d (𝜑𝐷 ∈ ℝ)
dvfsum.md (𝜑𝑀 ≤ (𝐷 + 1))
dvfsum.t (𝜑𝑇 ∈ ℝ)
dvfsum.a ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
dvfsum.b1 ((𝜑𝑥𝑆) → 𝐵𝑉)
dvfsum.b2 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
dvfsum.b3 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
dvfsum.c (𝑥 = 𝑘𝐵 = 𝐶)
dvfsumrlim.l ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)
dvfsumrlim.g 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
dvfsumrlim.k (𝜑 → (𝑥𝑆𝐵) ⇝𝑟 0)
Assertion
Ref Expression
dvfsumrlimge0 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 0 ≤ 𝐵)
Distinct variable groups:   𝐵,𝑘   𝑥,𝐶   𝑥,𝑘,𝐷   𝜑,𝑘,𝑥   𝑆,𝑘,𝑥   𝑘,𝑀,𝑥   𝑥,𝑇   𝑥,𝑍
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥)   𝐶(𝑘)   𝑇(𝑘)   𝐺(𝑥,𝑘)   𝑉(𝑥,𝑘)   𝑍(𝑘)

Proof of Theorem dvfsumrlimge0
Dummy variables 𝑧 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvfsum.s . . . . . 6 𝑆 = (𝑇(,)+∞)
2 ioossre 12648 . . . . . 6 (𝑇(,)+∞) ⊆ ℝ
31, 2eqsstri 3922 . . . . 5 𝑆 ⊆ ℝ
4 simprl 767 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝑥𝑆)
53, 4sseldi 3887 . . . 4 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝑥 ∈ ℝ)
65rexrd 10537 . . 3 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝑥 ∈ ℝ*)
75renepnfd 10538 . . 3 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝑥 ≠ +∞)
8 icopnfsup 13083 . . 3 ((𝑥 ∈ ℝ*𝑥 ≠ +∞) → sup((𝑥[,)+∞), ℝ*, < ) = +∞)
96, 7, 8syl2anc 584 . 2 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → sup((𝑥[,)+∞), ℝ*, < ) = +∞)
10 dvfsum.t . . . . . 6 (𝜑𝑇 ∈ ℝ)
1110rexrd 10537 . . . . 5 (𝜑𝑇 ∈ ℝ*)
124, 1syl6eleq 2893 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝑥 ∈ (𝑇(,)+∞))
1311adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝑇 ∈ ℝ*)
14 elioopnf 12681 . . . . . . . 8 (𝑇 ∈ ℝ* → (𝑥 ∈ (𝑇(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝑇 < 𝑥)))
1513, 14syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → (𝑥 ∈ (𝑇(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝑇 < 𝑥)))
1612, 15mpbid 233 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → (𝑥 ∈ ℝ ∧ 𝑇 < 𝑥))
1716simprd 496 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝑇 < 𝑥)
18 df-ioo 12592 . . . . . 6 (,) = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢 < 𝑤𝑤 < 𝑣)})
19 df-ico 12594 . . . . . 6 [,) = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢𝑤𝑤 < 𝑣)})
20 xrltletr 12400 . . . . . 6 ((𝑇 ∈ ℝ*𝑥 ∈ ℝ*𝑧 ∈ ℝ*) → ((𝑇 < 𝑥𝑥𝑧) → 𝑇 < 𝑧))
2118, 19, 20ixxss1 12606 . . . . 5 ((𝑇 ∈ ℝ*𝑇 < 𝑥) → (𝑥[,)+∞) ⊆ (𝑇(,)+∞))
2211, 17, 21syl2an2r 681 . . . 4 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → (𝑥[,)+∞) ⊆ (𝑇(,)+∞))
2322, 1syl6sseqr 3939 . . 3 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → (𝑥[,)+∞) ⊆ 𝑆)
24 dvfsum.c . . . . 5 (𝑥 = 𝑘𝐵 = 𝐶)
2524cbvmptv 5061 . . . 4 (𝑥𝑆𝐵) = (𝑘𝑆𝐶)
26 dvfsumrlim.k . . . . 5 (𝜑 → (𝑥𝑆𝐵) ⇝𝑟 0)
2726adantr 481 . . . 4 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → (𝑥𝑆𝐵) ⇝𝑟 0)
2825, 27eqbrtrrid 4998 . . 3 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → (𝑘𝑆𝐶) ⇝𝑟 0)
2923, 28rlimres2 14752 . 2 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → (𝑘 ∈ (𝑥[,)+∞) ↦ 𝐶) ⇝𝑟 0)
303a1i 11 . . . 4 (𝜑𝑆 ⊆ ℝ)
31 dvfsum.a . . . . . . 7 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
32 dvfsum.b1 . . . . . . 7 ((𝜑𝑥𝑆) → 𝐵𝑉)
33 dvfsum.b3 . . . . . . 7 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
3430, 31, 32, 33dvmptrecl 24304 . . . . . 6 ((𝜑𝑥𝑆) → 𝐵 ∈ ℝ)
3534adantrr 713 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝐵 ∈ ℝ)
3635recnd 10515 . . . 4 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝐵 ∈ ℂ)
37 rlimconst 14735 . . . 4 ((𝑆 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → (𝑘𝑆𝐵) ⇝𝑟 𝐵)
3830, 36, 37syl2an2r 681 . . 3 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → (𝑘𝑆𝐵) ⇝𝑟 𝐵)
3923, 38rlimres2 14752 . 2 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → (𝑘 ∈ (𝑥[,)+∞) ↦ 𝐵) ⇝𝑟 𝐵)
4034ralrimiva 3149 . . . 4 (𝜑 → ∀𝑥𝑆 𝐵 ∈ ℝ)
4140adantr 481 . . 3 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → ∀𝑥𝑆 𝐵 ∈ ℝ)
4223sselda 3889 . . 3 (((𝜑 ∧ (𝑥𝑆𝐷𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝑘𝑆)
4324eleq1d 2867 . . . 4 (𝑥 = 𝑘 → (𝐵 ∈ ℝ ↔ 𝐶 ∈ ℝ))
4443rspccva 3558 . . 3 ((∀𝑥𝑆 𝐵 ∈ ℝ ∧ 𝑘𝑆) → 𝐶 ∈ ℝ)
4541, 42, 44syl2an2r 681 . 2 (((𝜑 ∧ (𝑥𝑆𝐷𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝐶 ∈ ℝ)
4635adantr 481 . 2 (((𝜑 ∧ (𝑥𝑆𝐷𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝐵 ∈ ℝ)
47 simpll 763 . . 3 (((𝜑 ∧ (𝑥𝑆𝐷𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝜑)
48 simplrl 773 . . 3 (((𝜑 ∧ (𝑥𝑆𝐷𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝑥𝑆)
49 simplrr 774 . . 3 (((𝜑 ∧ (𝑥𝑆𝐷𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝐷𝑥)
50 elicopnf 12683 . . . . 5 (𝑥 ∈ ℝ → (𝑘 ∈ (𝑥[,)+∞) ↔ (𝑘 ∈ ℝ ∧ 𝑥𝑘)))
515, 50syl 17 . . . 4 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → (𝑘 ∈ (𝑥[,)+∞) ↔ (𝑘 ∈ ℝ ∧ 𝑥𝑘)))
5251simplbda 500 . . 3 (((𝜑 ∧ (𝑥𝑆𝐷𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝑥𝑘)
53 dvfsumrlim.l . . 3 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)
5447, 48, 42, 49, 52, 53syl122anc 1372 . 2 (((𝜑 ∧ (𝑥𝑆𝐷𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝐶𝐵)
559, 29, 39, 45, 46, 54rlimle 14838 1 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 0 ≤ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wcel 2081  wne 2984  wral 3105  wss 3859   class class class wbr 4962  cmpt 5041  cfv 6225  (class class class)co 7016  supcsup 8750  cc 10381  cr 10382  0cc0 10383  1c1 10384   + caddc 10386  +∞cpnf 10518  *cxr 10520   < clt 10521  cle 10522  cmin 10717  cz 11829  cuz 12093  (,)cioo 12588  [,)cico 12590  ...cfz 12742  cfl 13010  𝑟 crli 14676  Σcsu 14876   D cdv 24144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-iin 4828  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-oadd 7957  df-er 8139  df-map 8258  df-pm 8259  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-fi 8721  df-sup 8752  df-inf 8753  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-z 11830  df-dec 11948  df-uz 12094  df-q 12198  df-rp 12240  df-xneg 12357  df-xadd 12358  df-xmul 12359  df-ioo 12592  df-ico 12594  df-icc 12595  df-fz 12743  df-seq 13220  df-exp 13280  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-rlim 14680  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-plusg 16407  df-mulr 16408  df-starv 16409  df-tset 16413  df-ple 16414  df-ds 16416  df-unif 16417  df-rest 16525  df-topn 16526  df-topgen 16546  df-psmet 20219  df-xmet 20220  df-met 20221  df-bl 20222  df-mopn 20223  df-fbas 20224  df-fg 20225  df-cnfld 20228  df-top 21186  df-topon 21203  df-topsp 21225  df-bases 21238  df-cld 21311  df-ntr 21312  df-cls 21313  df-nei 21390  df-lp 21428  df-perf 21429  df-cn 21519  df-cnp 21520  df-haus 21607  df-fil 22138  df-fm 22230  df-flim 22231  df-flf 22232  df-xms 22613  df-ms 22614  df-cncf 23169  df-limc 24147  df-dv 24148
This theorem is referenced by:  dvfsumrlim  24311  dvfsumrlim2  24312
  Copyright terms: Public domain W3C validator