![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvfsumrlimge0 | Structured version Visualization version GIF version |
Description: Lemma for dvfsumrlim 26092. Satisfy the assumption of dvfsumlem4 26090. (Contributed by Mario Carneiro, 18-May-2016.) |
Ref | Expression |
---|---|
dvfsum.s | ⊢ 𝑆 = (𝑇(,)+∞) |
dvfsum.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
dvfsum.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
dvfsum.d | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
dvfsum.md | ⊢ (𝜑 → 𝑀 ≤ (𝐷 + 1)) |
dvfsum.t | ⊢ (𝜑 → 𝑇 ∈ ℝ) |
dvfsum.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) |
dvfsum.b1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) |
dvfsum.b2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) |
dvfsum.b3 | ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) |
dvfsum.c | ⊢ (𝑥 = 𝑘 → 𝐵 = 𝐶) |
dvfsumrlim.l | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘)) → 𝐶 ≤ 𝐵) |
dvfsumrlim.g | ⊢ 𝐺 = (𝑥 ∈ 𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 − 𝐴)) |
dvfsumrlim.k | ⊢ (𝜑 → (𝑥 ∈ 𝑆 ↦ 𝐵) ⇝𝑟 0) |
Ref | Expression |
---|---|
dvfsumrlimge0 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → 0 ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvfsum.s | . . . . . 6 ⊢ 𝑆 = (𝑇(,)+∞) | |
2 | ioossre 13468 | . . . . . 6 ⊢ (𝑇(,)+∞) ⊆ ℝ | |
3 | 1, 2 | eqsstri 4043 | . . . . 5 ⊢ 𝑆 ⊆ ℝ |
4 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → 𝑥 ∈ 𝑆) | |
5 | 3, 4 | sselid 4006 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → 𝑥 ∈ ℝ) |
6 | 5 | rexrd 11340 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → 𝑥 ∈ ℝ*) |
7 | 5 | renepnfd 11341 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → 𝑥 ≠ +∞) |
8 | icopnfsup 13916 | . . 3 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑥 ≠ +∞) → sup((𝑥[,)+∞), ℝ*, < ) = +∞) | |
9 | 6, 7, 8 | syl2anc 583 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → sup((𝑥[,)+∞), ℝ*, < ) = +∞) |
10 | dvfsum.t | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ ℝ) | |
11 | 10 | rexrd 11340 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ ℝ*) |
12 | 4, 1 | eleqtrdi 2854 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → 𝑥 ∈ (𝑇(,)+∞)) |
13 | 11 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → 𝑇 ∈ ℝ*) |
14 | elioopnf 13503 | . . . . . . . 8 ⊢ (𝑇 ∈ ℝ* → (𝑥 ∈ (𝑇(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝑇 < 𝑥))) | |
15 | 13, 14 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → (𝑥 ∈ (𝑇(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝑇 < 𝑥))) |
16 | 12, 15 | mpbid 232 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → (𝑥 ∈ ℝ ∧ 𝑇 < 𝑥)) |
17 | 16 | simprd 495 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → 𝑇 < 𝑥) |
18 | df-ioo 13411 | . . . . . 6 ⊢ (,) = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢 < 𝑤 ∧ 𝑤 < 𝑣)}) | |
19 | df-ico 13413 | . . . . . 6 ⊢ [,) = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢 ≤ 𝑤 ∧ 𝑤 < 𝑣)}) | |
20 | xrltletr 13219 | . . . . . 6 ⊢ ((𝑇 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ 𝑧 ∈ ℝ*) → ((𝑇 < 𝑥 ∧ 𝑥 ≤ 𝑧) → 𝑇 < 𝑧)) | |
21 | 18, 19, 20 | ixxss1 13425 | . . . . 5 ⊢ ((𝑇 ∈ ℝ* ∧ 𝑇 < 𝑥) → (𝑥[,)+∞) ⊆ (𝑇(,)+∞)) |
22 | 11, 17, 21 | syl2an2r 684 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → (𝑥[,)+∞) ⊆ (𝑇(,)+∞)) |
23 | 22, 1 | sseqtrrdi 4060 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → (𝑥[,)+∞) ⊆ 𝑆) |
24 | dvfsum.c | . . . . 5 ⊢ (𝑥 = 𝑘 → 𝐵 = 𝐶) | |
25 | 24 | cbvmptv 5279 | . . . 4 ⊢ (𝑥 ∈ 𝑆 ↦ 𝐵) = (𝑘 ∈ 𝑆 ↦ 𝐶) |
26 | dvfsumrlim.k | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑆 ↦ 𝐵) ⇝𝑟 0) | |
27 | 26 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → (𝑥 ∈ 𝑆 ↦ 𝐵) ⇝𝑟 0) |
28 | 25, 27 | eqbrtrrid 5202 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → (𝑘 ∈ 𝑆 ↦ 𝐶) ⇝𝑟 0) |
29 | 23, 28 | rlimres2 15607 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → (𝑘 ∈ (𝑥[,)+∞) ↦ 𝐶) ⇝𝑟 0) |
30 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ ℝ) |
31 | dvfsum.a | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) | |
32 | dvfsum.b1 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) | |
33 | dvfsum.b3 | . . . . . . 7 ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) | |
34 | 30, 31, 32, 33 | dvmptrecl 26084 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ ℝ) |
35 | 34 | adantrr 716 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → 𝐵 ∈ ℝ) |
36 | 35 | recnd 11318 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → 𝐵 ∈ ℂ) |
37 | rlimconst 15590 | . . . 4 ⊢ ((𝑆 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → (𝑘 ∈ 𝑆 ↦ 𝐵) ⇝𝑟 𝐵) | |
38 | 30, 36, 37 | syl2an2r 684 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → (𝑘 ∈ 𝑆 ↦ 𝐵) ⇝𝑟 𝐵) |
39 | 23, 38 | rlimres2 15607 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → (𝑘 ∈ (𝑥[,)+∞) ↦ 𝐵) ⇝𝑟 𝐵) |
40 | 34 | ralrimiva 3152 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 𝐵 ∈ ℝ) |
41 | 40 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → ∀𝑥 ∈ 𝑆 𝐵 ∈ ℝ) |
42 | 23 | sselda 4008 | . . 3 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝑘 ∈ 𝑆) |
43 | 24 | eleq1d 2829 | . . . 4 ⊢ (𝑥 = 𝑘 → (𝐵 ∈ ℝ ↔ 𝐶 ∈ ℝ)) |
44 | 43 | rspccva 3634 | . . 3 ⊢ ((∀𝑥 ∈ 𝑆 𝐵 ∈ ℝ ∧ 𝑘 ∈ 𝑆) → 𝐶 ∈ ℝ) |
45 | 41, 42, 44 | syl2an2r 684 | . 2 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝐶 ∈ ℝ) |
46 | 35 | adantr 480 | . 2 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝐵 ∈ ℝ) |
47 | simpll 766 | . . 3 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝜑) | |
48 | simplrl 776 | . . 3 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝑥 ∈ 𝑆) | |
49 | simplrr 777 | . . 3 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝐷 ≤ 𝑥) | |
50 | elicopnf 13505 | . . . . 5 ⊢ (𝑥 ∈ ℝ → (𝑘 ∈ (𝑥[,)+∞) ↔ (𝑘 ∈ ℝ ∧ 𝑥 ≤ 𝑘))) | |
51 | 5, 50 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → (𝑘 ∈ (𝑥[,)+∞) ↔ (𝑘 ∈ ℝ ∧ 𝑥 ≤ 𝑘))) |
52 | 51 | simplbda 499 | . . 3 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝑥 ≤ 𝑘) |
53 | dvfsumrlim.l | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘)) → 𝐶 ≤ 𝐵) | |
54 | 47, 48, 42, 49, 52, 53 | syl122anc 1379 | . 2 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝐶 ≤ 𝐵) |
55 | 9, 29, 39, 45, 46, 54 | rlimle 15696 | 1 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → 0 ≤ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ⊆ wss 3976 class class class wbr 5166 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 supcsup 9509 ℂcc 11182 ℝcr 11183 0cc0 11184 1c1 11185 + caddc 11187 +∞cpnf 11321 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 − cmin 11520 ℤcz 12639 ℤ≥cuz 12903 (,)cioo 13407 [,)cico 13409 ...cfz 13567 ⌊cfl 13841 ⇝𝑟 crli 15531 Σcsu 15734 D cdv 25918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fi 9480 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ico 13413 df-icc 13414 df-fz 13568 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-rlim 15535 df-struct 17194 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-mulr 17325 df-starv 17326 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-rest 17482 df-topn 17483 df-topgen 17503 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-fbas 21384 df-fg 21385 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-lp 23165 df-perf 23166 df-cn 23256 df-cnp 23257 df-haus 23344 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 df-xms 24351 df-ms 24352 df-cncf 24923 df-limc 25921 df-dv 25922 |
This theorem is referenced by: dvfsumrlim 26092 dvfsumrlim2 26093 |
Copyright terms: Public domain | W3C validator |