| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvfsumrlimge0 | Structured version Visualization version GIF version | ||
| Description: Lemma for dvfsumrlim 25938. Satisfy the assumption of dvfsumlem4 25936. (Contributed by Mario Carneiro, 18-May-2016.) |
| Ref | Expression |
|---|---|
| dvfsum.s | ⊢ 𝑆 = (𝑇(,)+∞) |
| dvfsum.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| dvfsum.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| dvfsum.d | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
| dvfsum.md | ⊢ (𝜑 → 𝑀 ≤ (𝐷 + 1)) |
| dvfsum.t | ⊢ (𝜑 → 𝑇 ∈ ℝ) |
| dvfsum.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) |
| dvfsum.b1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) |
| dvfsum.b2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) |
| dvfsum.b3 | ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) |
| dvfsum.c | ⊢ (𝑥 = 𝑘 → 𝐵 = 𝐶) |
| dvfsumrlim.l | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘)) → 𝐶 ≤ 𝐵) |
| dvfsumrlim.g | ⊢ 𝐺 = (𝑥 ∈ 𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 − 𝐴)) |
| dvfsumrlim.k | ⊢ (𝜑 → (𝑥 ∈ 𝑆 ↦ 𝐵) ⇝𝑟 0) |
| Ref | Expression |
|---|---|
| dvfsumrlimge0 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → 0 ≤ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvfsum.s | . . . . . 6 ⊢ 𝑆 = (𝑇(,)+∞) | |
| 2 | ioossre 13368 | . . . . . 6 ⊢ (𝑇(,)+∞) ⊆ ℝ | |
| 3 | 1, 2 | eqsstri 3993 | . . . . 5 ⊢ 𝑆 ⊆ ℝ |
| 4 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → 𝑥 ∈ 𝑆) | |
| 5 | 3, 4 | sselid 3944 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → 𝑥 ∈ ℝ) |
| 6 | 5 | rexrd 11224 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → 𝑥 ∈ ℝ*) |
| 7 | 5 | renepnfd 11225 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → 𝑥 ≠ +∞) |
| 8 | icopnfsup 13827 | . . 3 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑥 ≠ +∞) → sup((𝑥[,)+∞), ℝ*, < ) = +∞) | |
| 9 | 6, 7, 8 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → sup((𝑥[,)+∞), ℝ*, < ) = +∞) |
| 10 | dvfsum.t | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ ℝ) | |
| 11 | 10 | rexrd 11224 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ ℝ*) |
| 12 | 4, 1 | eleqtrdi 2838 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → 𝑥 ∈ (𝑇(,)+∞)) |
| 13 | 11 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → 𝑇 ∈ ℝ*) |
| 14 | elioopnf 13404 | . . . . . . . 8 ⊢ (𝑇 ∈ ℝ* → (𝑥 ∈ (𝑇(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝑇 < 𝑥))) | |
| 15 | 13, 14 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → (𝑥 ∈ (𝑇(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝑇 < 𝑥))) |
| 16 | 12, 15 | mpbid 232 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → (𝑥 ∈ ℝ ∧ 𝑇 < 𝑥)) |
| 17 | 16 | simprd 495 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → 𝑇 < 𝑥) |
| 18 | df-ioo 13310 | . . . . . 6 ⊢ (,) = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢 < 𝑤 ∧ 𝑤 < 𝑣)}) | |
| 19 | df-ico 13312 | . . . . . 6 ⊢ [,) = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢 ≤ 𝑤 ∧ 𝑤 < 𝑣)}) | |
| 20 | xrltletr 13117 | . . . . . 6 ⊢ ((𝑇 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ 𝑧 ∈ ℝ*) → ((𝑇 < 𝑥 ∧ 𝑥 ≤ 𝑧) → 𝑇 < 𝑧)) | |
| 21 | 18, 19, 20 | ixxss1 13324 | . . . . 5 ⊢ ((𝑇 ∈ ℝ* ∧ 𝑇 < 𝑥) → (𝑥[,)+∞) ⊆ (𝑇(,)+∞)) |
| 22 | 11, 17, 21 | syl2an2r 685 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → (𝑥[,)+∞) ⊆ (𝑇(,)+∞)) |
| 23 | 22, 1 | sseqtrrdi 3988 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → (𝑥[,)+∞) ⊆ 𝑆) |
| 24 | dvfsum.c | . . . . 5 ⊢ (𝑥 = 𝑘 → 𝐵 = 𝐶) | |
| 25 | 24 | cbvmptv 5211 | . . . 4 ⊢ (𝑥 ∈ 𝑆 ↦ 𝐵) = (𝑘 ∈ 𝑆 ↦ 𝐶) |
| 26 | dvfsumrlim.k | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑆 ↦ 𝐵) ⇝𝑟 0) | |
| 27 | 26 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → (𝑥 ∈ 𝑆 ↦ 𝐵) ⇝𝑟 0) |
| 28 | 25, 27 | eqbrtrrid 5143 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → (𝑘 ∈ 𝑆 ↦ 𝐶) ⇝𝑟 0) |
| 29 | 23, 28 | rlimres2 15527 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → (𝑘 ∈ (𝑥[,)+∞) ↦ 𝐶) ⇝𝑟 0) |
| 30 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ ℝ) |
| 31 | dvfsum.a | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) | |
| 32 | dvfsum.b1 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) | |
| 33 | dvfsum.b3 | . . . . . . 7 ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) | |
| 34 | 30, 31, 32, 33 | dvmptrecl 25930 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ ℝ) |
| 35 | 34 | adantrr 717 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → 𝐵 ∈ ℝ) |
| 36 | 35 | recnd 11202 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → 𝐵 ∈ ℂ) |
| 37 | rlimconst 15510 | . . . 4 ⊢ ((𝑆 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → (𝑘 ∈ 𝑆 ↦ 𝐵) ⇝𝑟 𝐵) | |
| 38 | 30, 36, 37 | syl2an2r 685 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → (𝑘 ∈ 𝑆 ↦ 𝐵) ⇝𝑟 𝐵) |
| 39 | 23, 38 | rlimres2 15527 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → (𝑘 ∈ (𝑥[,)+∞) ↦ 𝐵) ⇝𝑟 𝐵) |
| 40 | 34 | ralrimiva 3125 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 𝐵 ∈ ℝ) |
| 41 | 40 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → ∀𝑥 ∈ 𝑆 𝐵 ∈ ℝ) |
| 42 | 23 | sselda 3946 | . . 3 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝑘 ∈ 𝑆) |
| 43 | 24 | eleq1d 2813 | . . . 4 ⊢ (𝑥 = 𝑘 → (𝐵 ∈ ℝ ↔ 𝐶 ∈ ℝ)) |
| 44 | 43 | rspccva 3587 | . . 3 ⊢ ((∀𝑥 ∈ 𝑆 𝐵 ∈ ℝ ∧ 𝑘 ∈ 𝑆) → 𝐶 ∈ ℝ) |
| 45 | 41, 42, 44 | syl2an2r 685 | . 2 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝐶 ∈ ℝ) |
| 46 | 35 | adantr 480 | . 2 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝐵 ∈ ℝ) |
| 47 | simpll 766 | . . 3 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝜑) | |
| 48 | simplrl 776 | . . 3 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝑥 ∈ 𝑆) | |
| 49 | simplrr 777 | . . 3 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝐷 ≤ 𝑥) | |
| 50 | elicopnf 13406 | . . . . 5 ⊢ (𝑥 ∈ ℝ → (𝑘 ∈ (𝑥[,)+∞) ↔ (𝑘 ∈ ℝ ∧ 𝑥 ≤ 𝑘))) | |
| 51 | 5, 50 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → (𝑘 ∈ (𝑥[,)+∞) ↔ (𝑘 ∈ ℝ ∧ 𝑥 ≤ 𝑘))) |
| 52 | 51 | simplbda 499 | . . 3 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝑥 ≤ 𝑘) |
| 53 | dvfsumrlim.l | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘)) → 𝐶 ≤ 𝐵) | |
| 54 | 47, 48, 42, 49, 52, 53 | syl122anc 1381 | . 2 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝐶 ≤ 𝐵) |
| 55 | 9, 29, 39, 45, 46, 54 | rlimle 15614 | 1 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → 0 ≤ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ⊆ wss 3914 class class class wbr 5107 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 supcsup 9391 ℂcc 11066 ℝcr 11067 0cc0 11068 1c1 11069 + caddc 11071 +∞cpnf 11205 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 − cmin 11405 ℤcz 12529 ℤ≥cuz 12793 (,)cioo 13306 [,)cico 13308 ...cfz 13468 ⌊cfl 13752 ⇝𝑟 crli 15451 Σcsu 15652 D cdv 25764 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fi 9362 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-ico 13312 df-icc 13313 df-fz 13469 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-rlim 15455 df-struct 17117 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-mulr 17234 df-starv 17235 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-rest 17385 df-topn 17386 df-topgen 17406 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-fbas 21261 df-fg 21262 df-cnfld 21265 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cld 22906 df-ntr 22907 df-cls 22908 df-nei 22985 df-lp 23023 df-perf 23024 df-cn 23114 df-cnp 23115 df-haus 23202 df-fil 23733 df-fm 23825 df-flim 23826 df-flf 23827 df-xms 24208 df-ms 24209 df-cncf 24771 df-limc 25767 df-dv 25768 |
| This theorem is referenced by: dvfsumrlim 25938 dvfsumrlim2 25939 |
| Copyright terms: Public domain | W3C validator |