MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumrlimge0 Structured version   Visualization version   GIF version

Theorem dvfsumrlimge0 25546
Description: Lemma for dvfsumrlim 25547. Satisfy the assumption of dvfsumlem4 25545. (Contributed by Mario Carneiro, 18-May-2016.)
Hypotheses
Ref Expression
dvfsum.s 𝑆 = (𝑇(,)+∞)
dvfsum.z 𝑍 = (ℤ𝑀)
dvfsum.m (𝜑𝑀 ∈ ℤ)
dvfsum.d (𝜑𝐷 ∈ ℝ)
dvfsum.md (𝜑𝑀 ≤ (𝐷 + 1))
dvfsum.t (𝜑𝑇 ∈ ℝ)
dvfsum.a ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
dvfsum.b1 ((𝜑𝑥𝑆) → 𝐵𝑉)
dvfsum.b2 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
dvfsum.b3 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
dvfsum.c (𝑥 = 𝑘𝐵 = 𝐶)
dvfsumrlim.l ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)
dvfsumrlim.g 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
dvfsumrlim.k (𝜑 → (𝑥𝑆𝐵) ⇝𝑟 0)
Assertion
Ref Expression
dvfsumrlimge0 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 0 ≤ 𝐵)
Distinct variable groups:   𝐵,𝑘   𝑥,𝐶   𝑥,𝑘,𝐷   𝜑,𝑘,𝑥   𝑆,𝑘,𝑥   𝑘,𝑀,𝑥   𝑥,𝑇   𝑥,𝑍
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥)   𝐶(𝑘)   𝑇(𝑘)   𝐺(𝑥,𝑘)   𝑉(𝑥,𝑘)   𝑍(𝑘)

Proof of Theorem dvfsumrlimge0
Dummy variables 𝑧 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvfsum.s . . . . . 6 𝑆 = (𝑇(,)+∞)
2 ioossre 13384 . . . . . 6 (𝑇(,)+∞) ⊆ ℝ
31, 2eqsstri 4016 . . . . 5 𝑆 ⊆ ℝ
4 simprl 769 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝑥𝑆)
53, 4sselid 3980 . . . 4 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝑥 ∈ ℝ)
65rexrd 11263 . . 3 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝑥 ∈ ℝ*)
75renepnfd 11264 . . 3 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝑥 ≠ +∞)
8 icopnfsup 13829 . . 3 ((𝑥 ∈ ℝ*𝑥 ≠ +∞) → sup((𝑥[,)+∞), ℝ*, < ) = +∞)
96, 7, 8syl2anc 584 . 2 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → sup((𝑥[,)+∞), ℝ*, < ) = +∞)
10 dvfsum.t . . . . . 6 (𝜑𝑇 ∈ ℝ)
1110rexrd 11263 . . . . 5 (𝜑𝑇 ∈ ℝ*)
124, 1eleqtrdi 2843 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝑥 ∈ (𝑇(,)+∞))
1311adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝑇 ∈ ℝ*)
14 elioopnf 13419 . . . . . . . 8 (𝑇 ∈ ℝ* → (𝑥 ∈ (𝑇(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝑇 < 𝑥)))
1513, 14syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → (𝑥 ∈ (𝑇(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝑇 < 𝑥)))
1612, 15mpbid 231 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → (𝑥 ∈ ℝ ∧ 𝑇 < 𝑥))
1716simprd 496 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝑇 < 𝑥)
18 df-ioo 13327 . . . . . 6 (,) = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢 < 𝑤𝑤 < 𝑣)})
19 df-ico 13329 . . . . . 6 [,) = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢𝑤𝑤 < 𝑣)})
20 xrltletr 13135 . . . . . 6 ((𝑇 ∈ ℝ*𝑥 ∈ ℝ*𝑧 ∈ ℝ*) → ((𝑇 < 𝑥𝑥𝑧) → 𝑇 < 𝑧))
2118, 19, 20ixxss1 13341 . . . . 5 ((𝑇 ∈ ℝ*𝑇 < 𝑥) → (𝑥[,)+∞) ⊆ (𝑇(,)+∞))
2211, 17, 21syl2an2r 683 . . . 4 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → (𝑥[,)+∞) ⊆ (𝑇(,)+∞))
2322, 1sseqtrrdi 4033 . . 3 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → (𝑥[,)+∞) ⊆ 𝑆)
24 dvfsum.c . . . . 5 (𝑥 = 𝑘𝐵 = 𝐶)
2524cbvmptv 5261 . . . 4 (𝑥𝑆𝐵) = (𝑘𝑆𝐶)
26 dvfsumrlim.k . . . . 5 (𝜑 → (𝑥𝑆𝐵) ⇝𝑟 0)
2726adantr 481 . . . 4 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → (𝑥𝑆𝐵) ⇝𝑟 0)
2825, 27eqbrtrrid 5184 . . 3 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → (𝑘𝑆𝐶) ⇝𝑟 0)
2923, 28rlimres2 15504 . 2 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → (𝑘 ∈ (𝑥[,)+∞) ↦ 𝐶) ⇝𝑟 0)
303a1i 11 . . . 4 (𝜑𝑆 ⊆ ℝ)
31 dvfsum.a . . . . . . 7 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
32 dvfsum.b1 . . . . . . 7 ((𝜑𝑥𝑆) → 𝐵𝑉)
33 dvfsum.b3 . . . . . . 7 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
3430, 31, 32, 33dvmptrecl 25540 . . . . . 6 ((𝜑𝑥𝑆) → 𝐵 ∈ ℝ)
3534adantrr 715 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝐵 ∈ ℝ)
3635recnd 11241 . . . 4 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝐵 ∈ ℂ)
37 rlimconst 15487 . . . 4 ((𝑆 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → (𝑘𝑆𝐵) ⇝𝑟 𝐵)
3830, 36, 37syl2an2r 683 . . 3 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → (𝑘𝑆𝐵) ⇝𝑟 𝐵)
3923, 38rlimres2 15504 . 2 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → (𝑘 ∈ (𝑥[,)+∞) ↦ 𝐵) ⇝𝑟 𝐵)
4034ralrimiva 3146 . . . 4 (𝜑 → ∀𝑥𝑆 𝐵 ∈ ℝ)
4140adantr 481 . . 3 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → ∀𝑥𝑆 𝐵 ∈ ℝ)
4223sselda 3982 . . 3 (((𝜑 ∧ (𝑥𝑆𝐷𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝑘𝑆)
4324eleq1d 2818 . . . 4 (𝑥 = 𝑘 → (𝐵 ∈ ℝ ↔ 𝐶 ∈ ℝ))
4443rspccva 3611 . . 3 ((∀𝑥𝑆 𝐵 ∈ ℝ ∧ 𝑘𝑆) → 𝐶 ∈ ℝ)
4541, 42, 44syl2an2r 683 . 2 (((𝜑 ∧ (𝑥𝑆𝐷𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝐶 ∈ ℝ)
4635adantr 481 . 2 (((𝜑 ∧ (𝑥𝑆𝐷𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝐵 ∈ ℝ)
47 simpll 765 . . 3 (((𝜑 ∧ (𝑥𝑆𝐷𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝜑)
48 simplrl 775 . . 3 (((𝜑 ∧ (𝑥𝑆𝐷𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝑥𝑆)
49 simplrr 776 . . 3 (((𝜑 ∧ (𝑥𝑆𝐷𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝐷𝑥)
50 elicopnf 13421 . . . . 5 (𝑥 ∈ ℝ → (𝑘 ∈ (𝑥[,)+∞) ↔ (𝑘 ∈ ℝ ∧ 𝑥𝑘)))
515, 50syl 17 . . . 4 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → (𝑘 ∈ (𝑥[,)+∞) ↔ (𝑘 ∈ ℝ ∧ 𝑥𝑘)))
5251simplbda 500 . . 3 (((𝜑 ∧ (𝑥𝑆𝐷𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝑥𝑘)
53 dvfsumrlim.l . . 3 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)
5447, 48, 42, 49, 52, 53syl122anc 1379 . 2 (((𝜑 ∧ (𝑥𝑆𝐷𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝐶𝐵)
559, 29, 39, 45, 46, 54rlimle 15593 1 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 0 ≤ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wral 3061  wss 3948   class class class wbr 5148  cmpt 5231  cfv 6543  (class class class)co 7408  supcsup 9434  cc 11107  cr 11108  0cc0 11109  1c1 11110   + caddc 11112  +∞cpnf 11244  *cxr 11246   < clt 11247  cle 11248  cmin 11443  cz 12557  cuz 12821  (,)cioo 13323  [,)cico 13325  ...cfz 13483  cfl 13754  𝑟 crli 15428  Σcsu 15631   D cdv 25379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-map 8821  df-pm 8822  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-fi 9405  df-sup 9436  df-inf 9437  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-z 12558  df-dec 12677  df-uz 12822  df-q 12932  df-rp 12974  df-xneg 13091  df-xadd 13092  df-xmul 13093  df-ioo 13327  df-ico 13329  df-icc 13330  df-fz 13484  df-seq 13966  df-exp 14027  df-cj 15045  df-re 15046  df-im 15047  df-sqrt 15181  df-abs 15182  df-rlim 15432  df-struct 17079  df-slot 17114  df-ndx 17126  df-base 17144  df-plusg 17209  df-mulr 17210  df-starv 17211  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-rest 17367  df-topn 17368  df-topgen 17388  df-psmet 20935  df-xmet 20936  df-met 20937  df-bl 20938  df-mopn 20939  df-fbas 20940  df-fg 20941  df-cnfld 20944  df-top 22395  df-topon 22412  df-topsp 22434  df-bases 22448  df-cld 22522  df-ntr 22523  df-cls 22524  df-nei 22601  df-lp 22639  df-perf 22640  df-cn 22730  df-cnp 22731  df-haus 22818  df-fil 23349  df-fm 23441  df-flim 23442  df-flf 23443  df-xms 23825  df-ms 23826  df-cncf 24393  df-limc 25382  df-dv 25383
This theorem is referenced by:  dvfsumrlim  25547  dvfsumrlim2  25548
  Copyright terms: Public domain W3C validator