MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumrlimge0 Structured version   Visualization version   GIF version

Theorem dvfsumrlimge0 25099
Description: Lemma for dvfsumrlim 25100. Satisfy the assumption of dvfsumlem4 25098. (Contributed by Mario Carneiro, 18-May-2016.)
Hypotheses
Ref Expression
dvfsum.s 𝑆 = (𝑇(,)+∞)
dvfsum.z 𝑍 = (ℤ𝑀)
dvfsum.m (𝜑𝑀 ∈ ℤ)
dvfsum.d (𝜑𝐷 ∈ ℝ)
dvfsum.md (𝜑𝑀 ≤ (𝐷 + 1))
dvfsum.t (𝜑𝑇 ∈ ℝ)
dvfsum.a ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
dvfsum.b1 ((𝜑𝑥𝑆) → 𝐵𝑉)
dvfsum.b2 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
dvfsum.b3 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
dvfsum.c (𝑥 = 𝑘𝐵 = 𝐶)
dvfsumrlim.l ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)
dvfsumrlim.g 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
dvfsumrlim.k (𝜑 → (𝑥𝑆𝐵) ⇝𝑟 0)
Assertion
Ref Expression
dvfsumrlimge0 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 0 ≤ 𝐵)
Distinct variable groups:   𝐵,𝑘   𝑥,𝐶   𝑥,𝑘,𝐷   𝜑,𝑘,𝑥   𝑆,𝑘,𝑥   𝑘,𝑀,𝑥   𝑥,𝑇   𝑥,𝑍
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥)   𝐶(𝑘)   𝑇(𝑘)   𝐺(𝑥,𝑘)   𝑉(𝑥,𝑘)   𝑍(𝑘)

Proof of Theorem dvfsumrlimge0
Dummy variables 𝑧 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvfsum.s . . . . . 6 𝑆 = (𝑇(,)+∞)
2 ioossre 13069 . . . . . 6 (𝑇(,)+∞) ⊆ ℝ
31, 2eqsstri 3951 . . . . 5 𝑆 ⊆ ℝ
4 simprl 767 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝑥𝑆)
53, 4sselid 3915 . . . 4 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝑥 ∈ ℝ)
65rexrd 10956 . . 3 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝑥 ∈ ℝ*)
75renepnfd 10957 . . 3 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝑥 ≠ +∞)
8 icopnfsup 13513 . . 3 ((𝑥 ∈ ℝ*𝑥 ≠ +∞) → sup((𝑥[,)+∞), ℝ*, < ) = +∞)
96, 7, 8syl2anc 583 . 2 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → sup((𝑥[,)+∞), ℝ*, < ) = +∞)
10 dvfsum.t . . . . . 6 (𝜑𝑇 ∈ ℝ)
1110rexrd 10956 . . . . 5 (𝜑𝑇 ∈ ℝ*)
124, 1eleqtrdi 2849 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝑥 ∈ (𝑇(,)+∞))
1311adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝑇 ∈ ℝ*)
14 elioopnf 13104 . . . . . . . 8 (𝑇 ∈ ℝ* → (𝑥 ∈ (𝑇(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝑇 < 𝑥)))
1513, 14syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → (𝑥 ∈ (𝑇(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝑇 < 𝑥)))
1612, 15mpbid 231 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → (𝑥 ∈ ℝ ∧ 𝑇 < 𝑥))
1716simprd 495 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝑇 < 𝑥)
18 df-ioo 13012 . . . . . 6 (,) = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢 < 𝑤𝑤 < 𝑣)})
19 df-ico 13014 . . . . . 6 [,) = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢𝑤𝑤 < 𝑣)})
20 xrltletr 12820 . . . . . 6 ((𝑇 ∈ ℝ*𝑥 ∈ ℝ*𝑧 ∈ ℝ*) → ((𝑇 < 𝑥𝑥𝑧) → 𝑇 < 𝑧))
2118, 19, 20ixxss1 13026 . . . . 5 ((𝑇 ∈ ℝ*𝑇 < 𝑥) → (𝑥[,)+∞) ⊆ (𝑇(,)+∞))
2211, 17, 21syl2an2r 681 . . . 4 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → (𝑥[,)+∞) ⊆ (𝑇(,)+∞))
2322, 1sseqtrrdi 3968 . . 3 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → (𝑥[,)+∞) ⊆ 𝑆)
24 dvfsum.c . . . . 5 (𝑥 = 𝑘𝐵 = 𝐶)
2524cbvmptv 5183 . . . 4 (𝑥𝑆𝐵) = (𝑘𝑆𝐶)
26 dvfsumrlim.k . . . . 5 (𝜑 → (𝑥𝑆𝐵) ⇝𝑟 0)
2726adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → (𝑥𝑆𝐵) ⇝𝑟 0)
2825, 27eqbrtrrid 5106 . . 3 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → (𝑘𝑆𝐶) ⇝𝑟 0)
2923, 28rlimres2 15198 . 2 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → (𝑘 ∈ (𝑥[,)+∞) ↦ 𝐶) ⇝𝑟 0)
303a1i 11 . . . 4 (𝜑𝑆 ⊆ ℝ)
31 dvfsum.a . . . . . . 7 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
32 dvfsum.b1 . . . . . . 7 ((𝜑𝑥𝑆) → 𝐵𝑉)
33 dvfsum.b3 . . . . . . 7 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
3430, 31, 32, 33dvmptrecl 25093 . . . . . 6 ((𝜑𝑥𝑆) → 𝐵 ∈ ℝ)
3534adantrr 713 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝐵 ∈ ℝ)
3635recnd 10934 . . . 4 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝐵 ∈ ℂ)
37 rlimconst 15181 . . . 4 ((𝑆 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → (𝑘𝑆𝐵) ⇝𝑟 𝐵)
3830, 36, 37syl2an2r 681 . . 3 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → (𝑘𝑆𝐵) ⇝𝑟 𝐵)
3923, 38rlimres2 15198 . 2 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → (𝑘 ∈ (𝑥[,)+∞) ↦ 𝐵) ⇝𝑟 𝐵)
4034ralrimiva 3107 . . . 4 (𝜑 → ∀𝑥𝑆 𝐵 ∈ ℝ)
4140adantr 480 . . 3 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → ∀𝑥𝑆 𝐵 ∈ ℝ)
4223sselda 3917 . . 3 (((𝜑 ∧ (𝑥𝑆𝐷𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝑘𝑆)
4324eleq1d 2823 . . . 4 (𝑥 = 𝑘 → (𝐵 ∈ ℝ ↔ 𝐶 ∈ ℝ))
4443rspccva 3551 . . 3 ((∀𝑥𝑆 𝐵 ∈ ℝ ∧ 𝑘𝑆) → 𝐶 ∈ ℝ)
4541, 42, 44syl2an2r 681 . 2 (((𝜑 ∧ (𝑥𝑆𝐷𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝐶 ∈ ℝ)
4635adantr 480 . 2 (((𝜑 ∧ (𝑥𝑆𝐷𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝐵 ∈ ℝ)
47 simpll 763 . . 3 (((𝜑 ∧ (𝑥𝑆𝐷𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝜑)
48 simplrl 773 . . 3 (((𝜑 ∧ (𝑥𝑆𝐷𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝑥𝑆)
49 simplrr 774 . . 3 (((𝜑 ∧ (𝑥𝑆𝐷𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝐷𝑥)
50 elicopnf 13106 . . . . 5 (𝑥 ∈ ℝ → (𝑘 ∈ (𝑥[,)+∞) ↔ (𝑘 ∈ ℝ ∧ 𝑥𝑘)))
515, 50syl 17 . . . 4 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → (𝑘 ∈ (𝑥[,)+∞) ↔ (𝑘 ∈ ℝ ∧ 𝑥𝑘)))
5251simplbda 499 . . 3 (((𝜑 ∧ (𝑥𝑆𝐷𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝑥𝑘)
53 dvfsumrlim.l . . 3 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)
5447, 48, 42, 49, 52, 53syl122anc 1377 . 2 (((𝜑 ∧ (𝑥𝑆𝐷𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝐶𝐵)
559, 29, 39, 45, 46, 54rlimle 15287 1 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 0 ≤ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wss 3883   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255  supcsup 9129  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941  cmin 11135  cz 12249  cuz 12511  (,)cioo 13008  [,)cico 13010  ...cfz 13168  cfl 13438  𝑟 crli 15122  Σcsu 15325   D cdv 24932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-rlim 15126  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-rest 17050  df-topn 17051  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-cncf 23947  df-limc 24935  df-dv 24936
This theorem is referenced by:  dvfsumrlim  25100  dvfsumrlim2  25101
  Copyright terms: Public domain W3C validator