MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumrlim Structured version   Visualization version   GIF version

Theorem dvfsumrlim 26092
Description: Compare a finite sum to an integral (the integral here is given as a function with a known derivative). The statement here says that if 𝑥𝑆𝐵 is a decreasing function with antiderivative 𝐴 converging to zero, then the difference between Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐵(𝑘) and 𝐴(𝑥) = ∫𝑢 ∈ (𝑀[,]𝑥)𝐵(𝑢) d𝑢 converges to a constant limit value, with the remainder term bounded by 𝐵(𝑥). (Contributed by Mario Carneiro, 18-May-2016.)
Hypotheses
Ref Expression
dvfsum.s 𝑆 = (𝑇(,)+∞)
dvfsum.z 𝑍 = (ℤ𝑀)
dvfsum.m (𝜑𝑀 ∈ ℤ)
dvfsum.d (𝜑𝐷 ∈ ℝ)
dvfsum.md (𝜑𝑀 ≤ (𝐷 + 1))
dvfsum.t (𝜑𝑇 ∈ ℝ)
dvfsum.a ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
dvfsum.b1 ((𝜑𝑥𝑆) → 𝐵𝑉)
dvfsum.b2 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
dvfsum.b3 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
dvfsum.c (𝑥 = 𝑘𝐵 = 𝐶)
dvfsumrlim.l ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)
dvfsumrlim.g 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
dvfsumrlim.k (𝜑 → (𝑥𝑆𝐵) ⇝𝑟 0)
Assertion
Ref Expression
dvfsumrlim (𝜑𝐺 ∈ dom ⇝𝑟 )
Distinct variable groups:   𝐵,𝑘   𝑥,𝐶   𝑥,𝑘,𝐷   𝜑,𝑘,𝑥   𝑆,𝑘,𝑥   𝑘,𝑀,𝑥   𝑥,𝑇   𝑥,𝑍
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥)   𝐶(𝑘)   𝑇(𝑘)   𝐺(𝑥,𝑘)   𝑉(𝑥,𝑘)   𝑍(𝑘)

Proof of Theorem dvfsumrlim
Dummy variables 𝑦 𝑒 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvfsum.s . . . 4 𝑆 = (𝑇(,)+∞)
2 ioossre 13468 . . . 4 (𝑇(,)+∞) ⊆ ℝ
31, 2eqsstri 4043 . . 3 𝑆 ⊆ ℝ
43a1i 11 . 2 (𝜑𝑆 ⊆ ℝ)
5 dvfsum.z . . . 4 𝑍 = (ℤ𝑀)
6 dvfsum.m . . . 4 (𝜑𝑀 ∈ ℤ)
7 dvfsum.d . . . 4 (𝜑𝐷 ∈ ℝ)
8 dvfsum.md . . . 4 (𝜑𝑀 ≤ (𝐷 + 1))
9 dvfsum.t . . . 4 (𝜑𝑇 ∈ ℝ)
10 dvfsum.a . . . 4 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
11 dvfsum.b1 . . . 4 ((𝜑𝑥𝑆) → 𝐵𝑉)
12 dvfsum.b2 . . . 4 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
13 dvfsum.b3 . . . 4 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
14 dvfsum.c . . . 4 (𝑥 = 𝑘𝐵 = 𝐶)
15 dvfsumrlim.g . . . 4 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
161, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15dvfsumrlimf 26085 . . 3 (𝜑𝐺:𝑆⟶ℝ)
17 ax-resscn 11241 . . 3 ℝ ⊆ ℂ
18 fss 6763 . . 3 ((𝐺:𝑆⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:𝑆⟶ℂ)
1916, 17, 18sylancl 585 . 2 (𝜑𝐺:𝑆⟶ℂ)
201supeq1i 9516 . . 3 sup(𝑆, ℝ*, < ) = sup((𝑇(,)+∞), ℝ*, < )
21 ressxr 11334 . . . . 5 ℝ ⊆ ℝ*
2221, 9sselid 4006 . . . 4 (𝜑𝑇 ∈ ℝ*)
239renepnfd 11341 . . . 4 (𝜑𝑇 ≠ +∞)
24 ioopnfsup 13915 . . . 4 ((𝑇 ∈ ℝ*𝑇 ≠ +∞) → sup((𝑇(,)+∞), ℝ*, < ) = +∞)
2522, 23, 24syl2anc 583 . . 3 (𝜑 → sup((𝑇(,)+∞), ℝ*, < ) = +∞)
2620, 25eqtrid 2792 . 2 (𝜑 → sup(𝑆, ℝ*, < ) = +∞)
27 dvfsumrlim.k . . . 4 (𝜑 → (𝑥𝑆𝐵) ⇝𝑟 0)
2811, 27rlimmptrcl 15654 . . . . . 6 ((𝜑𝑥𝑆) → 𝐵 ∈ ℂ)
2928ralrimiva 3152 . . . . 5 (𝜑 → ∀𝑥𝑆 𝐵 ∈ ℂ)
3029, 4rlim0 15554 . . . 4 (𝜑 → ((𝑥𝑆𝐵) ⇝𝑟 0 ↔ ∀𝑒 ∈ ℝ+𝑐 ∈ ℝ ∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒)))
3127, 30mpbid 232 . . 3 (𝜑 → ∀𝑒 ∈ ℝ+𝑐 ∈ ℝ ∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒))
323a1i 11 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 𝑆 ⊆ ℝ)
33 peano2re 11463 . . . . . . . . 9 (𝑇 ∈ ℝ → (𝑇 + 1) ∈ ℝ)
349, 33syl 17 . . . . . . . 8 (𝜑 → (𝑇 + 1) ∈ ℝ)
3534, 7ifcld 4594 . . . . . . 7 (𝜑 → if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ∈ ℝ)
3635adantr 480 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ∈ ℝ)
37 rexico 15402 . . . . . 6 ((𝑆 ⊆ ℝ ∧ if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ∈ ℝ) → (∃𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) ↔ ∃𝑐 ∈ ℝ ∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒)))
3832, 36, 37syl2anc 583 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → (∃𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) ↔ ∃𝑐 ∈ ℝ ∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒)))
39 elicopnf 13505 . . . . . . . . . . . . . 14 (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ∈ ℝ → (𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞) ↔ (𝑐 ∈ ℝ ∧ if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ≤ 𝑐)))
4035, 39syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞) ↔ (𝑐 ∈ ℝ ∧ if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ≤ 𝑐)))
4140simprbda 498 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝑐 ∈ ℝ)
429adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝑇 ∈ ℝ)
4342, 33syl 17 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → (𝑇 + 1) ∈ ℝ)
4442ltp1d 12225 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝑇 < (𝑇 + 1))
4540simplbda 499 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ≤ 𝑐)
467adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝐷 ∈ ℝ)
47 maxle 13253 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ ℝ ∧ (𝑇 + 1) ∈ ℝ ∧ 𝑐 ∈ ℝ) → (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ≤ 𝑐 ↔ (𝐷𝑐 ∧ (𝑇 + 1) ≤ 𝑐)))
4846, 43, 41, 47syl3anc 1371 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ≤ 𝑐 ↔ (𝐷𝑐 ∧ (𝑇 + 1) ≤ 𝑐)))
4945, 48mpbid 232 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → (𝐷𝑐 ∧ (𝑇 + 1) ≤ 𝑐))
5049simprd 495 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → (𝑇 + 1) ≤ 𝑐)
5142, 43, 41, 44, 50ltletrd 11450 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝑇 < 𝑐)
5222adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝑇 ∈ ℝ*)
53 elioopnf 13503 . . . . . . . . . . . . 13 (𝑇 ∈ ℝ* → (𝑐 ∈ (𝑇(,)+∞) ↔ (𝑐 ∈ ℝ ∧ 𝑇 < 𝑐)))
5452, 53syl 17 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → (𝑐 ∈ (𝑇(,)+∞) ↔ (𝑐 ∈ ℝ ∧ 𝑇 < 𝑐)))
5541, 51, 54mpbir2and 712 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝑐 ∈ (𝑇(,)+∞))
5655, 1eleqtrrdi 2855 . . . . . . . . . 10 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝑐𝑆)
5749simpld 494 . . . . . . . . . 10 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝐷𝑐)
5856, 57jca 511 . . . . . . . . 9 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → (𝑐𝑆𝐷𝑐))
5958adantlr 714 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → (𝑐𝑆𝐷𝑐))
60 simprrl 780 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐))) → 𝑐𝑆)
6160adantrr 716 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑐𝑆)
623, 61sselid 4006 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑐 ∈ ℝ)
6362leidd 11856 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑐𝑐)
64 nfv 1913 . . . . . . . . . . . . . . . . . . 19 𝑥 𝑐𝑐
65 nfcv 2908 . . . . . . . . . . . . . . . . . . . . 21 𝑥abs
66 nfcsb1v 3946 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝑐 / 𝑥𝐵
6765, 66nffv 6930 . . . . . . . . . . . . . . . . . . . 20 𝑥(abs‘𝑐 / 𝑥𝐵)
68 nfcv 2908 . . . . . . . . . . . . . . . . . . . 20 𝑥 <
69 nfcv 2908 . . . . . . . . . . . . . . . . . . . 20 𝑥𝑒
7067, 68, 69nfbr 5213 . . . . . . . . . . . . . . . . . . 19 𝑥(abs‘𝑐 / 𝑥𝐵) < 𝑒
7164, 70nfim 1895 . . . . . . . . . . . . . . . . . 18 𝑥(𝑐𝑐 → (abs‘𝑐 / 𝑥𝐵) < 𝑒)
72 breq2 5170 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑐 → (𝑐𝑥𝑐𝑐))
73 csbeq1a 3935 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑐𝐵 = 𝑐 / 𝑥𝐵)
7473fveq2d 6924 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑐 → (abs‘𝐵) = (abs‘𝑐 / 𝑥𝐵))
7574breq1d 5176 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑐 → ((abs‘𝐵) < 𝑒 ↔ (abs‘𝑐 / 𝑥𝐵) < 𝑒))
7672, 75imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑐 → ((𝑐𝑥 → (abs‘𝐵) < 𝑒) ↔ (𝑐𝑐 → (abs‘𝑐 / 𝑥𝐵) < 𝑒)))
7771, 76rspc 3623 . . . . . . . . . . . . . . . . 17 (𝑐𝑆 → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (𝑐𝑐 → (abs‘𝑐 / 𝑥𝐵) < 𝑒)))
7861, 77syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (𝑐𝑐 → (abs‘𝑐 / 𝑥𝐵) < 𝑒)))
7963, 78mpid 44 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (abs‘𝑐 / 𝑥𝐵) < 𝑒))
804, 10, 11, 13dvmptrecl 26084 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑥𝑆) → 𝐵 ∈ ℝ)
8180adantrr 716 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝐵 ∈ ℝ)
82 dvfsumrlim.l . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)
831, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 82, 15, 27dvfsumrlimge0 26091 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 0 ≤ 𝐵)
84 elrege0 13514 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
8581, 83, 84sylanbrc 582 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝐵 ∈ (0[,)+∞))
8685expr 456 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥𝑆) → (𝐷𝑥𝐵 ∈ (0[,)+∞)))
8786ralrimiva 3152 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ∀𝑥𝑆 (𝐷𝑥𝐵 ∈ (0[,)+∞)))
8887adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → ∀𝑥𝑆 (𝐷𝑥𝐵 ∈ (0[,)+∞)))
89 simprrr 781 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐))) → 𝐷𝑐)
9089adantrr 716 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝐷𝑐)
91 nfv 1913 . . . . . . . . . . . . . . . . . . . . . 22 𝑥 𝐷𝑐
9266nfel1 2925 . . . . . . . . . . . . . . . . . . . . . 22 𝑥𝑐 / 𝑥𝐵 ∈ (0[,)+∞)
9391, 92nfim 1895 . . . . . . . . . . . . . . . . . . . . 21 𝑥(𝐷𝑐𝑐 / 𝑥𝐵 ∈ (0[,)+∞))
94 breq2 5170 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑐 → (𝐷𝑥𝐷𝑐))
9573eleq1d 2829 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑐 → (𝐵 ∈ (0[,)+∞) ↔ 𝑐 / 𝑥𝐵 ∈ (0[,)+∞)))
9694, 95imbi12d 344 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑐 → ((𝐷𝑥𝐵 ∈ (0[,)+∞)) ↔ (𝐷𝑐𝑐 / 𝑥𝐵 ∈ (0[,)+∞))))
9793, 96rspc 3623 . . . . . . . . . . . . . . . . . . . 20 (𝑐𝑆 → (∀𝑥𝑆 (𝐷𝑥𝐵 ∈ (0[,)+∞)) → (𝐷𝑐𝑐 / 𝑥𝐵 ∈ (0[,)+∞))))
9861, 88, 90, 97syl3c 66 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑐 / 𝑥𝐵 ∈ (0[,)+∞))
99 elrege0 13514 . . . . . . . . . . . . . . . . . . 19 (𝑐 / 𝑥𝐵 ∈ (0[,)+∞) ↔ (𝑐 / 𝑥𝐵 ∈ ℝ ∧ 0 ≤ 𝑐 / 𝑥𝐵))
10098, 99sylib 218 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (𝑐 / 𝑥𝐵 ∈ ℝ ∧ 0 ≤ 𝑐 / 𝑥𝐵))
101 absid 15345 . . . . . . . . . . . . . . . . . 18 ((𝑐 / 𝑥𝐵 ∈ ℝ ∧ 0 ≤ 𝑐 / 𝑥𝐵) → (abs‘𝑐 / 𝑥𝐵) = 𝑐 / 𝑥𝐵)
102100, 101syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (abs‘𝑐 / 𝑥𝐵) = 𝑐 / 𝑥𝐵)
103102breq1d 5176 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → ((abs‘𝑐 / 𝑥𝐵) < 𝑒𝑐 / 𝑥𝐵 < 𝑒))
1046adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑀 ∈ ℤ)
1057adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝐷 ∈ ℝ)
1068adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑀 ≤ (𝐷 + 1))
1079adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑇 ∈ ℝ)
10810adantlr 714 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) ∧ 𝑥𝑆) → 𝐴 ∈ ℝ)
10911adantlr 714 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) ∧ 𝑥𝑆) → 𝐵𝑉)
11012adantlr 714 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) ∧ 𝑥𝑍) → 𝐵 ∈ ℝ)
11113adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
112 pnfxr 11344 . . . . . . . . . . . . . . . . . . 19 +∞ ∈ ℝ*
113112a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → +∞ ∈ ℝ*)
114 3simpa 1148 . . . . . . . . . . . . . . . . . . . 20 ((𝐷𝑥𝑥𝑘𝑘 ≤ +∞) → (𝐷𝑥𝑥𝑘))
115114, 82syl3an3 1165 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘 ≤ +∞)) → 𝐶𝐵)
1161153adant1r 1177 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘 ≤ +∞)) → 𝐶𝐵)
117833adantr3 1171 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥𝑆𝐷𝑥𝑥 ≤ +∞)) → 0 ≤ 𝐵)
118117adantlr 714 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) ∧ (𝑥𝑆𝐷𝑥𝑥 ≤ +∞)) → 0 ≤ 𝐵)
119 simprrl 780 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑦𝑆)
120 simprrr 781 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑐𝑦)
1213, 21sstri 4018 . . . . . . . . . . . . . . . . . . . 20 𝑆 ⊆ ℝ*
122121, 119sselid 4006 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑦 ∈ ℝ*)
123 pnfge 13193 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ*𝑦 ≤ +∞)
124122, 123syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑦 ≤ +∞)
1251, 5, 104, 105, 106, 107, 108, 109, 110, 111, 14, 113, 116, 15, 118, 61, 119, 90, 120, 124dvfsumlem4 26090 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (abs‘((𝐺𝑦) − (𝐺𝑐))) ≤ 𝑐 / 𝑥𝐵)
12619adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝐺:𝑆⟶ℂ)
127126, 119ffvelcdmd 7119 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (𝐺𝑦) ∈ ℂ)
128126, 61ffvelcdmd 7119 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (𝐺𝑐) ∈ ℂ)
129127, 128subcld 11647 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → ((𝐺𝑦) − (𝐺𝑐)) ∈ ℂ)
130129abscld 15485 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (abs‘((𝐺𝑦) − (𝐺𝑐))) ∈ ℝ)
131100simpld 494 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑐 / 𝑥𝐵 ∈ ℝ)
132 simprll 778 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑒 ∈ ℝ+)
133132rpred 13099 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑒 ∈ ℝ)
134 lelttr 11380 . . . . . . . . . . . . . . . . . 18 (((abs‘((𝐺𝑦) − (𝐺𝑐))) ∈ ℝ ∧ 𝑐 / 𝑥𝐵 ∈ ℝ ∧ 𝑒 ∈ ℝ) → (((abs‘((𝐺𝑦) − (𝐺𝑐))) ≤ 𝑐 / 𝑥𝐵𝑐 / 𝑥𝐵 < 𝑒) → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))
135130, 131, 133, 134syl3anc 1371 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (((abs‘((𝐺𝑦) − (𝐺𝑐))) ≤ 𝑐 / 𝑥𝐵𝑐 / 𝑥𝐵 < 𝑒) → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))
136125, 135mpand 694 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (𝑐 / 𝑥𝐵 < 𝑒 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))
137103, 136sylbid 240 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → ((abs‘𝑐 / 𝑥𝐵) < 𝑒 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))
13879, 137syld 47 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))
139138anassrs 467 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐))) ∧ (𝑦𝑆𝑐𝑦)) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))
140139expr 456 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐))) ∧ 𝑦𝑆) → (𝑐𝑦 → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒)))
141140com23 86 . . . . . . . . . . 11 (((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐))) ∧ 𝑦𝑆) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒)))
142141ralrimdva 3160 . . . . . . . . . 10 ((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐))) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → ∀𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒)))
143142, 60jctild 525 . . . . . . . . 9 ((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐))) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (𝑐𝑆 ∧ ∀𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))))
144143anassrs 467 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ (𝑐𝑆𝐷𝑐)) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (𝑐𝑆 ∧ ∀𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))))
14559, 144syldan 590 . . . . . . 7 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (𝑐𝑆 ∧ ∀𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))))
146145expimpd 453 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → ((𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞) ∧ ∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒)) → (𝑐𝑆 ∧ ∀𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))))
147146reximdv2 3170 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → (∃𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → ∃𝑐𝑆𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒)))
14838, 147sylbird 260 . . . 4 ((𝜑𝑒 ∈ ℝ+) → (∃𝑐 ∈ ℝ ∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → ∃𝑐𝑆𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒)))
149148ralimdva 3173 . . 3 (𝜑 → (∀𝑒 ∈ ℝ+𝑐 ∈ ℝ ∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → ∀𝑒 ∈ ℝ+𝑐𝑆𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒)))
15031, 149mpd 15 . 2 (𝜑 → ∀𝑒 ∈ ℝ+𝑐𝑆𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))
1514, 19, 26, 150caucvgr 15724 1 (𝜑𝐺 ∈ dom ⇝𝑟 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  csb 3921  wss 3976  ifcif 4548   class class class wbr 5166  cmpt 5249  dom cdm 5700  wf 6569  cfv 6573  (class class class)co 7448  supcsup 9509  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187  +∞cpnf 11321  *cxr 11323   < clt 11324  cle 11325  cmin 11520  cz 12639  cuz 12903  +crp 13057  (,)cioo 13407  [,)cico 13409  ...cfz 13567  cfl 13841  abscabs 15283  𝑟 crli 15531  Σcsu 15734   D cdv 25918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922
This theorem is referenced by:  dvfsumrlim3  26094
  Copyright terms: Public domain W3C validator