MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumrlim Structured version   Visualization version   GIF version

Theorem dvfsumrlim 24099
Description: Compare a finite sum to an integral (the integral here is given as a function with a known derivative). The statement here says that if 𝑥𝑆𝐵 is a decreasing function with antiderivative 𝐴 converging to zero, then the difference between Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐵(𝑘) and 𝐴(𝑥) = ∫𝑢 ∈ (𝑀[,]𝑥)𝐵(𝑢) d𝑢 converges to a constant limit value, with the remainder term bounded by 𝐵(𝑥). (Contributed by Mario Carneiro, 18-May-2016.)
Hypotheses
Ref Expression
dvfsum.s 𝑆 = (𝑇(,)+∞)
dvfsum.z 𝑍 = (ℤ𝑀)
dvfsum.m (𝜑𝑀 ∈ ℤ)
dvfsum.d (𝜑𝐷 ∈ ℝ)
dvfsum.md (𝜑𝑀 ≤ (𝐷 + 1))
dvfsum.t (𝜑𝑇 ∈ ℝ)
dvfsum.a ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
dvfsum.b1 ((𝜑𝑥𝑆) → 𝐵𝑉)
dvfsum.b2 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
dvfsum.b3 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
dvfsum.c (𝑥 = 𝑘𝐵 = 𝐶)
dvfsumrlim.l ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)
dvfsumrlim.g 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
dvfsumrlim.k (𝜑 → (𝑥𝑆𝐵) ⇝𝑟 0)
Assertion
Ref Expression
dvfsumrlim (𝜑𝐺 ∈ dom ⇝𝑟 )
Distinct variable groups:   𝐵,𝑘   𝑥,𝐶   𝑥,𝑘,𝐷   𝜑,𝑘,𝑥   𝑆,𝑘,𝑥   𝑘,𝑀,𝑥   𝑥,𝑇   𝑥,𝑍
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥)   𝐶(𝑘)   𝑇(𝑘)   𝐺(𝑥,𝑘)   𝑉(𝑥,𝑘)   𝑍(𝑘)

Proof of Theorem dvfsumrlim
Dummy variables 𝑦 𝑒 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvfsum.s . . . 4 𝑆 = (𝑇(,)+∞)
2 ioossre 12442 . . . 4 (𝑇(,)+∞) ⊆ ℝ
31, 2eqsstri 3797 . . 3 𝑆 ⊆ ℝ
43a1i 11 . 2 (𝜑𝑆 ⊆ ℝ)
5 dvfsum.z . . . 4 𝑍 = (ℤ𝑀)
6 dvfsum.m . . . 4 (𝜑𝑀 ∈ ℤ)
7 dvfsum.d . . . 4 (𝜑𝐷 ∈ ℝ)
8 dvfsum.md . . . 4 (𝜑𝑀 ≤ (𝐷 + 1))
9 dvfsum.t . . . 4 (𝜑𝑇 ∈ ℝ)
10 dvfsum.a . . . 4 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
11 dvfsum.b1 . . . 4 ((𝜑𝑥𝑆) → 𝐵𝑉)
12 dvfsum.b2 . . . 4 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
13 dvfsum.b3 . . . 4 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
14 dvfsum.c . . . 4 (𝑥 = 𝑘𝐵 = 𝐶)
15 dvfsumrlim.g . . . 4 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
161, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15dvfsumrlimf 24093 . . 3 (𝜑𝐺:𝑆⟶ℝ)
17 ax-resscn 10250 . . 3 ℝ ⊆ ℂ
18 fss 6238 . . 3 ((𝐺:𝑆⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:𝑆⟶ℂ)
1916, 17, 18sylancl 580 . 2 (𝜑𝐺:𝑆⟶ℂ)
201supeq1i 8564 . . 3 sup(𝑆, ℝ*, < ) = sup((𝑇(,)+∞), ℝ*, < )
21 ressxr 10341 . . . . 5 ℝ ⊆ ℝ*
2221, 9sseldi 3761 . . . 4 (𝜑𝑇 ∈ ℝ*)
239renepnfd 10348 . . . 4 (𝜑𝑇 ≠ +∞)
24 ioopnfsup 12876 . . . 4 ((𝑇 ∈ ℝ*𝑇 ≠ +∞) → sup((𝑇(,)+∞), ℝ*, < ) = +∞)
2522, 23, 24syl2anc 579 . . 3 (𝜑 → sup((𝑇(,)+∞), ℝ*, < ) = +∞)
2620, 25syl5eq 2811 . 2 (𝜑 → sup(𝑆, ℝ*, < ) = +∞)
27 dvfsumrlim.k . . . 4 (𝜑 → (𝑥𝑆𝐵) ⇝𝑟 0)
2811, 27rlimmptrcl 14637 . . . . . 6 ((𝜑𝑥𝑆) → 𝐵 ∈ ℂ)
2928ralrimiva 3113 . . . . 5 (𝜑 → ∀𝑥𝑆 𝐵 ∈ ℂ)
3029, 4rlim0 14538 . . . 4 (𝜑 → ((𝑥𝑆𝐵) ⇝𝑟 0 ↔ ∀𝑒 ∈ ℝ+𝑐 ∈ ℝ ∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒)))
3127, 30mpbid 223 . . 3 (𝜑 → ∀𝑒 ∈ ℝ+𝑐 ∈ ℝ ∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒))
323a1i 11 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 𝑆 ⊆ ℝ)
33 peano2re 10467 . . . . . . . . 9 (𝑇 ∈ ℝ → (𝑇 + 1) ∈ ℝ)
349, 33syl 17 . . . . . . . 8 (𝜑 → (𝑇 + 1) ∈ ℝ)
3534, 7ifcld 4290 . . . . . . 7 (𝜑 → if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ∈ ℝ)
3635adantr 472 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ∈ ℝ)
37 rexico 14392 . . . . . 6 ((𝑆 ⊆ ℝ ∧ if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ∈ ℝ) → (∃𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) ↔ ∃𝑐 ∈ ℝ ∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒)))
3832, 36, 37syl2anc 579 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → (∃𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) ↔ ∃𝑐 ∈ ℝ ∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒)))
39 elicopnf 12477 . . . . . . . . . . . . . 14 (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ∈ ℝ → (𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞) ↔ (𝑐 ∈ ℝ ∧ if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ≤ 𝑐)))
4035, 39syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞) ↔ (𝑐 ∈ ℝ ∧ if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ≤ 𝑐)))
4140simprbda 492 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝑐 ∈ ℝ)
429adantr 472 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝑇 ∈ ℝ)
4342, 33syl 17 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → (𝑇 + 1) ∈ ℝ)
4442ltp1d 11212 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝑇 < (𝑇 + 1))
4540simplbda 493 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ≤ 𝑐)
467adantr 472 . . . . . . . . . . . . . . . 16 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝐷 ∈ ℝ)
47 maxle 12229 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ ℝ ∧ (𝑇 + 1) ∈ ℝ ∧ 𝑐 ∈ ℝ) → (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ≤ 𝑐 ↔ (𝐷𝑐 ∧ (𝑇 + 1) ≤ 𝑐)))
4846, 43, 41, 47syl3anc 1490 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ≤ 𝑐 ↔ (𝐷𝑐 ∧ (𝑇 + 1) ≤ 𝑐)))
4945, 48mpbid 223 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → (𝐷𝑐 ∧ (𝑇 + 1) ≤ 𝑐))
5049simprd 489 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → (𝑇 + 1) ≤ 𝑐)
5142, 43, 41, 44, 50ltletrd 10455 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝑇 < 𝑐)
5222adantr 472 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝑇 ∈ ℝ*)
53 elioopnf 12475 . . . . . . . . . . . . 13 (𝑇 ∈ ℝ* → (𝑐 ∈ (𝑇(,)+∞) ↔ (𝑐 ∈ ℝ ∧ 𝑇 < 𝑐)))
5452, 53syl 17 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → (𝑐 ∈ (𝑇(,)+∞) ↔ (𝑐 ∈ ℝ ∧ 𝑇 < 𝑐)))
5541, 51, 54mpbir2and 704 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝑐 ∈ (𝑇(,)+∞))
5655, 1syl6eleqr 2855 . . . . . . . . . 10 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝑐𝑆)
5749simpld 488 . . . . . . . . . 10 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝐷𝑐)
5856, 57jca 507 . . . . . . . . 9 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → (𝑐𝑆𝐷𝑐))
5958adantlr 706 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → (𝑐𝑆𝐷𝑐))
60 simprrl 799 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐))) → 𝑐𝑆)
6160adantrr 708 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑐𝑆)
623, 61sseldi 3761 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑐 ∈ ℝ)
6362leidd 10852 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑐𝑐)
64 nfv 2009 . . . . . . . . . . . . . . . . . . 19 𝑥 𝑐𝑐
65 nfcv 2907 . . . . . . . . . . . . . . . . . . . . 21 𝑥abs
66 nfcsb1v 3709 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝑐 / 𝑥𝐵
6765, 66nffv 6389 . . . . . . . . . . . . . . . . . . . 20 𝑥(abs‘𝑐 / 𝑥𝐵)
68 nfcv 2907 . . . . . . . . . . . . . . . . . . . 20 𝑥 <
69 nfcv 2907 . . . . . . . . . . . . . . . . . . . 20 𝑥𝑒
7067, 68, 69nfbr 4858 . . . . . . . . . . . . . . . . . . 19 𝑥(abs‘𝑐 / 𝑥𝐵) < 𝑒
7164, 70nfim 1995 . . . . . . . . . . . . . . . . . 18 𝑥(𝑐𝑐 → (abs‘𝑐 / 𝑥𝐵) < 𝑒)
72 breq2 4815 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑐 → (𝑐𝑥𝑐𝑐))
73 csbeq1a 3702 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑐𝐵 = 𝑐 / 𝑥𝐵)
7473fveq2d 6383 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑐 → (abs‘𝐵) = (abs‘𝑐 / 𝑥𝐵))
7574breq1d 4821 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑐 → ((abs‘𝐵) < 𝑒 ↔ (abs‘𝑐 / 𝑥𝐵) < 𝑒))
7672, 75imbi12d 335 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑐 → ((𝑐𝑥 → (abs‘𝐵) < 𝑒) ↔ (𝑐𝑐 → (abs‘𝑐 / 𝑥𝐵) < 𝑒)))
7771, 76rspc 3456 . . . . . . . . . . . . . . . . 17 (𝑐𝑆 → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (𝑐𝑐 → (abs‘𝑐 / 𝑥𝐵) < 𝑒)))
7861, 77syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (𝑐𝑐 → (abs‘𝑐 / 𝑥𝐵) < 𝑒)))
7963, 78mpid 44 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (abs‘𝑐 / 𝑥𝐵) < 𝑒))
804, 10, 11, 13dvmptrecl 24092 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑥𝑆) → 𝐵 ∈ ℝ)
8180adantrr 708 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝐵 ∈ ℝ)
82 dvfsumrlim.l . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)
831, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 82, 15, 27dvfsumrlimge0 24098 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 0 ≤ 𝐵)
84 elrege0 12487 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
8581, 83, 84sylanbrc 578 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝐵 ∈ (0[,)+∞))
8685expr 448 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥𝑆) → (𝐷𝑥𝐵 ∈ (0[,)+∞)))
8786ralrimiva 3113 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ∀𝑥𝑆 (𝐷𝑥𝐵 ∈ (0[,)+∞)))
8887adantr 472 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → ∀𝑥𝑆 (𝐷𝑥𝐵 ∈ (0[,)+∞)))
89 simprrr 800 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐))) → 𝐷𝑐)
9089adantrr 708 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝐷𝑐)
91 nfv 2009 . . . . . . . . . . . . . . . . . . . . . 22 𝑥 𝐷𝑐
9266nfel1 2922 . . . . . . . . . . . . . . . . . . . . . 22 𝑥𝑐 / 𝑥𝐵 ∈ (0[,)+∞)
9391, 92nfim 1995 . . . . . . . . . . . . . . . . . . . . 21 𝑥(𝐷𝑐𝑐 / 𝑥𝐵 ∈ (0[,)+∞))
94 breq2 4815 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑐 → (𝐷𝑥𝐷𝑐))
9573eleq1d 2829 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑐 → (𝐵 ∈ (0[,)+∞) ↔ 𝑐 / 𝑥𝐵 ∈ (0[,)+∞)))
9694, 95imbi12d 335 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑐 → ((𝐷𝑥𝐵 ∈ (0[,)+∞)) ↔ (𝐷𝑐𝑐 / 𝑥𝐵 ∈ (0[,)+∞))))
9793, 96rspc 3456 . . . . . . . . . . . . . . . . . . . 20 (𝑐𝑆 → (∀𝑥𝑆 (𝐷𝑥𝐵 ∈ (0[,)+∞)) → (𝐷𝑐𝑐 / 𝑥𝐵 ∈ (0[,)+∞))))
9861, 88, 90, 97syl3c 66 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑐 / 𝑥𝐵 ∈ (0[,)+∞))
99 elrege0 12487 . . . . . . . . . . . . . . . . . . 19 (𝑐 / 𝑥𝐵 ∈ (0[,)+∞) ↔ (𝑐 / 𝑥𝐵 ∈ ℝ ∧ 0 ≤ 𝑐 / 𝑥𝐵))
10098, 99sylib 209 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (𝑐 / 𝑥𝐵 ∈ ℝ ∧ 0 ≤ 𝑐 / 𝑥𝐵))
101 absid 14335 . . . . . . . . . . . . . . . . . 18 ((𝑐 / 𝑥𝐵 ∈ ℝ ∧ 0 ≤ 𝑐 / 𝑥𝐵) → (abs‘𝑐 / 𝑥𝐵) = 𝑐 / 𝑥𝐵)
102100, 101syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (abs‘𝑐 / 𝑥𝐵) = 𝑐 / 𝑥𝐵)
103102breq1d 4821 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → ((abs‘𝑐 / 𝑥𝐵) < 𝑒𝑐 / 𝑥𝐵 < 𝑒))
1046adantr 472 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑀 ∈ ℤ)
1057adantr 472 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝐷 ∈ ℝ)
1068adantr 472 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑀 ≤ (𝐷 + 1))
1079adantr 472 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑇 ∈ ℝ)
10810adantlr 706 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) ∧ 𝑥𝑆) → 𝐴 ∈ ℝ)
10911adantlr 706 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) ∧ 𝑥𝑆) → 𝐵𝑉)
11012adantlr 706 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) ∧ 𝑥𝑍) → 𝐵 ∈ ℝ)
11113adantr 472 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
112 pnfxr 10350 . . . . . . . . . . . . . . . . . . 19 +∞ ∈ ℝ*
113112a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → +∞ ∈ ℝ*)
114 3simpa 1178 . . . . . . . . . . . . . . . . . . . 20 ((𝐷𝑥𝑥𝑘𝑘 ≤ +∞) → (𝐷𝑥𝑥𝑘))
115114, 82syl3an3 1205 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘 ≤ +∞)) → 𝐶𝐵)
1161153adant1r 1223 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘 ≤ +∞)) → 𝐶𝐵)
117833adantr3 1212 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥𝑆𝐷𝑥𝑥 ≤ +∞)) → 0 ≤ 𝐵)
118117adantlr 706 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) ∧ (𝑥𝑆𝐷𝑥𝑥 ≤ +∞)) → 0 ≤ 𝐵)
119 simprrl 799 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑦𝑆)
120 simprrr 800 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑐𝑦)
1213, 21sstri 3772 . . . . . . . . . . . . . . . . . . . 20 𝑆 ⊆ ℝ*
122121, 119sseldi 3761 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑦 ∈ ℝ*)
123 pnfge 12169 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ*𝑦 ≤ +∞)
124122, 123syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑦 ≤ +∞)
1251, 5, 104, 105, 106, 107, 108, 109, 110, 111, 14, 113, 116, 15, 118, 61, 119, 90, 120, 124dvfsumlem4 24097 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (abs‘((𝐺𝑦) − (𝐺𝑐))) ≤ 𝑐 / 𝑥𝐵)
12619adantr 472 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝐺:𝑆⟶ℂ)
127126, 119ffvelrnd 6554 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (𝐺𝑦) ∈ ℂ)
128126, 61ffvelrnd 6554 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (𝐺𝑐) ∈ ℂ)
129127, 128subcld 10650 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → ((𝐺𝑦) − (𝐺𝑐)) ∈ ℂ)
130129abscld 14474 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (abs‘((𝐺𝑦) − (𝐺𝑐))) ∈ ℝ)
131100simpld 488 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑐 / 𝑥𝐵 ∈ ℝ)
132 simprll 797 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑒 ∈ ℝ+)
133132rpred 12075 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑒 ∈ ℝ)
134 lelttr 10386 . . . . . . . . . . . . . . . . . 18 (((abs‘((𝐺𝑦) − (𝐺𝑐))) ∈ ℝ ∧ 𝑐 / 𝑥𝐵 ∈ ℝ ∧ 𝑒 ∈ ℝ) → (((abs‘((𝐺𝑦) − (𝐺𝑐))) ≤ 𝑐 / 𝑥𝐵𝑐 / 𝑥𝐵 < 𝑒) → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))
135130, 131, 133, 134syl3anc 1490 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (((abs‘((𝐺𝑦) − (𝐺𝑐))) ≤ 𝑐 / 𝑥𝐵𝑐 / 𝑥𝐵 < 𝑒) → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))
136125, 135mpand 686 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (𝑐 / 𝑥𝐵 < 𝑒 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))
137103, 136sylbid 231 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → ((abs‘𝑐 / 𝑥𝐵) < 𝑒 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))
13879, 137syld 47 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))
139138anassrs 459 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐))) ∧ (𝑦𝑆𝑐𝑦)) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))
140139expr 448 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐))) ∧ 𝑦𝑆) → (𝑐𝑦 → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒)))
141140com23 86 . . . . . . . . . . 11 (((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐))) ∧ 𝑦𝑆) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒)))
142141ralrimdva 3116 . . . . . . . . . 10 ((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐))) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → ∀𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒)))
143142, 60jctild 521 . . . . . . . . 9 ((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐))) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (𝑐𝑆 ∧ ∀𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))))
144143anassrs 459 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ (𝑐𝑆𝐷𝑐)) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (𝑐𝑆 ∧ ∀𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))))
14559, 144syldan 585 . . . . . . 7 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (𝑐𝑆 ∧ ∀𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))))
146145expimpd 445 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → ((𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞) ∧ ∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒)) → (𝑐𝑆 ∧ ∀𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))))
147146reximdv2 3160 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → (∃𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → ∃𝑐𝑆𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒)))
14838, 147sylbird 251 . . . 4 ((𝜑𝑒 ∈ ℝ+) → (∃𝑐 ∈ ℝ ∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → ∃𝑐𝑆𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒)))
149148ralimdva 3109 . . 3 (𝜑 → (∀𝑒 ∈ ℝ+𝑐 ∈ ℝ ∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → ∀𝑒 ∈ ℝ+𝑐𝑆𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒)))
15031, 149mpd 15 . 2 (𝜑 → ∀𝑒 ∈ ℝ+𝑐𝑆𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))
1514, 19, 26, 150caucvgr 14705 1 (𝜑𝐺 ∈ dom ⇝𝑟 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wral 3055  wrex 3056  csb 3693  wss 3734  ifcif 4245   class class class wbr 4811  cmpt 4890  dom cdm 5279  wf 6066  cfv 6070  (class class class)co 6846  supcsup 8557  cc 10191  cr 10192  0cc0 10193  1c1 10194   + caddc 10196  +∞cpnf 10329  *cxr 10331   < clt 10332  cle 10333  cmin 10524  cz 11628  cuz 11891  +crp 12033  (,)cioo 12382  [,)cico 12384  ...cfz 12538  cfl 12804  abscabs 14273  𝑟 crli 14515  Σcsu 14715   D cdv 23932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-inf2 8757  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270  ax-pre-sup 10271  ax-addf 10272  ax-mulf 10273
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-iin 4681  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-of 7099  df-om 7268  df-1st 7370  df-2nd 7371  df-supp 7502  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-1o 7768  df-2o 7769  df-oadd 7772  df-er 7951  df-map 8066  df-pm 8067  df-ixp 8118  df-en 8165  df-dom 8166  df-sdom 8167  df-fin 8168  df-fsupp 8487  df-fi 8528  df-sup 8559  df-inf 8560  df-oi 8626  df-card 9020  df-cda 9247  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10526  df-neg 10527  df-div 10943  df-nn 11279  df-2 11339  df-3 11340  df-4 11341  df-5 11342  df-6 11343  df-7 11344  df-8 11345  df-9 11346  df-n0 11543  df-z 11629  df-dec 11746  df-uz 11892  df-q 11995  df-rp 12034  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12386  df-ico 12388  df-icc 12389  df-fz 12539  df-fzo 12679  df-fl 12806  df-seq 13014  df-exp 13073  df-hash 13327  df-cj 14138  df-re 14139  df-im 14140  df-sqrt 14274  df-abs 14275  df-limsup 14501  df-clim 14518  df-rlim 14519  df-sum 14716  df-struct 16146  df-ndx 16147  df-slot 16148  df-base 16150  df-sets 16151  df-ress 16152  df-plusg 16241  df-mulr 16242  df-starv 16243  df-sca 16244  df-vsca 16245  df-ip 16246  df-tset 16247  df-ple 16248  df-ds 16250  df-unif 16251  df-hom 16252  df-cco 16253  df-rest 16363  df-topn 16364  df-0g 16382  df-gsum 16383  df-topgen 16384  df-pt 16385  df-prds 16388  df-xrs 16442  df-qtop 16447  df-imas 16448  df-xps 16450  df-mre 16526  df-mrc 16527  df-acs 16529  df-mgm 17522  df-sgrp 17564  df-mnd 17575  df-submnd 17616  df-mulg 17822  df-cntz 18027  df-cmn 18475  df-psmet 20025  df-xmet 20026  df-met 20027  df-bl 20028  df-mopn 20029  df-fbas 20030  df-fg 20031  df-cnfld 20034  df-top 20992  df-topon 21009  df-topsp 21031  df-bases 21044  df-cld 21117  df-ntr 21118  df-cls 21119  df-nei 21196  df-lp 21234  df-perf 21235  df-cn 21325  df-cnp 21326  df-haus 21413  df-cmp 21484  df-tx 21659  df-hmeo 21852  df-fil 21943  df-fm 22035  df-flim 22036  df-flf 22037  df-xms 22418  df-ms 22419  df-tms 22420  df-cncf 22974  df-limc 23935  df-dv 23936
This theorem is referenced by:  dvfsumrlim3  24101
  Copyright terms: Public domain W3C validator