MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumrlim Structured version   Visualization version   GIF version

Theorem dvfsumrlim 25100
Description: Compare a finite sum to an integral (the integral here is given as a function with a known derivative). The statement here says that if 𝑥𝑆𝐵 is a decreasing function with antiderivative 𝐴 converging to zero, then the difference between Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐵(𝑘) and 𝐴(𝑥) = ∫𝑢 ∈ (𝑀[,]𝑥)𝐵(𝑢) d𝑢 converges to a constant limit value, with the remainder term bounded by 𝐵(𝑥). (Contributed by Mario Carneiro, 18-May-2016.)
Hypotheses
Ref Expression
dvfsum.s 𝑆 = (𝑇(,)+∞)
dvfsum.z 𝑍 = (ℤ𝑀)
dvfsum.m (𝜑𝑀 ∈ ℤ)
dvfsum.d (𝜑𝐷 ∈ ℝ)
dvfsum.md (𝜑𝑀 ≤ (𝐷 + 1))
dvfsum.t (𝜑𝑇 ∈ ℝ)
dvfsum.a ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
dvfsum.b1 ((𝜑𝑥𝑆) → 𝐵𝑉)
dvfsum.b2 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
dvfsum.b3 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
dvfsum.c (𝑥 = 𝑘𝐵 = 𝐶)
dvfsumrlim.l ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)
dvfsumrlim.g 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
dvfsumrlim.k (𝜑 → (𝑥𝑆𝐵) ⇝𝑟 0)
Assertion
Ref Expression
dvfsumrlim (𝜑𝐺 ∈ dom ⇝𝑟 )
Distinct variable groups:   𝐵,𝑘   𝑥,𝐶   𝑥,𝑘,𝐷   𝜑,𝑘,𝑥   𝑆,𝑘,𝑥   𝑘,𝑀,𝑥   𝑥,𝑇   𝑥,𝑍
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥)   𝐶(𝑘)   𝑇(𝑘)   𝐺(𝑥,𝑘)   𝑉(𝑥,𝑘)   𝑍(𝑘)

Proof of Theorem dvfsumrlim
Dummy variables 𝑦 𝑒 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvfsum.s . . . 4 𝑆 = (𝑇(,)+∞)
2 ioossre 13069 . . . 4 (𝑇(,)+∞) ⊆ ℝ
31, 2eqsstri 3951 . . 3 𝑆 ⊆ ℝ
43a1i 11 . 2 (𝜑𝑆 ⊆ ℝ)
5 dvfsum.z . . . 4 𝑍 = (ℤ𝑀)
6 dvfsum.m . . . 4 (𝜑𝑀 ∈ ℤ)
7 dvfsum.d . . . 4 (𝜑𝐷 ∈ ℝ)
8 dvfsum.md . . . 4 (𝜑𝑀 ≤ (𝐷 + 1))
9 dvfsum.t . . . 4 (𝜑𝑇 ∈ ℝ)
10 dvfsum.a . . . 4 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
11 dvfsum.b1 . . . 4 ((𝜑𝑥𝑆) → 𝐵𝑉)
12 dvfsum.b2 . . . 4 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
13 dvfsum.b3 . . . 4 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
14 dvfsum.c . . . 4 (𝑥 = 𝑘𝐵 = 𝐶)
15 dvfsumrlim.g . . . 4 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
161, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15dvfsumrlimf 25094 . . 3 (𝜑𝐺:𝑆⟶ℝ)
17 ax-resscn 10859 . . 3 ℝ ⊆ ℂ
18 fss 6601 . . 3 ((𝐺:𝑆⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:𝑆⟶ℂ)
1916, 17, 18sylancl 585 . 2 (𝜑𝐺:𝑆⟶ℂ)
201supeq1i 9136 . . 3 sup(𝑆, ℝ*, < ) = sup((𝑇(,)+∞), ℝ*, < )
21 ressxr 10950 . . . . 5 ℝ ⊆ ℝ*
2221, 9sselid 3915 . . . 4 (𝜑𝑇 ∈ ℝ*)
239renepnfd 10957 . . . 4 (𝜑𝑇 ≠ +∞)
24 ioopnfsup 13512 . . . 4 ((𝑇 ∈ ℝ*𝑇 ≠ +∞) → sup((𝑇(,)+∞), ℝ*, < ) = +∞)
2522, 23, 24syl2anc 583 . . 3 (𝜑 → sup((𝑇(,)+∞), ℝ*, < ) = +∞)
2620, 25syl5eq 2791 . 2 (𝜑 → sup(𝑆, ℝ*, < ) = +∞)
27 dvfsumrlim.k . . . 4 (𝜑 → (𝑥𝑆𝐵) ⇝𝑟 0)
2811, 27rlimmptrcl 15245 . . . . . 6 ((𝜑𝑥𝑆) → 𝐵 ∈ ℂ)
2928ralrimiva 3107 . . . . 5 (𝜑 → ∀𝑥𝑆 𝐵 ∈ ℂ)
3029, 4rlim0 15145 . . . 4 (𝜑 → ((𝑥𝑆𝐵) ⇝𝑟 0 ↔ ∀𝑒 ∈ ℝ+𝑐 ∈ ℝ ∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒)))
3127, 30mpbid 231 . . 3 (𝜑 → ∀𝑒 ∈ ℝ+𝑐 ∈ ℝ ∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒))
323a1i 11 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 𝑆 ⊆ ℝ)
33 peano2re 11078 . . . . . . . . 9 (𝑇 ∈ ℝ → (𝑇 + 1) ∈ ℝ)
349, 33syl 17 . . . . . . . 8 (𝜑 → (𝑇 + 1) ∈ ℝ)
3534, 7ifcld 4502 . . . . . . 7 (𝜑 → if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ∈ ℝ)
3635adantr 480 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ∈ ℝ)
37 rexico 14993 . . . . . 6 ((𝑆 ⊆ ℝ ∧ if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ∈ ℝ) → (∃𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) ↔ ∃𝑐 ∈ ℝ ∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒)))
3832, 36, 37syl2anc 583 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → (∃𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) ↔ ∃𝑐 ∈ ℝ ∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒)))
39 elicopnf 13106 . . . . . . . . . . . . . 14 (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ∈ ℝ → (𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞) ↔ (𝑐 ∈ ℝ ∧ if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ≤ 𝑐)))
4035, 39syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞) ↔ (𝑐 ∈ ℝ ∧ if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ≤ 𝑐)))
4140simprbda 498 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝑐 ∈ ℝ)
429adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝑇 ∈ ℝ)
4342, 33syl 17 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → (𝑇 + 1) ∈ ℝ)
4442ltp1d 11835 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝑇 < (𝑇 + 1))
4540simplbda 499 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ≤ 𝑐)
467adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝐷 ∈ ℝ)
47 maxle 12854 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ ℝ ∧ (𝑇 + 1) ∈ ℝ ∧ 𝑐 ∈ ℝ) → (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ≤ 𝑐 ↔ (𝐷𝑐 ∧ (𝑇 + 1) ≤ 𝑐)))
4846, 43, 41, 47syl3anc 1369 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ≤ 𝑐 ↔ (𝐷𝑐 ∧ (𝑇 + 1) ≤ 𝑐)))
4945, 48mpbid 231 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → (𝐷𝑐 ∧ (𝑇 + 1) ≤ 𝑐))
5049simprd 495 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → (𝑇 + 1) ≤ 𝑐)
5142, 43, 41, 44, 50ltletrd 11065 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝑇 < 𝑐)
5222adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝑇 ∈ ℝ*)
53 elioopnf 13104 . . . . . . . . . . . . 13 (𝑇 ∈ ℝ* → (𝑐 ∈ (𝑇(,)+∞) ↔ (𝑐 ∈ ℝ ∧ 𝑇 < 𝑐)))
5452, 53syl 17 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → (𝑐 ∈ (𝑇(,)+∞) ↔ (𝑐 ∈ ℝ ∧ 𝑇 < 𝑐)))
5541, 51, 54mpbir2and 709 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝑐 ∈ (𝑇(,)+∞))
5655, 1eleqtrrdi 2850 . . . . . . . . . 10 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝑐𝑆)
5749simpld 494 . . . . . . . . . 10 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝐷𝑐)
5856, 57jca 511 . . . . . . . . 9 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → (𝑐𝑆𝐷𝑐))
5958adantlr 711 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → (𝑐𝑆𝐷𝑐))
60 simprrl 777 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐))) → 𝑐𝑆)
6160adantrr 713 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑐𝑆)
623, 61sselid 3915 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑐 ∈ ℝ)
6362leidd 11471 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑐𝑐)
64 nfv 1918 . . . . . . . . . . . . . . . . . . 19 𝑥 𝑐𝑐
65 nfcv 2906 . . . . . . . . . . . . . . . . . . . . 21 𝑥abs
66 nfcsb1v 3853 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝑐 / 𝑥𝐵
6765, 66nffv 6766 . . . . . . . . . . . . . . . . . . . 20 𝑥(abs‘𝑐 / 𝑥𝐵)
68 nfcv 2906 . . . . . . . . . . . . . . . . . . . 20 𝑥 <
69 nfcv 2906 . . . . . . . . . . . . . . . . . . . 20 𝑥𝑒
7067, 68, 69nfbr 5117 . . . . . . . . . . . . . . . . . . 19 𝑥(abs‘𝑐 / 𝑥𝐵) < 𝑒
7164, 70nfim 1900 . . . . . . . . . . . . . . . . . 18 𝑥(𝑐𝑐 → (abs‘𝑐 / 𝑥𝐵) < 𝑒)
72 breq2 5074 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑐 → (𝑐𝑥𝑐𝑐))
73 csbeq1a 3842 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑐𝐵 = 𝑐 / 𝑥𝐵)
7473fveq2d 6760 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑐 → (abs‘𝐵) = (abs‘𝑐 / 𝑥𝐵))
7574breq1d 5080 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑐 → ((abs‘𝐵) < 𝑒 ↔ (abs‘𝑐 / 𝑥𝐵) < 𝑒))
7672, 75imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑐 → ((𝑐𝑥 → (abs‘𝐵) < 𝑒) ↔ (𝑐𝑐 → (abs‘𝑐 / 𝑥𝐵) < 𝑒)))
7771, 76rspc 3539 . . . . . . . . . . . . . . . . 17 (𝑐𝑆 → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (𝑐𝑐 → (abs‘𝑐 / 𝑥𝐵) < 𝑒)))
7861, 77syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (𝑐𝑐 → (abs‘𝑐 / 𝑥𝐵) < 𝑒)))
7963, 78mpid 44 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (abs‘𝑐 / 𝑥𝐵) < 𝑒))
804, 10, 11, 13dvmptrecl 25093 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑥𝑆) → 𝐵 ∈ ℝ)
8180adantrr 713 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝐵 ∈ ℝ)
82 dvfsumrlim.l . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)
831, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 82, 15, 27dvfsumrlimge0 25099 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 0 ≤ 𝐵)
84 elrege0 13115 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
8581, 83, 84sylanbrc 582 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝐵 ∈ (0[,)+∞))
8685expr 456 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥𝑆) → (𝐷𝑥𝐵 ∈ (0[,)+∞)))
8786ralrimiva 3107 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ∀𝑥𝑆 (𝐷𝑥𝐵 ∈ (0[,)+∞)))
8887adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → ∀𝑥𝑆 (𝐷𝑥𝐵 ∈ (0[,)+∞)))
89 simprrr 778 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐))) → 𝐷𝑐)
9089adantrr 713 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝐷𝑐)
91 nfv 1918 . . . . . . . . . . . . . . . . . . . . . 22 𝑥 𝐷𝑐
9266nfel1 2922 . . . . . . . . . . . . . . . . . . . . . 22 𝑥𝑐 / 𝑥𝐵 ∈ (0[,)+∞)
9391, 92nfim 1900 . . . . . . . . . . . . . . . . . . . . 21 𝑥(𝐷𝑐𝑐 / 𝑥𝐵 ∈ (0[,)+∞))
94 breq2 5074 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑐 → (𝐷𝑥𝐷𝑐))
9573eleq1d 2823 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑐 → (𝐵 ∈ (0[,)+∞) ↔ 𝑐 / 𝑥𝐵 ∈ (0[,)+∞)))
9694, 95imbi12d 344 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑐 → ((𝐷𝑥𝐵 ∈ (0[,)+∞)) ↔ (𝐷𝑐𝑐 / 𝑥𝐵 ∈ (0[,)+∞))))
9793, 96rspc 3539 . . . . . . . . . . . . . . . . . . . 20 (𝑐𝑆 → (∀𝑥𝑆 (𝐷𝑥𝐵 ∈ (0[,)+∞)) → (𝐷𝑐𝑐 / 𝑥𝐵 ∈ (0[,)+∞))))
9861, 88, 90, 97syl3c 66 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑐 / 𝑥𝐵 ∈ (0[,)+∞))
99 elrege0 13115 . . . . . . . . . . . . . . . . . . 19 (𝑐 / 𝑥𝐵 ∈ (0[,)+∞) ↔ (𝑐 / 𝑥𝐵 ∈ ℝ ∧ 0 ≤ 𝑐 / 𝑥𝐵))
10098, 99sylib 217 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (𝑐 / 𝑥𝐵 ∈ ℝ ∧ 0 ≤ 𝑐 / 𝑥𝐵))
101 absid 14936 . . . . . . . . . . . . . . . . . 18 ((𝑐 / 𝑥𝐵 ∈ ℝ ∧ 0 ≤ 𝑐 / 𝑥𝐵) → (abs‘𝑐 / 𝑥𝐵) = 𝑐 / 𝑥𝐵)
102100, 101syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (abs‘𝑐 / 𝑥𝐵) = 𝑐 / 𝑥𝐵)
103102breq1d 5080 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → ((abs‘𝑐 / 𝑥𝐵) < 𝑒𝑐 / 𝑥𝐵 < 𝑒))
1046adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑀 ∈ ℤ)
1057adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝐷 ∈ ℝ)
1068adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑀 ≤ (𝐷 + 1))
1079adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑇 ∈ ℝ)
10810adantlr 711 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) ∧ 𝑥𝑆) → 𝐴 ∈ ℝ)
10911adantlr 711 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) ∧ 𝑥𝑆) → 𝐵𝑉)
11012adantlr 711 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) ∧ 𝑥𝑍) → 𝐵 ∈ ℝ)
11113adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
112 pnfxr 10960 . . . . . . . . . . . . . . . . . . 19 +∞ ∈ ℝ*
113112a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → +∞ ∈ ℝ*)
114 3simpa 1146 . . . . . . . . . . . . . . . . . . . 20 ((𝐷𝑥𝑥𝑘𝑘 ≤ +∞) → (𝐷𝑥𝑥𝑘))
115114, 82syl3an3 1163 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘 ≤ +∞)) → 𝐶𝐵)
1161153adant1r 1175 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘 ≤ +∞)) → 𝐶𝐵)
117833adantr3 1169 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥𝑆𝐷𝑥𝑥 ≤ +∞)) → 0 ≤ 𝐵)
118117adantlr 711 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) ∧ (𝑥𝑆𝐷𝑥𝑥 ≤ +∞)) → 0 ≤ 𝐵)
119 simprrl 777 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑦𝑆)
120 simprrr 778 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑐𝑦)
1213, 21sstri 3926 . . . . . . . . . . . . . . . . . . . 20 𝑆 ⊆ ℝ*
122121, 119sselid 3915 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑦 ∈ ℝ*)
123 pnfge 12795 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ*𝑦 ≤ +∞)
124122, 123syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑦 ≤ +∞)
1251, 5, 104, 105, 106, 107, 108, 109, 110, 111, 14, 113, 116, 15, 118, 61, 119, 90, 120, 124dvfsumlem4 25098 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (abs‘((𝐺𝑦) − (𝐺𝑐))) ≤ 𝑐 / 𝑥𝐵)
12619adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝐺:𝑆⟶ℂ)
127126, 119ffvelrnd 6944 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (𝐺𝑦) ∈ ℂ)
128126, 61ffvelrnd 6944 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (𝐺𝑐) ∈ ℂ)
129127, 128subcld 11262 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → ((𝐺𝑦) − (𝐺𝑐)) ∈ ℂ)
130129abscld 15076 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (abs‘((𝐺𝑦) − (𝐺𝑐))) ∈ ℝ)
131100simpld 494 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑐 / 𝑥𝐵 ∈ ℝ)
132 simprll 775 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑒 ∈ ℝ+)
133132rpred 12701 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑒 ∈ ℝ)
134 lelttr 10996 . . . . . . . . . . . . . . . . . 18 (((abs‘((𝐺𝑦) − (𝐺𝑐))) ∈ ℝ ∧ 𝑐 / 𝑥𝐵 ∈ ℝ ∧ 𝑒 ∈ ℝ) → (((abs‘((𝐺𝑦) − (𝐺𝑐))) ≤ 𝑐 / 𝑥𝐵𝑐 / 𝑥𝐵 < 𝑒) → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))
135130, 131, 133, 134syl3anc 1369 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (((abs‘((𝐺𝑦) − (𝐺𝑐))) ≤ 𝑐 / 𝑥𝐵𝑐 / 𝑥𝐵 < 𝑒) → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))
136125, 135mpand 691 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (𝑐 / 𝑥𝐵 < 𝑒 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))
137103, 136sylbid 239 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → ((abs‘𝑐 / 𝑥𝐵) < 𝑒 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))
13879, 137syld 47 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))
139138anassrs 467 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐))) ∧ (𝑦𝑆𝑐𝑦)) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))
140139expr 456 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐))) ∧ 𝑦𝑆) → (𝑐𝑦 → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒)))
141140com23 86 . . . . . . . . . . 11 (((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐))) ∧ 𝑦𝑆) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒)))
142141ralrimdva 3112 . . . . . . . . . 10 ((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐))) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → ∀𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒)))
143142, 60jctild 525 . . . . . . . . 9 ((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐))) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (𝑐𝑆 ∧ ∀𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))))
144143anassrs 467 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ (𝑐𝑆𝐷𝑐)) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (𝑐𝑆 ∧ ∀𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))))
14559, 144syldan 590 . . . . . . 7 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (𝑐𝑆 ∧ ∀𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))))
146145expimpd 453 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → ((𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞) ∧ ∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒)) → (𝑐𝑆 ∧ ∀𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))))
147146reximdv2 3198 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → (∃𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → ∃𝑐𝑆𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒)))
14838, 147sylbird 259 . . . 4 ((𝜑𝑒 ∈ ℝ+) → (∃𝑐 ∈ ℝ ∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → ∃𝑐𝑆𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒)))
149148ralimdva 3102 . . 3 (𝜑 → (∀𝑒 ∈ ℝ+𝑐 ∈ ℝ ∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → ∀𝑒 ∈ ℝ+𝑐𝑆𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒)))
15031, 149mpd 15 . 2 (𝜑 → ∀𝑒 ∈ ℝ+𝑐𝑆𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))
1514, 19, 26, 150caucvgr 15315 1 (𝜑𝐺 ∈ dom ⇝𝑟 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  csb 3828  wss 3883  ifcif 4456   class class class wbr 5070  cmpt 5153  dom cdm 5580  wf 6414  cfv 6418  (class class class)co 7255  supcsup 9129  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941  cmin 11135  cz 12249  cuz 12511  +crp 12659  (,)cioo 13008  [,)cico 13010  ...cfz 13168  cfl 13438  abscabs 14873  𝑟 crli 15122  Σcsu 15325   D cdv 24932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936
This theorem is referenced by:  dvfsumrlim3  25102
  Copyright terms: Public domain W3C validator