MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumrlim2 Structured version   Visualization version   GIF version

Theorem dvfsumrlim2 24632
Description: Compare a finite sum to an integral (the integral here is given as a function with a known derivative). The statement here says that if 𝑥𝑆𝐵 is a decreasing function with antiderivative 𝐴 converging to zero, then the difference between Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐵(𝑘) and 𝑢 ∈ (𝑀[,]𝑥)𝐵(𝑢) d𝑢 = 𝐴(𝑥) converges to a constant limit value, with the remainder term bounded by 𝐵(𝑥). (Contributed by Mario Carneiro, 18-May-2016.)
Hypotheses
Ref Expression
dvfsum.s 𝑆 = (𝑇(,)+∞)
dvfsum.z 𝑍 = (ℤ𝑀)
dvfsum.m (𝜑𝑀 ∈ ℤ)
dvfsum.d (𝜑𝐷 ∈ ℝ)
dvfsum.md (𝜑𝑀 ≤ (𝐷 + 1))
dvfsum.t (𝜑𝑇 ∈ ℝ)
dvfsum.a ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
dvfsum.b1 ((𝜑𝑥𝑆) → 𝐵𝑉)
dvfsum.b2 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
dvfsum.b3 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
dvfsum.c (𝑥 = 𝑘𝐵 = 𝐶)
dvfsumrlim.l ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)
dvfsumrlim.g 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
dvfsumrlim.k (𝜑 → (𝑥𝑆𝐵) ⇝𝑟 0)
dvfsumrlim2.1 (𝜑𝑋𝑆)
dvfsumrlim2.2 (𝜑𝐷𝑋)
Assertion
Ref Expression
dvfsumrlim2 ((𝜑𝐺𝑟 𝐿) → (abs‘((𝐺𝑋) − 𝐿)) ≤ 𝑋 / 𝑥𝐵)
Distinct variable groups:   𝐵,𝑘   𝑥,𝐶   𝑥,𝑘,𝐷   𝜑,𝑘,𝑥   𝑆,𝑘,𝑥   𝑘,𝑀,𝑥   𝑥,𝑇   𝑥,𝑍   𝑘,𝑋,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥)   𝐶(𝑘)   𝑇(𝑘)   𝐺(𝑥,𝑘)   𝐿(𝑥,𝑘)   𝑉(𝑥,𝑘)   𝑍(𝑘)

Proof of Theorem dvfsumrlim2
Dummy variables 𝑦 𝑧 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvfsum.s . . . . . . 7 𝑆 = (𝑇(,)+∞)
2 ioossre 12801 . . . . . . 7 (𝑇(,)+∞) ⊆ ℝ
31, 2eqsstri 4004 . . . . . 6 𝑆 ⊆ ℝ
4 dvfsumrlim2.1 . . . . . 6 (𝜑𝑋𝑆)
53, 4sseldi 3968 . . . . 5 (𝜑𝑋 ∈ ℝ)
65rexrd 10694 . . . 4 (𝜑𝑋 ∈ ℝ*)
75renepnfd 10695 . . . 4 (𝜑𝑋 ≠ +∞)
8 icopnfsup 13236 . . . 4 ((𝑋 ∈ ℝ*𝑋 ≠ +∞) → sup((𝑋[,)+∞), ℝ*, < ) = +∞)
96, 7, 8syl2anc 586 . . 3 (𝜑 → sup((𝑋[,)+∞), ℝ*, < ) = +∞)
109adantr 483 . 2 ((𝜑𝐺𝑟 𝐿) → sup((𝑋[,)+∞), ℝ*, < ) = +∞)
11 dvfsum.z . . . . . . . 8 𝑍 = (ℤ𝑀)
12 dvfsum.m . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
13 dvfsum.d . . . . . . . 8 (𝜑𝐷 ∈ ℝ)
14 dvfsum.md . . . . . . . 8 (𝜑𝑀 ≤ (𝐷 + 1))
15 dvfsum.t . . . . . . . 8 (𝜑𝑇 ∈ ℝ)
16 dvfsum.a . . . . . . . 8 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
17 dvfsum.b1 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝐵𝑉)
18 dvfsum.b2 . . . . . . . 8 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
19 dvfsum.b3 . . . . . . . 8 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
20 dvfsum.c . . . . . . . 8 (𝑥 = 𝑘𝐵 = 𝐶)
21 dvfsumrlim.g . . . . . . . 8 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
221, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21dvfsumrlimf 24625 . . . . . . 7 (𝜑𝐺:𝑆⟶ℝ)
2322ad2antrr 724 . . . . . 6 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝐺:𝑆⟶ℝ)
244ad2antrr 724 . . . . . 6 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝑋𝑆)
2523, 24ffvelrnd 6855 . . . . 5 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (𝐺𝑋) ∈ ℝ)
2625recnd 10672 . . . 4 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (𝐺𝑋) ∈ ℂ)
2715rexrd 10694 . . . . . . . . . 10 (𝜑𝑇 ∈ ℝ*)
284, 1eleqtrdi 2926 . . . . . . . . . . . 12 (𝜑𝑋 ∈ (𝑇(,)+∞))
29 elioopnf 12834 . . . . . . . . . . . . 13 (𝑇 ∈ ℝ* → (𝑋 ∈ (𝑇(,)+∞) ↔ (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋)))
3027, 29syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑋 ∈ (𝑇(,)+∞) ↔ (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋)))
3128, 30mpbid 234 . . . . . . . . . . 11 (𝜑 → (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋))
3231simprd 498 . . . . . . . . . 10 (𝜑𝑇 < 𝑋)
33 df-ioo 12745 . . . . . . . . . . 11 (,) = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢 < 𝑤𝑤 < 𝑣)})
34 df-ico 12747 . . . . . . . . . . 11 [,) = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢𝑤𝑤 < 𝑣)})
35 xrltletr 12553 . . . . . . . . . . 11 ((𝑇 ∈ ℝ*𝑋 ∈ ℝ*𝑧 ∈ ℝ*) → ((𝑇 < 𝑋𝑋𝑧) → 𝑇 < 𝑧))
3633, 34, 35ixxss1 12759 . . . . . . . . . 10 ((𝑇 ∈ ℝ*𝑇 < 𝑋) → (𝑋[,)+∞) ⊆ (𝑇(,)+∞))
3727, 32, 36syl2anc 586 . . . . . . . . 9 (𝜑 → (𝑋[,)+∞) ⊆ (𝑇(,)+∞))
3837, 1sseqtrrdi 4021 . . . . . . . 8 (𝜑 → (𝑋[,)+∞) ⊆ 𝑆)
3938adantr 483 . . . . . . 7 ((𝜑𝐺𝑟 𝐿) → (𝑋[,)+∞) ⊆ 𝑆)
4039sselda 3970 . . . . . 6 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝑦𝑆)
4123, 40ffvelrnd 6855 . . . . 5 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (𝐺𝑦) ∈ ℝ)
4241recnd 10672 . . . 4 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (𝐺𝑦) ∈ ℂ)
4326, 42subcld 11000 . . 3 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → ((𝐺𝑋) − (𝐺𝑦)) ∈ ℂ)
44 pnfxr 10698 . . . . . . 7 +∞ ∈ ℝ*
45 icossre 12820 . . . . . . 7 ((𝑋 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝑋[,)+∞) ⊆ ℝ)
465, 44, 45sylancl 588 . . . . . 6 (𝜑 → (𝑋[,)+∞) ⊆ ℝ)
4746adantr 483 . . . . 5 ((𝜑𝐺𝑟 𝐿) → (𝑋[,)+∞) ⊆ ℝ)
48 rlimf 14861 . . . . . . . 8 (𝐺𝑟 𝐿𝐺:dom 𝐺⟶ℂ)
4948adantl 484 . . . . . . 7 ((𝜑𝐺𝑟 𝐿) → 𝐺:dom 𝐺⟶ℂ)
50 ovex 7192 . . . . . . . . 9 𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴) ∈ V
5150, 21dmmpti 6495 . . . . . . . 8 dom 𝐺 = 𝑆
5251feq2i 6509 . . . . . . 7 (𝐺:dom 𝐺⟶ℂ ↔ 𝐺:𝑆⟶ℂ)
5349, 52sylib 220 . . . . . 6 ((𝜑𝐺𝑟 𝐿) → 𝐺:𝑆⟶ℂ)
544adantr 483 . . . . . 6 ((𝜑𝐺𝑟 𝐿) → 𝑋𝑆)
5553, 54ffvelrnd 6855 . . . . 5 ((𝜑𝐺𝑟 𝐿) → (𝐺𝑋) ∈ ℂ)
56 rlimconst 14904 . . . . 5 (((𝑋[,)+∞) ⊆ ℝ ∧ (𝐺𝑋) ∈ ℂ) → (𝑦 ∈ (𝑋[,)+∞) ↦ (𝐺𝑋)) ⇝𝑟 (𝐺𝑋))
5747, 55, 56syl2anc 586 . . . 4 ((𝜑𝐺𝑟 𝐿) → (𝑦 ∈ (𝑋[,)+∞) ↦ (𝐺𝑋)) ⇝𝑟 (𝐺𝑋))
5853feqmptd 6736 . . . . . 6 ((𝜑𝐺𝑟 𝐿) → 𝐺 = (𝑦𝑆 ↦ (𝐺𝑦)))
59 simpr 487 . . . . . 6 ((𝜑𝐺𝑟 𝐿) → 𝐺𝑟 𝐿)
6058, 59eqbrtrrd 5093 . . . . 5 ((𝜑𝐺𝑟 𝐿) → (𝑦𝑆 ↦ (𝐺𝑦)) ⇝𝑟 𝐿)
6139, 60rlimres2 14921 . . . 4 ((𝜑𝐺𝑟 𝐿) → (𝑦 ∈ (𝑋[,)+∞) ↦ (𝐺𝑦)) ⇝𝑟 𝐿)
6226, 42, 57, 61rlimsub 15003 . . 3 ((𝜑𝐺𝑟 𝐿) → (𝑦 ∈ (𝑋[,)+∞) ↦ ((𝐺𝑋) − (𝐺𝑦))) ⇝𝑟 ((𝐺𝑋) − 𝐿))
6343, 62rlimabs 14968 . 2 ((𝜑𝐺𝑟 𝐿) → (𝑦 ∈ (𝑋[,)+∞) ↦ (abs‘((𝐺𝑋) − (𝐺𝑦)))) ⇝𝑟 (abs‘((𝐺𝑋) − 𝐿)))
643a1i 11 . . . . . . . 8 (𝜑𝑆 ⊆ ℝ)
6564, 16, 17, 19dvmptrecl 24624 . . . . . . 7 ((𝜑𝑥𝑆) → 𝐵 ∈ ℝ)
6665ralrimiva 3185 . . . . . 6 (𝜑 → ∀𝑥𝑆 𝐵 ∈ ℝ)
67 nfcsb1v 3910 . . . . . . . 8 𝑥𝑋 / 𝑥𝐵
6867nfel1 2997 . . . . . . 7 𝑥𝑋 / 𝑥𝐵 ∈ ℝ
69 csbeq1a 3900 . . . . . . . 8 (𝑥 = 𝑋𝐵 = 𝑋 / 𝑥𝐵)
7069eleq1d 2900 . . . . . . 7 (𝑥 = 𝑋 → (𝐵 ∈ ℝ ↔ 𝑋 / 𝑥𝐵 ∈ ℝ))
7168, 70rspc 3614 . . . . . 6 (𝑋𝑆 → (∀𝑥𝑆 𝐵 ∈ ℝ → 𝑋 / 𝑥𝐵 ∈ ℝ))
724, 66, 71sylc 65 . . . . 5 (𝜑𝑋 / 𝑥𝐵 ∈ ℝ)
7372recnd 10672 . . . 4 (𝜑𝑋 / 𝑥𝐵 ∈ ℂ)
74 rlimconst 14904 . . . 4 (((𝑋[,)+∞) ⊆ ℝ ∧ 𝑋 / 𝑥𝐵 ∈ ℂ) → (𝑦 ∈ (𝑋[,)+∞) ↦ 𝑋 / 𝑥𝐵) ⇝𝑟 𝑋 / 𝑥𝐵)
7546, 73, 74syl2anc 586 . . 3 (𝜑 → (𝑦 ∈ (𝑋[,)+∞) ↦ 𝑋 / 𝑥𝐵) ⇝𝑟 𝑋 / 𝑥𝐵)
7675adantr 483 . 2 ((𝜑𝐺𝑟 𝐿) → (𝑦 ∈ (𝑋[,)+∞) ↦ 𝑋 / 𝑥𝐵) ⇝𝑟 𝑋 / 𝑥𝐵)
7743abscld 14799 . 2 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (abs‘((𝐺𝑋) − (𝐺𝑦))) ∈ ℝ)
7872ad2antrr 724 . 2 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝑋 / 𝑥𝐵 ∈ ℝ)
7926, 42abssubd 14816 . . 3 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (abs‘((𝐺𝑋) − (𝐺𝑦))) = (abs‘((𝐺𝑦) − (𝐺𝑋))))
8012adantr 483 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑀 ∈ ℤ)
8113adantr 483 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝐷 ∈ ℝ)
8214adantr 483 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑀 ≤ (𝐷 + 1))
8315adantr 483 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑇 ∈ ℝ)
8416adantlr 713 . . . . 5 (((𝜑𝑦 ∈ (𝑋[,)+∞)) ∧ 𝑥𝑆) → 𝐴 ∈ ℝ)
8517adantlr 713 . . . . 5 (((𝜑𝑦 ∈ (𝑋[,)+∞)) ∧ 𝑥𝑆) → 𝐵𝑉)
8618adantlr 713 . . . . 5 (((𝜑𝑦 ∈ (𝑋[,)+∞)) ∧ 𝑥𝑍) → 𝐵 ∈ ℝ)
8719adantr 483 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
8844a1i 11 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → +∞ ∈ ℝ*)
89 3simpa 1144 . . . . . . 7 ((𝐷𝑥𝑥𝑘𝑘 ≤ +∞) → (𝐷𝑥𝑥𝑘))
90 dvfsumrlim.l . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)
9189, 90syl3an3 1161 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘 ≤ +∞)) → 𝐶𝐵)
92913adant1r 1173 . . . . 5 (((𝜑𝑦 ∈ (𝑋[,)+∞)) ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘 ≤ +∞)) → 𝐶𝐵)
93 dvfsumrlim.k . . . . . . . 8 (𝜑 → (𝑥𝑆𝐵) ⇝𝑟 0)
941, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 90, 21, 93dvfsumrlimge0 24630 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 0 ≤ 𝐵)
95943adantr3 1167 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝐷𝑥𝑥 ≤ +∞)) → 0 ≤ 𝐵)
9695adantlr 713 . . . . 5 (((𝜑𝑦 ∈ (𝑋[,)+∞)) ∧ (𝑥𝑆𝐷𝑥𝑥 ≤ +∞)) → 0 ≤ 𝐵)
974adantr 483 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑋𝑆)
9838sselda 3970 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑦𝑆)
99 dvfsumrlim2.2 . . . . . 6 (𝜑𝐷𝑋)
10099adantr 483 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝐷𝑋)
101 elicopnf 12836 . . . . . . 7 (𝑋 ∈ ℝ → (𝑦 ∈ (𝑋[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑋𝑦)))
1025, 101syl 17 . . . . . 6 (𝜑 → (𝑦 ∈ (𝑋[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑋𝑦)))
103102simplbda 502 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑋𝑦)
104102simprbda 501 . . . . . . 7 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑦 ∈ ℝ)
105104rexrd 10694 . . . . . 6 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑦 ∈ ℝ*)
106 pnfge 12528 . . . . . 6 (𝑦 ∈ ℝ*𝑦 ≤ +∞)
107105, 106syl 17 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑦 ≤ +∞)
1081, 11, 80, 81, 82, 83, 84, 85, 86, 87, 20, 88, 92, 21, 96, 97, 98, 100, 103, 107dvfsumlem4 24629 . . . 4 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → (abs‘((𝐺𝑦) − (𝐺𝑋))) ≤ 𝑋 / 𝑥𝐵)
109108adantlr 713 . . 3 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (abs‘((𝐺𝑦) − (𝐺𝑋))) ≤ 𝑋 / 𝑥𝐵)
11079, 109eqbrtrd 5091 . 2 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (abs‘((𝐺𝑋) − (𝐺𝑦))) ≤ 𝑋 / 𝑥𝐵)
11110, 63, 76, 77, 78, 110rlimle 15007 1 ((𝜑𝐺𝑟 𝐿) → (abs‘((𝐺𝑋) − 𝐿)) ≤ 𝑋 / 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wne 3019  wral 3141  csb 3886  wss 3939   class class class wbr 5069  cmpt 5149  dom cdm 5558  wf 6354  cfv 6358  (class class class)co 7159  supcsup 8907  cc 10538  cr 10539  0cc0 10540  1c1 10541   + caddc 10543  +∞cpnf 10675  *cxr 10677   < clt 10678  cle 10679  cmin 10873  cz 11984  cuz 12246  (,)cioo 12741  [,)cico 12743  ...cfz 12895  cfl 13163  abscabs 14596  𝑟 crli 14845  Σcsu 15045   D cdv 24464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618  ax-addf 10619  ax-mulf 10620
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-fi 8878  df-sup 8909  df-inf 8910  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-rlim 14849  df-sum 15046  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-starv 16583  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-unif 16591  df-hom 16592  df-cco 16593  df-rest 16699  df-topn 16700  df-0g 16718  df-gsum 16719  df-topgen 16720  df-pt 16721  df-prds 16724  df-xrs 16778  df-qtop 16783  df-imas 16784  df-xps 16786  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-mulg 18228  df-cntz 18450  df-cmn 18911  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-fbas 20545  df-fg 20546  df-cnfld 20549  df-top 21505  df-topon 21522  df-topsp 21544  df-bases 21557  df-cld 21630  df-ntr 21631  df-cls 21632  df-nei 21709  df-lp 21747  df-perf 21748  df-cn 21838  df-cnp 21839  df-haus 21926  df-cmp 21998  df-tx 22173  df-hmeo 22366  df-fil 22457  df-fm 22549  df-flim 22550  df-flf 22551  df-xms 22933  df-ms 22934  df-tms 22935  df-cncf 23489  df-limc 24467  df-dv 24468
This theorem is referenced by:  dvfsumrlim3  24633
  Copyright terms: Public domain W3C validator