| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | dvfsum.s | . . . . . . 7
⊢ 𝑆 = (𝑇(,)+∞) | 
| 2 |  | ioossre 13448 | . . . . . . 7
⊢ (𝑇(,)+∞) ⊆
ℝ | 
| 3 | 1, 2 | eqsstri 4030 | . . . . . 6
⊢ 𝑆 ⊆
ℝ | 
| 4 |  | dvfsumrlim2.1 | . . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝑆) | 
| 5 | 3, 4 | sselid 3981 | . . . . 5
⊢ (𝜑 → 𝑋 ∈ ℝ) | 
| 6 | 5 | rexrd 11311 | . . . 4
⊢ (𝜑 → 𝑋 ∈
ℝ*) | 
| 7 | 5 | renepnfd 11312 | . . . 4
⊢ (𝜑 → 𝑋 ≠ +∞) | 
| 8 |  | icopnfsup 13905 | . . . 4
⊢ ((𝑋 ∈ ℝ*
∧ 𝑋 ≠ +∞)
→ sup((𝑋[,)+∞),
ℝ*, < ) = +∞) | 
| 9 | 6, 7, 8 | syl2anc 584 | . . 3
⊢ (𝜑 → sup((𝑋[,)+∞), ℝ*, < ) =
+∞) | 
| 10 | 9 | adantr 480 | . 2
⊢ ((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) → sup((𝑋[,)+∞), ℝ*, < ) =
+∞) | 
| 11 |  | dvfsum.z | . . . . . . . 8
⊢ 𝑍 =
(ℤ≥‘𝑀) | 
| 12 |  | dvfsum.m | . . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℤ) | 
| 13 |  | dvfsum.d | . . . . . . . 8
⊢ (𝜑 → 𝐷 ∈ ℝ) | 
| 14 |  | dvfsum.md | . . . . . . . 8
⊢ (𝜑 → 𝑀 ≤ (𝐷 + 1)) | 
| 15 |  | dvfsum.t | . . . . . . . 8
⊢ (𝜑 → 𝑇 ∈ ℝ) | 
| 16 |  | dvfsum.a | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) | 
| 17 |  | dvfsum.b1 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) | 
| 18 |  | dvfsum.b2 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) | 
| 19 |  | dvfsum.b3 | . . . . . . . 8
⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) | 
| 20 |  | dvfsum.c | . . . . . . . 8
⊢ (𝑥 = 𝑘 → 𝐵 = 𝐶) | 
| 21 |  | dvfsumrlim.g | . . . . . . . 8
⊢ 𝐺 = (𝑥 ∈ 𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 − 𝐴)) | 
| 22 | 1, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 | dvfsumrlimf 26065 | . . . . . . 7
⊢ (𝜑 → 𝐺:𝑆⟶ℝ) | 
| 23 | 22 | ad2antrr 726 | . . . . . 6
⊢ (((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝐺:𝑆⟶ℝ) | 
| 24 | 4 | ad2antrr 726 | . . . . . 6
⊢ (((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝑋 ∈ 𝑆) | 
| 25 | 23, 24 | ffvelcdmd 7105 | . . . . 5
⊢ (((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (𝐺‘𝑋) ∈ ℝ) | 
| 26 | 25 | recnd 11289 | . . . 4
⊢ (((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (𝐺‘𝑋) ∈ ℂ) | 
| 27 | 15 | rexrd 11311 | . . . . . . . . . 10
⊢ (𝜑 → 𝑇 ∈
ℝ*) | 
| 28 | 4, 1 | eleqtrdi 2851 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ∈ (𝑇(,)+∞)) | 
| 29 |  | elioopnf 13483 | . . . . . . . . . . . . 13
⊢ (𝑇 ∈ ℝ*
→ (𝑋 ∈ (𝑇(,)+∞) ↔ (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋))) | 
| 30 | 27, 29 | syl 17 | . . . . . . . . . . . 12
⊢ (𝜑 → (𝑋 ∈ (𝑇(,)+∞) ↔ (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋))) | 
| 31 | 28, 30 | mpbid 232 | . . . . . . . . . . 11
⊢ (𝜑 → (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋)) | 
| 32 | 31 | simprd 495 | . . . . . . . . . 10
⊢ (𝜑 → 𝑇 < 𝑋) | 
| 33 |  | df-ioo 13391 | . . . . . . . . . . 11
⊢ (,) =
(𝑢 ∈
ℝ*, 𝑣
∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢 < 𝑤 ∧ 𝑤 < 𝑣)}) | 
| 34 |  | df-ico 13393 | . . . . . . . . . . 11
⊢ [,) =
(𝑢 ∈
ℝ*, 𝑣
∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢 ≤ 𝑤 ∧ 𝑤 < 𝑣)}) | 
| 35 |  | xrltletr 13199 | . . . . . . . . . . 11
⊢ ((𝑇 ∈ ℝ*
∧ 𝑋 ∈
ℝ* ∧ 𝑧
∈ ℝ*) → ((𝑇 < 𝑋 ∧ 𝑋 ≤ 𝑧) → 𝑇 < 𝑧)) | 
| 36 | 33, 34, 35 | ixxss1 13405 | . . . . . . . . . 10
⊢ ((𝑇 ∈ ℝ*
∧ 𝑇 < 𝑋) → (𝑋[,)+∞) ⊆ (𝑇(,)+∞)) | 
| 37 | 27, 32, 36 | syl2anc 584 | . . . . . . . . 9
⊢ (𝜑 → (𝑋[,)+∞) ⊆ (𝑇(,)+∞)) | 
| 38 | 37, 1 | sseqtrrdi 4025 | . . . . . . . 8
⊢ (𝜑 → (𝑋[,)+∞) ⊆ 𝑆) | 
| 39 | 38 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) → (𝑋[,)+∞) ⊆ 𝑆) | 
| 40 | 39 | sselda 3983 | . . . . . 6
⊢ (((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝑦 ∈ 𝑆) | 
| 41 | 23, 40 | ffvelcdmd 7105 | . . . . 5
⊢ (((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (𝐺‘𝑦) ∈ ℝ) | 
| 42 | 41 | recnd 11289 | . . . 4
⊢ (((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (𝐺‘𝑦) ∈ ℂ) | 
| 43 | 26, 42 | subcld 11620 | . . 3
⊢ (((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → ((𝐺‘𝑋) − (𝐺‘𝑦)) ∈ ℂ) | 
| 44 |  | pnfxr 11315 | . . . . . . 7
⊢ +∞
∈ ℝ* | 
| 45 |  | icossre 13468 | . . . . . . 7
⊢ ((𝑋 ∈ ℝ ∧ +∞
∈ ℝ*) → (𝑋[,)+∞) ⊆
ℝ) | 
| 46 | 5, 44, 45 | sylancl 586 | . . . . . 6
⊢ (𝜑 → (𝑋[,)+∞) ⊆
ℝ) | 
| 47 | 46 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) → (𝑋[,)+∞) ⊆
ℝ) | 
| 48 |  | rlimf 15537 | . . . . . . . 8
⊢ (𝐺 ⇝𝑟
𝐿 → 𝐺:dom 𝐺⟶ℂ) | 
| 49 | 48 | adantl 481 | . . . . . . 7
⊢ ((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) → 𝐺:dom 𝐺⟶ℂ) | 
| 50 |  | ovex 7464 | . . . . . . . . 9
⊢
(Σ𝑘 ∈
(𝑀...(⌊‘𝑥))𝐶 − 𝐴) ∈ V | 
| 51 | 50, 21 | dmmpti 6712 | . . . . . . . 8
⊢ dom 𝐺 = 𝑆 | 
| 52 | 51 | feq2i 6728 | . . . . . . 7
⊢ (𝐺:dom 𝐺⟶ℂ ↔ 𝐺:𝑆⟶ℂ) | 
| 53 | 49, 52 | sylib 218 | . . . . . 6
⊢ ((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) → 𝐺:𝑆⟶ℂ) | 
| 54 | 4 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) → 𝑋 ∈ 𝑆) | 
| 55 | 53, 54 | ffvelcdmd 7105 | . . . . 5
⊢ ((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) → (𝐺‘𝑋) ∈ ℂ) | 
| 56 |  | rlimconst 15580 | . . . . 5
⊢ (((𝑋[,)+∞) ⊆ ℝ
∧ (𝐺‘𝑋) ∈ ℂ) → (𝑦 ∈ (𝑋[,)+∞) ↦ (𝐺‘𝑋)) ⇝𝑟 (𝐺‘𝑋)) | 
| 57 | 47, 55, 56 | syl2anc 584 | . . . 4
⊢ ((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) → (𝑦 ∈ (𝑋[,)+∞) ↦ (𝐺‘𝑋)) ⇝𝑟 (𝐺‘𝑋)) | 
| 58 | 53 | feqmptd 6977 | . . . . . 6
⊢ ((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) → 𝐺 = (𝑦 ∈ 𝑆 ↦ (𝐺‘𝑦))) | 
| 59 |  | simpr 484 | . . . . . 6
⊢ ((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) → 𝐺 ⇝𝑟 𝐿) | 
| 60 | 58, 59 | eqbrtrrd 5167 | . . . . 5
⊢ ((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) → (𝑦 ∈ 𝑆 ↦ (𝐺‘𝑦)) ⇝𝑟 𝐿) | 
| 61 | 39, 60 | rlimres2 15597 | . . . 4
⊢ ((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) → (𝑦 ∈ (𝑋[,)+∞) ↦ (𝐺‘𝑦)) ⇝𝑟 𝐿) | 
| 62 | 26, 42, 57, 61 | rlimsub 15680 | . . 3
⊢ ((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) → (𝑦 ∈ (𝑋[,)+∞) ↦ ((𝐺‘𝑋) − (𝐺‘𝑦))) ⇝𝑟 ((𝐺‘𝑋) − 𝐿)) | 
| 63 | 43, 62 | rlimabs 15645 | . 2
⊢ ((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) → (𝑦 ∈ (𝑋[,)+∞) ↦ (abs‘((𝐺‘𝑋) − (𝐺‘𝑦)))) ⇝𝑟
(abs‘((𝐺‘𝑋) − 𝐿))) | 
| 64 | 3 | a1i 11 | . . . . . . . 8
⊢ (𝜑 → 𝑆 ⊆ ℝ) | 
| 65 | 64, 16, 17, 19 | dvmptrecl 26064 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ ℝ) | 
| 66 | 65 | ralrimiva 3146 | . . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ 𝑆 𝐵 ∈ ℝ) | 
| 67 |  | nfcsb1v 3923 | . . . . . . . 8
⊢
Ⅎ𝑥⦋𝑋 / 𝑥⦌𝐵 | 
| 68 | 67 | nfel1 2922 | . . . . . . 7
⊢
Ⅎ𝑥⦋𝑋 / 𝑥⦌𝐵 ∈ ℝ | 
| 69 |  | csbeq1a 3913 | . . . . . . . 8
⊢ (𝑥 = 𝑋 → 𝐵 = ⦋𝑋 / 𝑥⦌𝐵) | 
| 70 | 69 | eleq1d 2826 | . . . . . . 7
⊢ (𝑥 = 𝑋 → (𝐵 ∈ ℝ ↔ ⦋𝑋 / 𝑥⦌𝐵 ∈ ℝ)) | 
| 71 | 68, 70 | rspc 3610 | . . . . . 6
⊢ (𝑋 ∈ 𝑆 → (∀𝑥 ∈ 𝑆 𝐵 ∈ ℝ → ⦋𝑋 / 𝑥⦌𝐵 ∈ ℝ)) | 
| 72 | 4, 66, 71 | sylc 65 | . . . . 5
⊢ (𝜑 → ⦋𝑋 / 𝑥⦌𝐵 ∈ ℝ) | 
| 73 | 72 | recnd 11289 | . . . 4
⊢ (𝜑 → ⦋𝑋 / 𝑥⦌𝐵 ∈ ℂ) | 
| 74 |  | rlimconst 15580 | . . . 4
⊢ (((𝑋[,)+∞) ⊆ ℝ
∧ ⦋𝑋 /
𝑥⦌𝐵 ∈ ℂ) → (𝑦 ∈ (𝑋[,)+∞) ↦ ⦋𝑋 / 𝑥⦌𝐵) ⇝𝑟
⦋𝑋 / 𝑥⦌𝐵) | 
| 75 | 46, 73, 74 | syl2anc 584 | . . 3
⊢ (𝜑 → (𝑦 ∈ (𝑋[,)+∞) ↦ ⦋𝑋 / 𝑥⦌𝐵) ⇝𝑟
⦋𝑋 / 𝑥⦌𝐵) | 
| 76 | 75 | adantr 480 | . 2
⊢ ((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) → (𝑦 ∈ (𝑋[,)+∞) ↦ ⦋𝑋 / 𝑥⦌𝐵) ⇝𝑟
⦋𝑋 / 𝑥⦌𝐵) | 
| 77 | 43 | abscld 15475 | . 2
⊢ (((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (abs‘((𝐺‘𝑋) − (𝐺‘𝑦))) ∈ ℝ) | 
| 78 | 72 | ad2antrr 726 | . 2
⊢ (((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → ⦋𝑋 / 𝑥⦌𝐵 ∈ ℝ) | 
| 79 | 26, 42 | abssubd 15492 | . . 3
⊢ (((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (abs‘((𝐺‘𝑋) − (𝐺‘𝑦))) = (abs‘((𝐺‘𝑦) − (𝐺‘𝑋)))) | 
| 80 | 12 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝑀 ∈ ℤ) | 
| 81 | 13 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝐷 ∈ ℝ) | 
| 82 | 14 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝑀 ≤ (𝐷 + 1)) | 
| 83 | 15 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝑇 ∈ ℝ) | 
| 84 | 16 | adantlr 715 | . . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑋[,)+∞)) ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) | 
| 85 | 17 | adantlr 715 | . . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑋[,)+∞)) ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) | 
| 86 | 18 | adantlr 715 | . . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑋[,)+∞)) ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) | 
| 87 | 19 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋[,)+∞)) → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) | 
| 88 | 44 | a1i 11 | . . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋[,)+∞)) → +∞ ∈
ℝ*) | 
| 89 |  | 3simpa 1149 | . . . . . . 7
⊢ ((𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ +∞) → (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘)) | 
| 90 |  | dvfsumrlim.l | . . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘)) → 𝐶 ≤ 𝐵) | 
| 91 | 89, 90 | syl3an3 1166 | . . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ +∞)) → 𝐶 ≤ 𝐵) | 
| 92 | 91 | 3adant1r 1178 | . . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑋[,)+∞)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ +∞)) → 𝐶 ≤ 𝐵) | 
| 93 |  | dvfsumrlim.k | . . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝑆 ↦ 𝐵) ⇝𝑟
0) | 
| 94 | 1, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 90, 21, 93 | dvfsumrlimge0 26071 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → 0 ≤ 𝐵) | 
| 95 | 94 | 3adantr3 1172 | . . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ +∞)) → 0 ≤ 𝐵) | 
| 96 | 95 | adantlr 715 | . . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑋[,)+∞)) ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ +∞)) → 0 ≤ 𝐵) | 
| 97 | 4 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝑋 ∈ 𝑆) | 
| 98 | 38 | sselda 3983 | . . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝑦 ∈ 𝑆) | 
| 99 |  | dvfsumrlim2.2 | . . . . . 6
⊢ (𝜑 → 𝐷 ≤ 𝑋) | 
| 100 | 99 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝐷 ≤ 𝑋) | 
| 101 |  | elicopnf 13485 | . . . . . . 7
⊢ (𝑋 ∈ ℝ → (𝑦 ∈ (𝑋[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑋 ≤ 𝑦))) | 
| 102 | 5, 101 | syl 17 | . . . . . 6
⊢ (𝜑 → (𝑦 ∈ (𝑋[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑋 ≤ 𝑦))) | 
| 103 | 102 | simplbda 499 | . . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝑋 ≤ 𝑦) | 
| 104 | 102 | simprbda 498 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝑦 ∈ ℝ) | 
| 105 | 104 | rexrd 11311 | . . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝑦 ∈ ℝ*) | 
| 106 |  | pnfge 13172 | . . . . . 6
⊢ (𝑦 ∈ ℝ*
→ 𝑦 ≤
+∞) | 
| 107 | 105, 106 | syl 17 | . . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝑦 ≤ +∞) | 
| 108 | 1, 11, 80, 81, 82, 83, 84, 85, 86, 87, 20, 88, 92, 21, 96, 97, 98, 100, 103, 107 | dvfsumlem4 26070 | . . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋[,)+∞)) → (abs‘((𝐺‘𝑦) − (𝐺‘𝑋))) ≤ ⦋𝑋 / 𝑥⦌𝐵) | 
| 109 | 108 | adantlr 715 | . . 3
⊢ (((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (abs‘((𝐺‘𝑦) − (𝐺‘𝑋))) ≤ ⦋𝑋 / 𝑥⦌𝐵) | 
| 110 | 79, 109 | eqbrtrd 5165 | . 2
⊢ (((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (abs‘((𝐺‘𝑋) − (𝐺‘𝑦))) ≤ ⦋𝑋 / 𝑥⦌𝐵) | 
| 111 | 10, 63, 76, 77, 78, 110 | rlimle 15684 | 1
⊢ ((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) → (abs‘((𝐺‘𝑋) − 𝐿)) ≤ ⦋𝑋 / 𝑥⦌𝐵) |