MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumrlim2 Structured version   Visualization version   GIF version

Theorem dvfsumrlim2 25939
Description: Compare a finite sum to an integral (the integral here is given as a function with a known derivative). The statement here says that if 𝑥𝑆𝐵 is a decreasing function with antiderivative 𝐴 converging to zero, then the difference between Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐵(𝑘) and 𝑢 ∈ (𝑀[,]𝑥)𝐵(𝑢) d𝑢 = 𝐴(𝑥) converges to a constant limit value, with the remainder term bounded by 𝐵(𝑥). (Contributed by Mario Carneiro, 18-May-2016.)
Hypotheses
Ref Expression
dvfsum.s 𝑆 = (𝑇(,)+∞)
dvfsum.z 𝑍 = (ℤ𝑀)
dvfsum.m (𝜑𝑀 ∈ ℤ)
dvfsum.d (𝜑𝐷 ∈ ℝ)
dvfsum.md (𝜑𝑀 ≤ (𝐷 + 1))
dvfsum.t (𝜑𝑇 ∈ ℝ)
dvfsum.a ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
dvfsum.b1 ((𝜑𝑥𝑆) → 𝐵𝑉)
dvfsum.b2 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
dvfsum.b3 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
dvfsum.c (𝑥 = 𝑘𝐵 = 𝐶)
dvfsumrlim.l ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)
dvfsumrlim.g 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
dvfsumrlim.k (𝜑 → (𝑥𝑆𝐵) ⇝𝑟 0)
dvfsumrlim2.1 (𝜑𝑋𝑆)
dvfsumrlim2.2 (𝜑𝐷𝑋)
Assertion
Ref Expression
dvfsumrlim2 ((𝜑𝐺𝑟 𝐿) → (abs‘((𝐺𝑋) − 𝐿)) ≤ 𝑋 / 𝑥𝐵)
Distinct variable groups:   𝐵,𝑘   𝑥,𝐶   𝑥,𝑘,𝐷   𝜑,𝑘,𝑥   𝑆,𝑘,𝑥   𝑘,𝑀,𝑥   𝑥,𝑇   𝑥,𝑍   𝑘,𝑋,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥)   𝐶(𝑘)   𝑇(𝑘)   𝐺(𝑥,𝑘)   𝐿(𝑥,𝑘)   𝑉(𝑥,𝑘)   𝑍(𝑘)

Proof of Theorem dvfsumrlim2
Dummy variables 𝑦 𝑧 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvfsum.s . . . . . . 7 𝑆 = (𝑇(,)+∞)
2 ioossre 13368 . . . . . . 7 (𝑇(,)+∞) ⊆ ℝ
31, 2eqsstri 3993 . . . . . 6 𝑆 ⊆ ℝ
4 dvfsumrlim2.1 . . . . . 6 (𝜑𝑋𝑆)
53, 4sselid 3944 . . . . 5 (𝜑𝑋 ∈ ℝ)
65rexrd 11224 . . . 4 (𝜑𝑋 ∈ ℝ*)
75renepnfd 11225 . . . 4 (𝜑𝑋 ≠ +∞)
8 icopnfsup 13827 . . . 4 ((𝑋 ∈ ℝ*𝑋 ≠ +∞) → sup((𝑋[,)+∞), ℝ*, < ) = +∞)
96, 7, 8syl2anc 584 . . 3 (𝜑 → sup((𝑋[,)+∞), ℝ*, < ) = +∞)
109adantr 480 . 2 ((𝜑𝐺𝑟 𝐿) → sup((𝑋[,)+∞), ℝ*, < ) = +∞)
11 dvfsum.z . . . . . . . 8 𝑍 = (ℤ𝑀)
12 dvfsum.m . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
13 dvfsum.d . . . . . . . 8 (𝜑𝐷 ∈ ℝ)
14 dvfsum.md . . . . . . . 8 (𝜑𝑀 ≤ (𝐷 + 1))
15 dvfsum.t . . . . . . . 8 (𝜑𝑇 ∈ ℝ)
16 dvfsum.a . . . . . . . 8 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
17 dvfsum.b1 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝐵𝑉)
18 dvfsum.b2 . . . . . . . 8 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
19 dvfsum.b3 . . . . . . . 8 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
20 dvfsum.c . . . . . . . 8 (𝑥 = 𝑘𝐵 = 𝐶)
21 dvfsumrlim.g . . . . . . . 8 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
221, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21dvfsumrlimf 25931 . . . . . . 7 (𝜑𝐺:𝑆⟶ℝ)
2322ad2antrr 726 . . . . . 6 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝐺:𝑆⟶ℝ)
244ad2antrr 726 . . . . . 6 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝑋𝑆)
2523, 24ffvelcdmd 7057 . . . . 5 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (𝐺𝑋) ∈ ℝ)
2625recnd 11202 . . . 4 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (𝐺𝑋) ∈ ℂ)
2715rexrd 11224 . . . . . . . . . 10 (𝜑𝑇 ∈ ℝ*)
284, 1eleqtrdi 2838 . . . . . . . . . . . 12 (𝜑𝑋 ∈ (𝑇(,)+∞))
29 elioopnf 13404 . . . . . . . . . . . . 13 (𝑇 ∈ ℝ* → (𝑋 ∈ (𝑇(,)+∞) ↔ (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋)))
3027, 29syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑋 ∈ (𝑇(,)+∞) ↔ (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋)))
3128, 30mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋))
3231simprd 495 . . . . . . . . . 10 (𝜑𝑇 < 𝑋)
33 df-ioo 13310 . . . . . . . . . . 11 (,) = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢 < 𝑤𝑤 < 𝑣)})
34 df-ico 13312 . . . . . . . . . . 11 [,) = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢𝑤𝑤 < 𝑣)})
35 xrltletr 13117 . . . . . . . . . . 11 ((𝑇 ∈ ℝ*𝑋 ∈ ℝ*𝑧 ∈ ℝ*) → ((𝑇 < 𝑋𝑋𝑧) → 𝑇 < 𝑧))
3633, 34, 35ixxss1 13324 . . . . . . . . . 10 ((𝑇 ∈ ℝ*𝑇 < 𝑋) → (𝑋[,)+∞) ⊆ (𝑇(,)+∞))
3727, 32, 36syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑋[,)+∞) ⊆ (𝑇(,)+∞))
3837, 1sseqtrrdi 3988 . . . . . . . 8 (𝜑 → (𝑋[,)+∞) ⊆ 𝑆)
3938adantr 480 . . . . . . 7 ((𝜑𝐺𝑟 𝐿) → (𝑋[,)+∞) ⊆ 𝑆)
4039sselda 3946 . . . . . 6 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝑦𝑆)
4123, 40ffvelcdmd 7057 . . . . 5 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (𝐺𝑦) ∈ ℝ)
4241recnd 11202 . . . 4 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (𝐺𝑦) ∈ ℂ)
4326, 42subcld 11533 . . 3 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → ((𝐺𝑋) − (𝐺𝑦)) ∈ ℂ)
44 pnfxr 11228 . . . . . . 7 +∞ ∈ ℝ*
45 icossre 13389 . . . . . . 7 ((𝑋 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝑋[,)+∞) ⊆ ℝ)
465, 44, 45sylancl 586 . . . . . 6 (𝜑 → (𝑋[,)+∞) ⊆ ℝ)
4746adantr 480 . . . . 5 ((𝜑𝐺𝑟 𝐿) → (𝑋[,)+∞) ⊆ ℝ)
48 rlimf 15467 . . . . . . . 8 (𝐺𝑟 𝐿𝐺:dom 𝐺⟶ℂ)
4948adantl 481 . . . . . . 7 ((𝜑𝐺𝑟 𝐿) → 𝐺:dom 𝐺⟶ℂ)
50 ovex 7420 . . . . . . . . 9 𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴) ∈ V
5150, 21dmmpti 6662 . . . . . . . 8 dom 𝐺 = 𝑆
5251feq2i 6680 . . . . . . 7 (𝐺:dom 𝐺⟶ℂ ↔ 𝐺:𝑆⟶ℂ)
5349, 52sylib 218 . . . . . 6 ((𝜑𝐺𝑟 𝐿) → 𝐺:𝑆⟶ℂ)
544adantr 480 . . . . . 6 ((𝜑𝐺𝑟 𝐿) → 𝑋𝑆)
5553, 54ffvelcdmd 7057 . . . . 5 ((𝜑𝐺𝑟 𝐿) → (𝐺𝑋) ∈ ℂ)
56 rlimconst 15510 . . . . 5 (((𝑋[,)+∞) ⊆ ℝ ∧ (𝐺𝑋) ∈ ℂ) → (𝑦 ∈ (𝑋[,)+∞) ↦ (𝐺𝑋)) ⇝𝑟 (𝐺𝑋))
5747, 55, 56syl2anc 584 . . . 4 ((𝜑𝐺𝑟 𝐿) → (𝑦 ∈ (𝑋[,)+∞) ↦ (𝐺𝑋)) ⇝𝑟 (𝐺𝑋))
5853feqmptd 6929 . . . . . 6 ((𝜑𝐺𝑟 𝐿) → 𝐺 = (𝑦𝑆 ↦ (𝐺𝑦)))
59 simpr 484 . . . . . 6 ((𝜑𝐺𝑟 𝐿) → 𝐺𝑟 𝐿)
6058, 59eqbrtrrd 5131 . . . . 5 ((𝜑𝐺𝑟 𝐿) → (𝑦𝑆 ↦ (𝐺𝑦)) ⇝𝑟 𝐿)
6139, 60rlimres2 15527 . . . 4 ((𝜑𝐺𝑟 𝐿) → (𝑦 ∈ (𝑋[,)+∞) ↦ (𝐺𝑦)) ⇝𝑟 𝐿)
6226, 42, 57, 61rlimsub 15610 . . 3 ((𝜑𝐺𝑟 𝐿) → (𝑦 ∈ (𝑋[,)+∞) ↦ ((𝐺𝑋) − (𝐺𝑦))) ⇝𝑟 ((𝐺𝑋) − 𝐿))
6343, 62rlimabs 15575 . 2 ((𝜑𝐺𝑟 𝐿) → (𝑦 ∈ (𝑋[,)+∞) ↦ (abs‘((𝐺𝑋) − (𝐺𝑦)))) ⇝𝑟 (abs‘((𝐺𝑋) − 𝐿)))
643a1i 11 . . . . . . . 8 (𝜑𝑆 ⊆ ℝ)
6564, 16, 17, 19dvmptrecl 25930 . . . . . . 7 ((𝜑𝑥𝑆) → 𝐵 ∈ ℝ)
6665ralrimiva 3125 . . . . . 6 (𝜑 → ∀𝑥𝑆 𝐵 ∈ ℝ)
67 nfcsb1v 3886 . . . . . . . 8 𝑥𝑋 / 𝑥𝐵
6867nfel1 2908 . . . . . . 7 𝑥𝑋 / 𝑥𝐵 ∈ ℝ
69 csbeq1a 3876 . . . . . . . 8 (𝑥 = 𝑋𝐵 = 𝑋 / 𝑥𝐵)
7069eleq1d 2813 . . . . . . 7 (𝑥 = 𝑋 → (𝐵 ∈ ℝ ↔ 𝑋 / 𝑥𝐵 ∈ ℝ))
7168, 70rspc 3576 . . . . . 6 (𝑋𝑆 → (∀𝑥𝑆 𝐵 ∈ ℝ → 𝑋 / 𝑥𝐵 ∈ ℝ))
724, 66, 71sylc 65 . . . . 5 (𝜑𝑋 / 𝑥𝐵 ∈ ℝ)
7372recnd 11202 . . . 4 (𝜑𝑋 / 𝑥𝐵 ∈ ℂ)
74 rlimconst 15510 . . . 4 (((𝑋[,)+∞) ⊆ ℝ ∧ 𝑋 / 𝑥𝐵 ∈ ℂ) → (𝑦 ∈ (𝑋[,)+∞) ↦ 𝑋 / 𝑥𝐵) ⇝𝑟 𝑋 / 𝑥𝐵)
7546, 73, 74syl2anc 584 . . 3 (𝜑 → (𝑦 ∈ (𝑋[,)+∞) ↦ 𝑋 / 𝑥𝐵) ⇝𝑟 𝑋 / 𝑥𝐵)
7675adantr 480 . 2 ((𝜑𝐺𝑟 𝐿) → (𝑦 ∈ (𝑋[,)+∞) ↦ 𝑋 / 𝑥𝐵) ⇝𝑟 𝑋 / 𝑥𝐵)
7743abscld 15405 . 2 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (abs‘((𝐺𝑋) − (𝐺𝑦))) ∈ ℝ)
7872ad2antrr 726 . 2 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝑋 / 𝑥𝐵 ∈ ℝ)
7926, 42abssubd 15422 . . 3 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (abs‘((𝐺𝑋) − (𝐺𝑦))) = (abs‘((𝐺𝑦) − (𝐺𝑋))))
8012adantr 480 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑀 ∈ ℤ)
8113adantr 480 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝐷 ∈ ℝ)
8214adantr 480 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑀 ≤ (𝐷 + 1))
8315adantr 480 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑇 ∈ ℝ)
8416adantlr 715 . . . . 5 (((𝜑𝑦 ∈ (𝑋[,)+∞)) ∧ 𝑥𝑆) → 𝐴 ∈ ℝ)
8517adantlr 715 . . . . 5 (((𝜑𝑦 ∈ (𝑋[,)+∞)) ∧ 𝑥𝑆) → 𝐵𝑉)
8618adantlr 715 . . . . 5 (((𝜑𝑦 ∈ (𝑋[,)+∞)) ∧ 𝑥𝑍) → 𝐵 ∈ ℝ)
8719adantr 480 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
8844a1i 11 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → +∞ ∈ ℝ*)
89 3simpa 1148 . . . . . . 7 ((𝐷𝑥𝑥𝑘𝑘 ≤ +∞) → (𝐷𝑥𝑥𝑘))
90 dvfsumrlim.l . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)
9189, 90syl3an3 1165 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘 ≤ +∞)) → 𝐶𝐵)
92913adant1r 1178 . . . . 5 (((𝜑𝑦 ∈ (𝑋[,)+∞)) ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘 ≤ +∞)) → 𝐶𝐵)
93 dvfsumrlim.k . . . . . . . 8 (𝜑 → (𝑥𝑆𝐵) ⇝𝑟 0)
941, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 90, 21, 93dvfsumrlimge0 25937 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 0 ≤ 𝐵)
95943adantr3 1172 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝐷𝑥𝑥 ≤ +∞)) → 0 ≤ 𝐵)
9695adantlr 715 . . . . 5 (((𝜑𝑦 ∈ (𝑋[,)+∞)) ∧ (𝑥𝑆𝐷𝑥𝑥 ≤ +∞)) → 0 ≤ 𝐵)
974adantr 480 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑋𝑆)
9838sselda 3946 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑦𝑆)
99 dvfsumrlim2.2 . . . . . 6 (𝜑𝐷𝑋)
10099adantr 480 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝐷𝑋)
101 elicopnf 13406 . . . . . . 7 (𝑋 ∈ ℝ → (𝑦 ∈ (𝑋[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑋𝑦)))
1025, 101syl 17 . . . . . 6 (𝜑 → (𝑦 ∈ (𝑋[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑋𝑦)))
103102simplbda 499 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑋𝑦)
104102simprbda 498 . . . . . . 7 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑦 ∈ ℝ)
105104rexrd 11224 . . . . . 6 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑦 ∈ ℝ*)
106 pnfge 13090 . . . . . 6 (𝑦 ∈ ℝ*𝑦 ≤ +∞)
107105, 106syl 17 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑦 ≤ +∞)
1081, 11, 80, 81, 82, 83, 84, 85, 86, 87, 20, 88, 92, 21, 96, 97, 98, 100, 103, 107dvfsumlem4 25936 . . . 4 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → (abs‘((𝐺𝑦) − (𝐺𝑋))) ≤ 𝑋 / 𝑥𝐵)
109108adantlr 715 . . 3 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (abs‘((𝐺𝑦) − (𝐺𝑋))) ≤ 𝑋 / 𝑥𝐵)
11079, 109eqbrtrd 5129 . 2 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (abs‘((𝐺𝑋) − (𝐺𝑦))) ≤ 𝑋 / 𝑥𝐵)
11110, 63, 76, 77, 78, 110rlimle 15614 1 ((𝜑𝐺𝑟 𝐿) → (abs‘((𝐺𝑋) − 𝐿)) ≤ 𝑋 / 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  csb 3862  wss 3914   class class class wbr 5107  cmpt 5188  dom cdm 5638  wf 6507  cfv 6511  (class class class)co 7387  supcsup 9391  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071  +∞cpnf 11205  *cxr 11207   < clt 11208  cle 11209  cmin 11405  cz 12529  cuz 12793  (,)cioo 13306  [,)cico 13308  ...cfz 13468  cfl 13752  abscabs 15200  𝑟 crli 15451  Σcsu 15652   D cdv 25764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768
This theorem is referenced by:  dvfsumrlim3  25940
  Copyright terms: Public domain W3C validator