MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumrlim2 Structured version   Visualization version   GIF version

Theorem dvfsumrlim2 26093
Description: Compare a finite sum to an integral (the integral here is given as a function with a known derivative). The statement here says that if 𝑥𝑆𝐵 is a decreasing function with antiderivative 𝐴 converging to zero, then the difference between Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐵(𝑘) and 𝑢 ∈ (𝑀[,]𝑥)𝐵(𝑢) d𝑢 = 𝐴(𝑥) converges to a constant limit value, with the remainder term bounded by 𝐵(𝑥). (Contributed by Mario Carneiro, 18-May-2016.)
Hypotheses
Ref Expression
dvfsum.s 𝑆 = (𝑇(,)+∞)
dvfsum.z 𝑍 = (ℤ𝑀)
dvfsum.m (𝜑𝑀 ∈ ℤ)
dvfsum.d (𝜑𝐷 ∈ ℝ)
dvfsum.md (𝜑𝑀 ≤ (𝐷 + 1))
dvfsum.t (𝜑𝑇 ∈ ℝ)
dvfsum.a ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
dvfsum.b1 ((𝜑𝑥𝑆) → 𝐵𝑉)
dvfsum.b2 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
dvfsum.b3 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
dvfsum.c (𝑥 = 𝑘𝐵 = 𝐶)
dvfsumrlim.l ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)
dvfsumrlim.g 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
dvfsumrlim.k (𝜑 → (𝑥𝑆𝐵) ⇝𝑟 0)
dvfsumrlim2.1 (𝜑𝑋𝑆)
dvfsumrlim2.2 (𝜑𝐷𝑋)
Assertion
Ref Expression
dvfsumrlim2 ((𝜑𝐺𝑟 𝐿) → (abs‘((𝐺𝑋) − 𝐿)) ≤ 𝑋 / 𝑥𝐵)
Distinct variable groups:   𝐵,𝑘   𝑥,𝐶   𝑥,𝑘,𝐷   𝜑,𝑘,𝑥   𝑆,𝑘,𝑥   𝑘,𝑀,𝑥   𝑥,𝑇   𝑥,𝑍   𝑘,𝑋,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥)   𝐶(𝑘)   𝑇(𝑘)   𝐺(𝑥,𝑘)   𝐿(𝑥,𝑘)   𝑉(𝑥,𝑘)   𝑍(𝑘)

Proof of Theorem dvfsumrlim2
Dummy variables 𝑦 𝑧 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvfsum.s . . . . . . 7 𝑆 = (𝑇(,)+∞)
2 ioossre 13468 . . . . . . 7 (𝑇(,)+∞) ⊆ ℝ
31, 2eqsstri 4043 . . . . . 6 𝑆 ⊆ ℝ
4 dvfsumrlim2.1 . . . . . 6 (𝜑𝑋𝑆)
53, 4sselid 4006 . . . . 5 (𝜑𝑋 ∈ ℝ)
65rexrd 11340 . . . 4 (𝜑𝑋 ∈ ℝ*)
75renepnfd 11341 . . . 4 (𝜑𝑋 ≠ +∞)
8 icopnfsup 13916 . . . 4 ((𝑋 ∈ ℝ*𝑋 ≠ +∞) → sup((𝑋[,)+∞), ℝ*, < ) = +∞)
96, 7, 8syl2anc 583 . . 3 (𝜑 → sup((𝑋[,)+∞), ℝ*, < ) = +∞)
109adantr 480 . 2 ((𝜑𝐺𝑟 𝐿) → sup((𝑋[,)+∞), ℝ*, < ) = +∞)
11 dvfsum.z . . . . . . . 8 𝑍 = (ℤ𝑀)
12 dvfsum.m . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
13 dvfsum.d . . . . . . . 8 (𝜑𝐷 ∈ ℝ)
14 dvfsum.md . . . . . . . 8 (𝜑𝑀 ≤ (𝐷 + 1))
15 dvfsum.t . . . . . . . 8 (𝜑𝑇 ∈ ℝ)
16 dvfsum.a . . . . . . . 8 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
17 dvfsum.b1 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝐵𝑉)
18 dvfsum.b2 . . . . . . . 8 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
19 dvfsum.b3 . . . . . . . 8 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
20 dvfsum.c . . . . . . . 8 (𝑥 = 𝑘𝐵 = 𝐶)
21 dvfsumrlim.g . . . . . . . 8 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
221, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21dvfsumrlimf 26085 . . . . . . 7 (𝜑𝐺:𝑆⟶ℝ)
2322ad2antrr 725 . . . . . 6 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝐺:𝑆⟶ℝ)
244ad2antrr 725 . . . . . 6 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝑋𝑆)
2523, 24ffvelcdmd 7119 . . . . 5 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (𝐺𝑋) ∈ ℝ)
2625recnd 11318 . . . 4 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (𝐺𝑋) ∈ ℂ)
2715rexrd 11340 . . . . . . . . . 10 (𝜑𝑇 ∈ ℝ*)
284, 1eleqtrdi 2854 . . . . . . . . . . . 12 (𝜑𝑋 ∈ (𝑇(,)+∞))
29 elioopnf 13503 . . . . . . . . . . . . 13 (𝑇 ∈ ℝ* → (𝑋 ∈ (𝑇(,)+∞) ↔ (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋)))
3027, 29syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑋 ∈ (𝑇(,)+∞) ↔ (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋)))
3128, 30mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋))
3231simprd 495 . . . . . . . . . 10 (𝜑𝑇 < 𝑋)
33 df-ioo 13411 . . . . . . . . . . 11 (,) = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢 < 𝑤𝑤 < 𝑣)})
34 df-ico 13413 . . . . . . . . . . 11 [,) = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢𝑤𝑤 < 𝑣)})
35 xrltletr 13219 . . . . . . . . . . 11 ((𝑇 ∈ ℝ*𝑋 ∈ ℝ*𝑧 ∈ ℝ*) → ((𝑇 < 𝑋𝑋𝑧) → 𝑇 < 𝑧))
3633, 34, 35ixxss1 13425 . . . . . . . . . 10 ((𝑇 ∈ ℝ*𝑇 < 𝑋) → (𝑋[,)+∞) ⊆ (𝑇(,)+∞))
3727, 32, 36syl2anc 583 . . . . . . . . 9 (𝜑 → (𝑋[,)+∞) ⊆ (𝑇(,)+∞))
3837, 1sseqtrrdi 4060 . . . . . . . 8 (𝜑 → (𝑋[,)+∞) ⊆ 𝑆)
3938adantr 480 . . . . . . 7 ((𝜑𝐺𝑟 𝐿) → (𝑋[,)+∞) ⊆ 𝑆)
4039sselda 4008 . . . . . 6 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝑦𝑆)
4123, 40ffvelcdmd 7119 . . . . 5 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (𝐺𝑦) ∈ ℝ)
4241recnd 11318 . . . 4 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (𝐺𝑦) ∈ ℂ)
4326, 42subcld 11647 . . 3 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → ((𝐺𝑋) − (𝐺𝑦)) ∈ ℂ)
44 pnfxr 11344 . . . . . . 7 +∞ ∈ ℝ*
45 icossre 13488 . . . . . . 7 ((𝑋 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝑋[,)+∞) ⊆ ℝ)
465, 44, 45sylancl 585 . . . . . 6 (𝜑 → (𝑋[,)+∞) ⊆ ℝ)
4746adantr 480 . . . . 5 ((𝜑𝐺𝑟 𝐿) → (𝑋[,)+∞) ⊆ ℝ)
48 rlimf 15547 . . . . . . . 8 (𝐺𝑟 𝐿𝐺:dom 𝐺⟶ℂ)
4948adantl 481 . . . . . . 7 ((𝜑𝐺𝑟 𝐿) → 𝐺:dom 𝐺⟶ℂ)
50 ovex 7481 . . . . . . . . 9 𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴) ∈ V
5150, 21dmmpti 6724 . . . . . . . 8 dom 𝐺 = 𝑆
5251feq2i 6739 . . . . . . 7 (𝐺:dom 𝐺⟶ℂ ↔ 𝐺:𝑆⟶ℂ)
5349, 52sylib 218 . . . . . 6 ((𝜑𝐺𝑟 𝐿) → 𝐺:𝑆⟶ℂ)
544adantr 480 . . . . . 6 ((𝜑𝐺𝑟 𝐿) → 𝑋𝑆)
5553, 54ffvelcdmd 7119 . . . . 5 ((𝜑𝐺𝑟 𝐿) → (𝐺𝑋) ∈ ℂ)
56 rlimconst 15590 . . . . 5 (((𝑋[,)+∞) ⊆ ℝ ∧ (𝐺𝑋) ∈ ℂ) → (𝑦 ∈ (𝑋[,)+∞) ↦ (𝐺𝑋)) ⇝𝑟 (𝐺𝑋))
5747, 55, 56syl2anc 583 . . . 4 ((𝜑𝐺𝑟 𝐿) → (𝑦 ∈ (𝑋[,)+∞) ↦ (𝐺𝑋)) ⇝𝑟 (𝐺𝑋))
5853feqmptd 6990 . . . . . 6 ((𝜑𝐺𝑟 𝐿) → 𝐺 = (𝑦𝑆 ↦ (𝐺𝑦)))
59 simpr 484 . . . . . 6 ((𝜑𝐺𝑟 𝐿) → 𝐺𝑟 𝐿)
6058, 59eqbrtrrd 5190 . . . . 5 ((𝜑𝐺𝑟 𝐿) → (𝑦𝑆 ↦ (𝐺𝑦)) ⇝𝑟 𝐿)
6139, 60rlimres2 15607 . . . 4 ((𝜑𝐺𝑟 𝐿) → (𝑦 ∈ (𝑋[,)+∞) ↦ (𝐺𝑦)) ⇝𝑟 𝐿)
6226, 42, 57, 61rlimsub 15691 . . 3 ((𝜑𝐺𝑟 𝐿) → (𝑦 ∈ (𝑋[,)+∞) ↦ ((𝐺𝑋) − (𝐺𝑦))) ⇝𝑟 ((𝐺𝑋) − 𝐿))
6343, 62rlimabs 15655 . 2 ((𝜑𝐺𝑟 𝐿) → (𝑦 ∈ (𝑋[,)+∞) ↦ (abs‘((𝐺𝑋) − (𝐺𝑦)))) ⇝𝑟 (abs‘((𝐺𝑋) − 𝐿)))
643a1i 11 . . . . . . . 8 (𝜑𝑆 ⊆ ℝ)
6564, 16, 17, 19dvmptrecl 26084 . . . . . . 7 ((𝜑𝑥𝑆) → 𝐵 ∈ ℝ)
6665ralrimiva 3152 . . . . . 6 (𝜑 → ∀𝑥𝑆 𝐵 ∈ ℝ)
67 nfcsb1v 3946 . . . . . . . 8 𝑥𝑋 / 𝑥𝐵
6867nfel1 2925 . . . . . . 7 𝑥𝑋 / 𝑥𝐵 ∈ ℝ
69 csbeq1a 3935 . . . . . . . 8 (𝑥 = 𝑋𝐵 = 𝑋 / 𝑥𝐵)
7069eleq1d 2829 . . . . . . 7 (𝑥 = 𝑋 → (𝐵 ∈ ℝ ↔ 𝑋 / 𝑥𝐵 ∈ ℝ))
7168, 70rspc 3623 . . . . . 6 (𝑋𝑆 → (∀𝑥𝑆 𝐵 ∈ ℝ → 𝑋 / 𝑥𝐵 ∈ ℝ))
724, 66, 71sylc 65 . . . . 5 (𝜑𝑋 / 𝑥𝐵 ∈ ℝ)
7372recnd 11318 . . . 4 (𝜑𝑋 / 𝑥𝐵 ∈ ℂ)
74 rlimconst 15590 . . . 4 (((𝑋[,)+∞) ⊆ ℝ ∧ 𝑋 / 𝑥𝐵 ∈ ℂ) → (𝑦 ∈ (𝑋[,)+∞) ↦ 𝑋 / 𝑥𝐵) ⇝𝑟 𝑋 / 𝑥𝐵)
7546, 73, 74syl2anc 583 . . 3 (𝜑 → (𝑦 ∈ (𝑋[,)+∞) ↦ 𝑋 / 𝑥𝐵) ⇝𝑟 𝑋 / 𝑥𝐵)
7675adantr 480 . 2 ((𝜑𝐺𝑟 𝐿) → (𝑦 ∈ (𝑋[,)+∞) ↦ 𝑋 / 𝑥𝐵) ⇝𝑟 𝑋 / 𝑥𝐵)
7743abscld 15485 . 2 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (abs‘((𝐺𝑋) − (𝐺𝑦))) ∈ ℝ)
7872ad2antrr 725 . 2 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝑋 / 𝑥𝐵 ∈ ℝ)
7926, 42abssubd 15502 . . 3 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (abs‘((𝐺𝑋) − (𝐺𝑦))) = (abs‘((𝐺𝑦) − (𝐺𝑋))))
8012adantr 480 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑀 ∈ ℤ)
8113adantr 480 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝐷 ∈ ℝ)
8214adantr 480 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑀 ≤ (𝐷 + 1))
8315adantr 480 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑇 ∈ ℝ)
8416adantlr 714 . . . . 5 (((𝜑𝑦 ∈ (𝑋[,)+∞)) ∧ 𝑥𝑆) → 𝐴 ∈ ℝ)
8517adantlr 714 . . . . 5 (((𝜑𝑦 ∈ (𝑋[,)+∞)) ∧ 𝑥𝑆) → 𝐵𝑉)
8618adantlr 714 . . . . 5 (((𝜑𝑦 ∈ (𝑋[,)+∞)) ∧ 𝑥𝑍) → 𝐵 ∈ ℝ)
8719adantr 480 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
8844a1i 11 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → +∞ ∈ ℝ*)
89 3simpa 1148 . . . . . . 7 ((𝐷𝑥𝑥𝑘𝑘 ≤ +∞) → (𝐷𝑥𝑥𝑘))
90 dvfsumrlim.l . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)
9189, 90syl3an3 1165 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘 ≤ +∞)) → 𝐶𝐵)
92913adant1r 1177 . . . . 5 (((𝜑𝑦 ∈ (𝑋[,)+∞)) ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘 ≤ +∞)) → 𝐶𝐵)
93 dvfsumrlim.k . . . . . . . 8 (𝜑 → (𝑥𝑆𝐵) ⇝𝑟 0)
941, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 90, 21, 93dvfsumrlimge0 26091 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 0 ≤ 𝐵)
95943adantr3 1171 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝐷𝑥𝑥 ≤ +∞)) → 0 ≤ 𝐵)
9695adantlr 714 . . . . 5 (((𝜑𝑦 ∈ (𝑋[,)+∞)) ∧ (𝑥𝑆𝐷𝑥𝑥 ≤ +∞)) → 0 ≤ 𝐵)
974adantr 480 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑋𝑆)
9838sselda 4008 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑦𝑆)
99 dvfsumrlim2.2 . . . . . 6 (𝜑𝐷𝑋)
10099adantr 480 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝐷𝑋)
101 elicopnf 13505 . . . . . . 7 (𝑋 ∈ ℝ → (𝑦 ∈ (𝑋[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑋𝑦)))
1025, 101syl 17 . . . . . 6 (𝜑 → (𝑦 ∈ (𝑋[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑋𝑦)))
103102simplbda 499 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑋𝑦)
104102simprbda 498 . . . . . . 7 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑦 ∈ ℝ)
105104rexrd 11340 . . . . . 6 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑦 ∈ ℝ*)
106 pnfge 13193 . . . . . 6 (𝑦 ∈ ℝ*𝑦 ≤ +∞)
107105, 106syl 17 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑦 ≤ +∞)
1081, 11, 80, 81, 82, 83, 84, 85, 86, 87, 20, 88, 92, 21, 96, 97, 98, 100, 103, 107dvfsumlem4 26090 . . . 4 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → (abs‘((𝐺𝑦) − (𝐺𝑋))) ≤ 𝑋 / 𝑥𝐵)
109108adantlr 714 . . 3 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (abs‘((𝐺𝑦) − (𝐺𝑋))) ≤ 𝑋 / 𝑥𝐵)
11079, 109eqbrtrd 5188 . 2 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (abs‘((𝐺𝑋) − (𝐺𝑦))) ≤ 𝑋 / 𝑥𝐵)
11110, 63, 76, 77, 78, 110rlimle 15696 1 ((𝜑𝐺𝑟 𝐿) → (abs‘((𝐺𝑋) − 𝐿)) ≤ 𝑋 / 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  csb 3921  wss 3976   class class class wbr 5166  cmpt 5249  dom cdm 5700  wf 6569  cfv 6573  (class class class)co 7448  supcsup 9509  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187  +∞cpnf 11321  *cxr 11323   < clt 11324  cle 11325  cmin 11520  cz 12639  cuz 12903  (,)cioo 13407  [,)cico 13409  ...cfz 13567  cfl 13841  abscabs 15283  𝑟 crli 15531  Σcsu 15734   D cdv 25918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922
This theorem is referenced by:  dvfsumrlim3  26094
  Copyright terms: Public domain W3C validator