MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumrlim2 Structured version   Visualization version   GIF version

Theorem dvfsumrlim2 24089
Description: Compare a finite sum to an integral (the integral here is given as a function with a known derivative). The statement here says that if 𝑥𝑆𝐵 is a decreasing function with antiderivative 𝐴 converging to zero, then the difference between Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐵(𝑘) and 𝑢 ∈ (𝑀[,]𝑥)𝐵(𝑢) d𝑢 = 𝐴(𝑥) converges to a constant limit value, with the remainder term bounded by 𝐵(𝑥). (Contributed by Mario Carneiro, 18-May-2016.)
Hypotheses
Ref Expression
dvfsum.s 𝑆 = (𝑇(,)+∞)
dvfsum.z 𝑍 = (ℤ𝑀)
dvfsum.m (𝜑𝑀 ∈ ℤ)
dvfsum.d (𝜑𝐷 ∈ ℝ)
dvfsum.md (𝜑𝑀 ≤ (𝐷 + 1))
dvfsum.t (𝜑𝑇 ∈ ℝ)
dvfsum.a ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
dvfsum.b1 ((𝜑𝑥𝑆) → 𝐵𝑉)
dvfsum.b2 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
dvfsum.b3 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
dvfsum.c (𝑥 = 𝑘𝐵 = 𝐶)
dvfsumrlim.l ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)
dvfsumrlim.g 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
dvfsumrlim.k (𝜑 → (𝑥𝑆𝐵) ⇝𝑟 0)
dvfsumrlim2.1 (𝜑𝑋𝑆)
dvfsumrlim2.2 (𝜑𝐷𝑋)
Assertion
Ref Expression
dvfsumrlim2 ((𝜑𝐺𝑟 𝐿) → (abs‘((𝐺𝑋) − 𝐿)) ≤ 𝑋 / 𝑥𝐵)
Distinct variable groups:   𝐵,𝑘   𝑥,𝐶   𝑥,𝑘,𝐷   𝜑,𝑘,𝑥   𝑆,𝑘,𝑥   𝑘,𝑀,𝑥   𝑥,𝑇   𝑥,𝑍   𝑘,𝑋,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥)   𝐶(𝑘)   𝑇(𝑘)   𝐺(𝑥,𝑘)   𝐿(𝑥,𝑘)   𝑉(𝑥,𝑘)   𝑍(𝑘)

Proof of Theorem dvfsumrlim2
Dummy variables 𝑦 𝑧 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvfsum.s . . . . . . 7 𝑆 = (𝑇(,)+∞)
2 ioossre 12440 . . . . . . 7 (𝑇(,)+∞) ⊆ ℝ
31, 2eqsstri 3797 . . . . . 6 𝑆 ⊆ ℝ
4 dvfsumrlim2.1 . . . . . 6 (𝜑𝑋𝑆)
53, 4sseldi 3761 . . . . 5 (𝜑𝑋 ∈ ℝ)
65rexrd 10345 . . . 4 (𝜑𝑋 ∈ ℝ*)
75renepnfd 10346 . . . 4 (𝜑𝑋 ≠ +∞)
8 icopnfsup 12875 . . . 4 ((𝑋 ∈ ℝ*𝑋 ≠ +∞) → sup((𝑋[,)+∞), ℝ*, < ) = +∞)
96, 7, 8syl2anc 579 . . 3 (𝜑 → sup((𝑋[,)+∞), ℝ*, < ) = +∞)
109adantr 472 . 2 ((𝜑𝐺𝑟 𝐿) → sup((𝑋[,)+∞), ℝ*, < ) = +∞)
11 dvfsum.z . . . . . . . 8 𝑍 = (ℤ𝑀)
12 dvfsum.m . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
13 dvfsum.d . . . . . . . 8 (𝜑𝐷 ∈ ℝ)
14 dvfsum.md . . . . . . . 8 (𝜑𝑀 ≤ (𝐷 + 1))
15 dvfsum.t . . . . . . . 8 (𝜑𝑇 ∈ ℝ)
16 dvfsum.a . . . . . . . 8 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
17 dvfsum.b1 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝐵𝑉)
18 dvfsum.b2 . . . . . . . 8 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
19 dvfsum.b3 . . . . . . . 8 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
20 dvfsum.c . . . . . . . 8 (𝑥 = 𝑘𝐵 = 𝐶)
21 dvfsumrlim.g . . . . . . . 8 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
221, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21dvfsumrlimf 24082 . . . . . . 7 (𝜑𝐺:𝑆⟶ℝ)
2322ad2antrr 717 . . . . . 6 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝐺:𝑆⟶ℝ)
244ad2antrr 717 . . . . . 6 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝑋𝑆)
2523, 24ffvelrnd 6552 . . . . 5 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (𝐺𝑋) ∈ ℝ)
2625recnd 10324 . . . 4 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (𝐺𝑋) ∈ ℂ)
2715rexrd 10345 . . . . . . . . . 10 (𝜑𝑇 ∈ ℝ*)
284, 1syl6eleq 2854 . . . . . . . . . . . 12 (𝜑𝑋 ∈ (𝑇(,)+∞))
29 elioopnf 12473 . . . . . . . . . . . . 13 (𝑇 ∈ ℝ* → (𝑋 ∈ (𝑇(,)+∞) ↔ (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋)))
3027, 29syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑋 ∈ (𝑇(,)+∞) ↔ (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋)))
3128, 30mpbid 223 . . . . . . . . . . 11 (𝜑 → (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋))
3231simprd 489 . . . . . . . . . 10 (𝜑𝑇 < 𝑋)
33 df-ioo 12384 . . . . . . . . . . 11 (,) = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢 < 𝑤𝑤 < 𝑣)})
34 df-ico 12386 . . . . . . . . . . 11 [,) = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢𝑤𝑤 < 𝑣)})
35 xrltletr 12193 . . . . . . . . . . 11 ((𝑇 ∈ ℝ*𝑋 ∈ ℝ*𝑧 ∈ ℝ*) → ((𝑇 < 𝑋𝑋𝑧) → 𝑇 < 𝑧))
3633, 34, 35ixxss1 12398 . . . . . . . . . 10 ((𝑇 ∈ ℝ*𝑇 < 𝑋) → (𝑋[,)+∞) ⊆ (𝑇(,)+∞))
3727, 32, 36syl2anc 579 . . . . . . . . 9 (𝜑 → (𝑋[,)+∞) ⊆ (𝑇(,)+∞))
3837, 1syl6sseqr 3814 . . . . . . . 8 (𝜑 → (𝑋[,)+∞) ⊆ 𝑆)
3938adantr 472 . . . . . . 7 ((𝜑𝐺𝑟 𝐿) → (𝑋[,)+∞) ⊆ 𝑆)
4039sselda 3763 . . . . . 6 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝑦𝑆)
4123, 40ffvelrnd 6552 . . . . 5 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (𝐺𝑦) ∈ ℝ)
4241recnd 10324 . . . 4 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (𝐺𝑦) ∈ ℂ)
4326, 42subcld 10648 . . 3 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → ((𝐺𝑋) − (𝐺𝑦)) ∈ ℂ)
44 pnfxr 10348 . . . . . . 7 +∞ ∈ ℝ*
45 icossre 12459 . . . . . . 7 ((𝑋 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝑋[,)+∞) ⊆ ℝ)
465, 44, 45sylancl 580 . . . . . 6 (𝜑 → (𝑋[,)+∞) ⊆ ℝ)
4746adantr 472 . . . . 5 ((𝜑𝐺𝑟 𝐿) → (𝑋[,)+∞) ⊆ ℝ)
48 rlimf 14520 . . . . . . . 8 (𝐺𝑟 𝐿𝐺:dom 𝐺⟶ℂ)
4948adantl 473 . . . . . . 7 ((𝜑𝐺𝑟 𝐿) → 𝐺:dom 𝐺⟶ℂ)
50 ovex 6876 . . . . . . . . 9 𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴) ∈ V
5150, 21dmmpti 6203 . . . . . . . 8 dom 𝐺 = 𝑆
5251feq2i 6217 . . . . . . 7 (𝐺:dom 𝐺⟶ℂ ↔ 𝐺:𝑆⟶ℂ)
5349, 52sylib 209 . . . . . 6 ((𝜑𝐺𝑟 𝐿) → 𝐺:𝑆⟶ℂ)
544adantr 472 . . . . . 6 ((𝜑𝐺𝑟 𝐿) → 𝑋𝑆)
5553, 54ffvelrnd 6552 . . . . 5 ((𝜑𝐺𝑟 𝐿) → (𝐺𝑋) ∈ ℂ)
56 rlimconst 14563 . . . . 5 (((𝑋[,)+∞) ⊆ ℝ ∧ (𝐺𝑋) ∈ ℂ) → (𝑦 ∈ (𝑋[,)+∞) ↦ (𝐺𝑋)) ⇝𝑟 (𝐺𝑋))
5747, 55, 56syl2anc 579 . . . 4 ((𝜑𝐺𝑟 𝐿) → (𝑦 ∈ (𝑋[,)+∞) ↦ (𝐺𝑋)) ⇝𝑟 (𝐺𝑋))
5853feqmptd 6440 . . . . . 6 ((𝜑𝐺𝑟 𝐿) → 𝐺 = (𝑦𝑆 ↦ (𝐺𝑦)))
59 simpr 477 . . . . . 6 ((𝜑𝐺𝑟 𝐿) → 𝐺𝑟 𝐿)
6058, 59eqbrtrrd 4835 . . . . 5 ((𝜑𝐺𝑟 𝐿) → (𝑦𝑆 ↦ (𝐺𝑦)) ⇝𝑟 𝐿)
6139, 60rlimres2 14580 . . . 4 ((𝜑𝐺𝑟 𝐿) → (𝑦 ∈ (𝑋[,)+∞) ↦ (𝐺𝑦)) ⇝𝑟 𝐿)
6226, 42, 57, 61rlimsub 14662 . . 3 ((𝜑𝐺𝑟 𝐿) → (𝑦 ∈ (𝑋[,)+∞) ↦ ((𝐺𝑋) − (𝐺𝑦))) ⇝𝑟 ((𝐺𝑋) − 𝐿))
6343, 62rlimabs 14627 . 2 ((𝜑𝐺𝑟 𝐿) → (𝑦 ∈ (𝑋[,)+∞) ↦ (abs‘((𝐺𝑋) − (𝐺𝑦)))) ⇝𝑟 (abs‘((𝐺𝑋) − 𝐿)))
643a1i 11 . . . . . . . 8 (𝜑𝑆 ⊆ ℝ)
6564, 16, 17, 19dvmptrecl 24081 . . . . . . 7 ((𝜑𝑥𝑆) → 𝐵 ∈ ℝ)
6665ralrimiva 3113 . . . . . 6 (𝜑 → ∀𝑥𝑆 𝐵 ∈ ℝ)
67 nfcsb1v 3709 . . . . . . . 8 𝑥𝑋 / 𝑥𝐵
6867nfel1 2922 . . . . . . 7 𝑥𝑋 / 𝑥𝐵 ∈ ℝ
69 csbeq1a 3702 . . . . . . . 8 (𝑥 = 𝑋𝐵 = 𝑋 / 𝑥𝐵)
7069eleq1d 2829 . . . . . . 7 (𝑥 = 𝑋 → (𝐵 ∈ ℝ ↔ 𝑋 / 𝑥𝐵 ∈ ℝ))
7168, 70rspc 3456 . . . . . 6 (𝑋𝑆 → (∀𝑥𝑆 𝐵 ∈ ℝ → 𝑋 / 𝑥𝐵 ∈ ℝ))
724, 66, 71sylc 65 . . . . 5 (𝜑𝑋 / 𝑥𝐵 ∈ ℝ)
7372recnd 10324 . . . 4 (𝜑𝑋 / 𝑥𝐵 ∈ ℂ)
74 rlimconst 14563 . . . 4 (((𝑋[,)+∞) ⊆ ℝ ∧ 𝑋 / 𝑥𝐵 ∈ ℂ) → (𝑦 ∈ (𝑋[,)+∞) ↦ 𝑋 / 𝑥𝐵) ⇝𝑟 𝑋 / 𝑥𝐵)
7546, 73, 74syl2anc 579 . . 3 (𝜑 → (𝑦 ∈ (𝑋[,)+∞) ↦ 𝑋 / 𝑥𝐵) ⇝𝑟 𝑋 / 𝑥𝐵)
7675adantr 472 . 2 ((𝜑𝐺𝑟 𝐿) → (𝑦 ∈ (𝑋[,)+∞) ↦ 𝑋 / 𝑥𝐵) ⇝𝑟 𝑋 / 𝑥𝐵)
7743abscld 14463 . 2 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (abs‘((𝐺𝑋) − (𝐺𝑦))) ∈ ℝ)
7872ad2antrr 717 . 2 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝑋 / 𝑥𝐵 ∈ ℝ)
7926, 42abssubd 14480 . . 3 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (abs‘((𝐺𝑋) − (𝐺𝑦))) = (abs‘((𝐺𝑦) − (𝐺𝑋))))
8012adantr 472 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑀 ∈ ℤ)
8113adantr 472 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝐷 ∈ ℝ)
8214adantr 472 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑀 ≤ (𝐷 + 1))
8315adantr 472 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑇 ∈ ℝ)
8416adantlr 706 . . . . 5 (((𝜑𝑦 ∈ (𝑋[,)+∞)) ∧ 𝑥𝑆) → 𝐴 ∈ ℝ)
8517adantlr 706 . . . . 5 (((𝜑𝑦 ∈ (𝑋[,)+∞)) ∧ 𝑥𝑆) → 𝐵𝑉)
8618adantlr 706 . . . . 5 (((𝜑𝑦 ∈ (𝑋[,)+∞)) ∧ 𝑥𝑍) → 𝐵 ∈ ℝ)
8719adantr 472 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
8844a1i 11 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → +∞ ∈ ℝ*)
89 3simpa 1178 . . . . . . 7 ((𝐷𝑥𝑥𝑘𝑘 ≤ +∞) → (𝐷𝑥𝑥𝑘))
90 dvfsumrlim.l . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)
9189, 90syl3an3 1205 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘 ≤ +∞)) → 𝐶𝐵)
92913adant1r 1223 . . . . 5 (((𝜑𝑦 ∈ (𝑋[,)+∞)) ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘 ≤ +∞)) → 𝐶𝐵)
93 dvfsumrlim.k . . . . . . . 8 (𝜑 → (𝑥𝑆𝐵) ⇝𝑟 0)
941, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 90, 21, 93dvfsumrlimge0 24087 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 0 ≤ 𝐵)
95943adantr3 1212 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝐷𝑥𝑥 ≤ +∞)) → 0 ≤ 𝐵)
9695adantlr 706 . . . . 5 (((𝜑𝑦 ∈ (𝑋[,)+∞)) ∧ (𝑥𝑆𝐷𝑥𝑥 ≤ +∞)) → 0 ≤ 𝐵)
974adantr 472 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑋𝑆)
9838sselda 3763 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑦𝑆)
99 dvfsumrlim2.2 . . . . . 6 (𝜑𝐷𝑋)
10099adantr 472 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝐷𝑋)
101 elicopnf 12475 . . . . . . 7 (𝑋 ∈ ℝ → (𝑦 ∈ (𝑋[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑋𝑦)))
1025, 101syl 17 . . . . . 6 (𝜑 → (𝑦 ∈ (𝑋[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑋𝑦)))
103102simplbda 493 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑋𝑦)
104102simprbda 492 . . . . . . 7 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑦 ∈ ℝ)
105104rexrd 10345 . . . . . 6 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑦 ∈ ℝ*)
106 pnfge 12167 . . . . . 6 (𝑦 ∈ ℝ*𝑦 ≤ +∞)
107105, 106syl 17 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑦 ≤ +∞)
1081, 11, 80, 81, 82, 83, 84, 85, 86, 87, 20, 88, 92, 21, 96, 97, 98, 100, 103, 107dvfsumlem4 24086 . . . 4 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → (abs‘((𝐺𝑦) − (𝐺𝑋))) ≤ 𝑋 / 𝑥𝐵)
109108adantlr 706 . . 3 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (abs‘((𝐺𝑦) − (𝐺𝑋))) ≤ 𝑋 / 𝑥𝐵)
11079, 109eqbrtrd 4833 . 2 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (abs‘((𝐺𝑋) − (𝐺𝑦))) ≤ 𝑋 / 𝑥𝐵)
11110, 63, 76, 77, 78, 110rlimle 14666 1 ((𝜑𝐺𝑟 𝐿) → (abs‘((𝐺𝑋) − 𝐿)) ≤ 𝑋 / 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wral 3055  csb 3693  wss 3734   class class class wbr 4811  cmpt 4890  dom cdm 5279  wf 6066  cfv 6070  (class class class)co 6844  supcsup 8555  cc 10189  cr 10190  0cc0 10191  1c1 10192   + caddc 10194  +∞cpnf 10327  *cxr 10329   < clt 10330  cle 10331  cmin 10522  cz 11626  cuz 11889  (,)cioo 12380  [,)cico 12382  ...cfz 12536  cfl 12802  abscabs 14262  𝑟 crli 14504  Σcsu 14704   D cdv 23921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149  ax-inf2 8755  ax-cnex 10247  ax-resscn 10248  ax-1cn 10249  ax-icn 10250  ax-addcl 10251  ax-addrcl 10252  ax-mulcl 10253  ax-mulrcl 10254  ax-mulcom 10255  ax-addass 10256  ax-mulass 10257  ax-distr 10258  ax-i2m1 10259  ax-1ne0 10260  ax-1rid 10261  ax-rnegex 10262  ax-rrecex 10263  ax-cnre 10264  ax-pre-lttri 10265  ax-pre-lttrn 10266  ax-pre-ltadd 10267  ax-pre-mulgt0 10268  ax-pre-sup 10269  ax-addf 10270  ax-mulf 10271
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-iin 4681  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6805  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-of 7097  df-om 7266  df-1st 7368  df-2nd 7369  df-supp 7500  df-wrecs 7612  df-recs 7674  df-rdg 7712  df-1o 7766  df-2o 7767  df-oadd 7770  df-er 7949  df-map 8064  df-pm 8065  df-ixp 8116  df-en 8163  df-dom 8164  df-sdom 8165  df-fin 8166  df-fsupp 8485  df-fi 8526  df-sup 8557  df-inf 8558  df-oi 8624  df-card 9018  df-cda 9245  df-pnf 10332  df-mnf 10333  df-xr 10334  df-ltxr 10335  df-le 10336  df-sub 10524  df-neg 10525  df-div 10941  df-nn 11277  df-2 11337  df-3 11338  df-4 11339  df-5 11340  df-6 11341  df-7 11342  df-8 11343  df-9 11344  df-n0 11541  df-z 11627  df-dec 11744  df-uz 11890  df-q 11993  df-rp 12032  df-xneg 12149  df-xadd 12150  df-xmul 12151  df-ioo 12384  df-ico 12386  df-icc 12387  df-fz 12537  df-fzo 12677  df-fl 12804  df-seq 13012  df-exp 13071  df-hash 13325  df-cj 14127  df-re 14128  df-im 14129  df-sqrt 14263  df-abs 14264  df-clim 14507  df-rlim 14508  df-sum 14705  df-struct 16135  df-ndx 16136  df-slot 16137  df-base 16139  df-sets 16140  df-ress 16141  df-plusg 16230  df-mulr 16231  df-starv 16232  df-sca 16233  df-vsca 16234  df-ip 16235  df-tset 16236  df-ple 16237  df-ds 16239  df-unif 16240  df-hom 16241  df-cco 16242  df-rest 16352  df-topn 16353  df-0g 16371  df-gsum 16372  df-topgen 16373  df-pt 16374  df-prds 16377  df-xrs 16431  df-qtop 16436  df-imas 16437  df-xps 16439  df-mre 16515  df-mrc 16516  df-acs 16518  df-mgm 17511  df-sgrp 17553  df-mnd 17564  df-submnd 17605  df-mulg 17811  df-cntz 18016  df-cmn 18464  df-psmet 20014  df-xmet 20015  df-met 20016  df-bl 20017  df-mopn 20018  df-fbas 20019  df-fg 20020  df-cnfld 20023  df-top 20981  df-topon 20998  df-topsp 21020  df-bases 21033  df-cld 21106  df-ntr 21107  df-cls 21108  df-nei 21185  df-lp 21223  df-perf 21224  df-cn 21314  df-cnp 21315  df-haus 21402  df-cmp 21473  df-tx 21648  df-hmeo 21841  df-fil 21932  df-fm 22024  df-flim 22025  df-flf 22026  df-xms 22407  df-ms 22408  df-tms 22409  df-cncf 22963  df-limc 23924  df-dv 23925
This theorem is referenced by:  dvfsumrlim3  24090
  Copyright terms: Public domain W3C validator