| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > renepnf | Structured version Visualization version GIF version | ||
| Description: No (finite) real equals plus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| Ref | Expression |
|---|---|
| renepnf | ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnre 11222 | . . . 4 ⊢ +∞ ∉ ℝ | |
| 2 | 1 | neli 3032 | . . 3 ⊢ ¬ +∞ ∈ ℝ |
| 3 | eleq1 2817 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 ∈ ℝ ↔ +∞ ∈ ℝ)) | |
| 4 | 2, 3 | mtbiri 327 | . 2 ⊢ (𝐴 = +∞ → ¬ 𝐴 ∈ ℝ) |
| 5 | 4 | necon2ai 2955 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ℝcr 11074 +∞cpnf 11212 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-pr 5390 ax-un 7714 ax-resscn 11132 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-nel 3031 df-rab 3409 df-v 3452 df-un 3922 df-in 3924 df-ss 3934 df-pw 4568 df-sn 4593 df-pr 4595 df-uni 4875 df-pnf 11217 |
| This theorem is referenced by: renepnfd 11232 renfdisj 11241 xrnepnf 13085 rexneg 13178 rexadd 13199 xaddnepnf 13204 xaddcom 13207 xaddrid 13208 xnn0xadd0 13214 xnegdi 13215 xpncan 13218 xleadd1a 13220 rexmul 13238 xmulpnf1 13241 xadddilem 13261 rpsup 13835 hashneq0 14336 hash1snb 14391 xrsnsgrp 21326 xaddeq0 32683 icorempo 37346 ovoliunnfl 37663 voliunnfl 37665 volsupnfl 37666 supxrgelem 45340 supxrge 45341 infleinflem1 45373 infleinflem2 45374 xrre4 45414 supminfxr2 45472 climxrre 45755 sge0repnf 46391 voliunsge0lem 46477 |
| Copyright terms: Public domain | W3C validator |