| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > renepnf | Structured version Visualization version GIF version | ||
| Description: No (finite) real equals plus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| Ref | Expression |
|---|---|
| renepnf | ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnre 11274 | . . . 4 ⊢ +∞ ∉ ℝ | |
| 2 | 1 | neli 3038 | . . 3 ⊢ ¬ +∞ ∈ ℝ |
| 3 | eleq1 2822 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 ∈ ℝ ↔ +∞ ∈ ℝ)) | |
| 4 | 2, 3 | mtbiri 327 | . 2 ⊢ (𝐴 = +∞ → ¬ 𝐴 ∈ ℝ) |
| 5 | 4 | necon2ai 2961 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ℝcr 11126 +∞cpnf 11264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-pr 5402 ax-un 7727 ax-resscn 11184 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-nel 3037 df-rab 3416 df-v 3461 df-un 3931 df-in 3933 df-ss 3943 df-pw 4577 df-sn 4602 df-pr 4604 df-uni 4884 df-pnf 11269 |
| This theorem is referenced by: renepnfd 11284 renfdisj 11293 xrnepnf 13132 rexneg 13225 rexadd 13246 xaddnepnf 13251 xaddcom 13254 xaddrid 13255 xnn0xadd0 13261 xnegdi 13262 xpncan 13265 xleadd1a 13267 rexmul 13285 xmulpnf1 13288 xadddilem 13308 rpsup 13881 hashneq0 14380 hash1snb 14435 xrsnsgrp 21368 xaddeq0 32676 icorempo 37315 ovoliunnfl 37632 voliunnfl 37634 volsupnfl 37635 supxrgelem 45312 supxrge 45313 infleinflem1 45345 infleinflem2 45346 xrre4 45386 supminfxr2 45444 climxrre 45727 sge0repnf 46363 voliunsge0lem 46449 |
| Copyright terms: Public domain | W3C validator |