| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > renepnf | Structured version Visualization version GIF version | ||
| Description: No (finite) real equals plus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| Ref | Expression |
|---|---|
| renepnf | ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnre 11191 | . . . 4 ⊢ +∞ ∉ ℝ | |
| 2 | 1 | neli 3031 | . . 3 ⊢ ¬ +∞ ∈ ℝ |
| 3 | eleq1 2816 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 ∈ ℝ ↔ +∞ ∈ ℝ)) | |
| 4 | 2, 3 | mtbiri 327 | . 2 ⊢ (𝐴 = +∞ → ¬ 𝐴 ∈ ℝ) |
| 5 | 4 | necon2ai 2954 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ℝcr 11043 +∞cpnf 11181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-pr 5382 ax-un 7691 ax-resscn 11101 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-nel 3030 df-rab 3403 df-v 3446 df-un 3916 df-in 3918 df-ss 3928 df-pw 4561 df-sn 4586 df-pr 4588 df-uni 4868 df-pnf 11186 |
| This theorem is referenced by: renepnfd 11201 renfdisj 11210 xrnepnf 13054 rexneg 13147 rexadd 13168 xaddnepnf 13173 xaddcom 13176 xaddrid 13177 xnn0xadd0 13183 xnegdi 13184 xpncan 13187 xleadd1a 13189 rexmul 13207 xmulpnf1 13210 xadddilem 13230 rpsup 13804 hashneq0 14305 hash1snb 14360 xrsnsgrp 21349 xaddeq0 32726 icorempo 37332 ovoliunnfl 37649 voliunnfl 37651 volsupnfl 37652 supxrgelem 45326 supxrge 45327 infleinflem1 45359 infleinflem2 45360 xrre4 45400 supminfxr2 45458 climxrre 45741 sge0repnf 46377 voliunsge0lem 46463 |
| Copyright terms: Public domain | W3C validator |