![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > renepnf | Structured version Visualization version GIF version |
Description: No (finite) real equals plus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
renepnf | ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnre 11299 | . . . 4 ⊢ +∞ ∉ ℝ | |
2 | 1 | neli 3045 | . . 3 ⊢ ¬ +∞ ∈ ℝ |
3 | eleq1 2826 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 ∈ ℝ ↔ +∞ ∈ ℝ)) | |
4 | 2, 3 | mtbiri 327 | . 2 ⊢ (𝐴 = +∞ → ¬ 𝐴 ∈ ℝ) |
5 | 4 | necon2ai 2967 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 ℝcr 11151 +∞cpnf 11289 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-pr 5437 ax-un 7753 ax-resscn 11209 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-nel 3044 df-rab 3433 df-v 3479 df-un 3967 df-in 3969 df-ss 3979 df-pw 4606 df-sn 4631 df-pr 4633 df-uni 4912 df-pnf 11294 |
This theorem is referenced by: renepnfd 11309 renfdisj 11318 xrnepnf 13157 rexneg 13249 rexadd 13270 xaddnepnf 13275 xaddcom 13278 xaddrid 13279 xnn0xadd0 13285 xnegdi 13286 xpncan 13289 xleadd1a 13291 rexmul 13309 xmulpnf1 13312 xadddilem 13332 rpsup 13902 hashneq0 14399 hash1snb 14454 xrsnsgrp 21437 xaddeq0 32763 icorempo 37333 ovoliunnfl 37648 voliunnfl 37650 volsupnfl 37651 supxrgelem 45286 supxrge 45287 infleinflem1 45319 infleinflem2 45320 xrre4 45360 supminfxr2 45418 climxrre 45705 sge0repnf 46341 voliunsge0lem 46427 |
Copyright terms: Public domain | W3C validator |