| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > renepnf | Structured version Visualization version GIF version | ||
| Description: No (finite) real equals plus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| Ref | Expression |
|---|---|
| renepnf | ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnre 11156 | . . . 4 ⊢ +∞ ∉ ℝ | |
| 2 | 1 | neli 3031 | . . 3 ⊢ ¬ +∞ ∈ ℝ |
| 3 | eleq1 2816 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 ∈ ℝ ↔ +∞ ∈ ℝ)) | |
| 4 | 2, 3 | mtbiri 327 | . 2 ⊢ (𝐴 = +∞ → ¬ 𝐴 ∈ ℝ) |
| 5 | 4 | necon2ai 2954 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ℝcr 11008 +∞cpnf 11146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-pr 5371 ax-un 7671 ax-resscn 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-nel 3030 df-rab 3395 df-v 3438 df-un 3908 df-in 3910 df-ss 3920 df-pw 4553 df-sn 4578 df-pr 4580 df-uni 4859 df-pnf 11151 |
| This theorem is referenced by: renepnfd 11166 renfdisj 11175 xrnepnf 13020 rexneg 13113 rexadd 13134 xaddnepnf 13139 xaddcom 13142 xaddrid 13143 xnn0xadd0 13149 xnegdi 13150 xpncan 13153 xleadd1a 13155 rexmul 13173 xmulpnf1 13176 xadddilem 13196 rpsup 13770 hashneq0 14271 hash1snb 14326 xrsnsgrp 21314 xaddeq0 32697 icorempo 37335 ovoliunnfl 37652 voliunnfl 37654 volsupnfl 37655 supxrgelem 45327 supxrge 45328 infleinflem1 45359 infleinflem2 45360 xrre4 45400 supminfxr2 45458 climxrre 45741 sge0repnf 46377 voliunsge0lem 46463 |
| Copyright terms: Public domain | W3C validator |