| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > renepnf | Structured version Visualization version GIF version | ||
| Description: No (finite) real equals plus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| Ref | Expression |
|---|---|
| renepnf | ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnre 11153 | . . . 4 ⊢ +∞ ∉ ℝ | |
| 2 | 1 | neli 3034 | . . 3 ⊢ ¬ +∞ ∈ ℝ |
| 3 | eleq1 2819 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 ∈ ℝ ↔ +∞ ∈ ℝ)) | |
| 4 | 2, 3 | mtbiri 327 | . 2 ⊢ (𝐴 = +∞ → ¬ 𝐴 ∈ ℝ) |
| 5 | 4 | necon2ai 2957 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ℝcr 11005 +∞cpnf 11143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-pr 5368 ax-un 7668 ax-resscn 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-nel 3033 df-rab 3396 df-v 3438 df-un 3902 df-in 3904 df-ss 3914 df-pw 4549 df-sn 4574 df-pr 4576 df-uni 4857 df-pnf 11148 |
| This theorem is referenced by: renepnfd 11163 renfdisj 11172 xrnepnf 13017 rexneg 13110 rexadd 13131 xaddnepnf 13136 xaddcom 13139 xaddrid 13140 xnn0xadd0 13146 xnegdi 13147 xpncan 13150 xleadd1a 13152 rexmul 13170 xmulpnf1 13173 xadddilem 13193 rpsup 13770 hashneq0 14271 hash1snb 14326 xrsnsgrp 21344 xaddeq0 32736 icorempo 37395 ovoliunnfl 37701 voliunnfl 37703 volsupnfl 37704 supxrgelem 45435 supxrge 45436 infleinflem1 45467 infleinflem2 45468 xrre4 45508 supminfxr2 45566 climxrre 45847 sge0repnf 46483 voliunsge0lem 46569 |
| Copyright terms: Public domain | W3C validator |