![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > renepnf | Structured version Visualization version GIF version |
Description: No (finite) real equals plus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
renepnf | ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnre 11331 | . . . 4 ⊢ +∞ ∉ ℝ | |
2 | 1 | neli 3054 | . . 3 ⊢ ¬ +∞ ∈ ℝ |
3 | eleq1 2832 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 ∈ ℝ ↔ +∞ ∈ ℝ)) | |
4 | 2, 3 | mtbiri 327 | . 2 ⊢ (𝐴 = +∞ → ¬ 𝐴 ∈ ℝ) |
5 | 4 | necon2ai 2976 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ℝcr 11183 +∞cpnf 11321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-pr 5447 ax-un 7770 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-nel 3053 df-rab 3444 df-v 3490 df-un 3981 df-in 3983 df-ss 3993 df-pw 4624 df-sn 4649 df-pr 4651 df-uni 4932 df-pnf 11326 |
This theorem is referenced by: renepnfd 11341 renfdisj 11350 xrnepnf 13181 rexneg 13273 rexadd 13294 xaddnepnf 13299 xaddcom 13302 xaddrid 13303 xnn0xadd0 13309 xnegdi 13310 xpncan 13313 xleadd1a 13315 rexmul 13333 xmulpnf1 13336 xadddilem 13356 rpsup 13917 hashneq0 14413 hash1snb 14468 xrsnsgrp 21443 xaddeq0 32760 icorempo 37317 ovoliunnfl 37622 voliunnfl 37624 volsupnfl 37625 supxrgelem 45252 supxrge 45253 infleinflem1 45285 infleinflem2 45286 xrre4 45326 supminfxr2 45384 climxrre 45671 sge0repnf 46307 voliunsge0lem 46393 |
Copyright terms: Public domain | W3C validator |