Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > renepnf | Structured version Visualization version GIF version |
Description: No (finite) real equals plus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
renepnf | ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnre 10947 | . . . 4 ⊢ +∞ ∉ ℝ | |
2 | 1 | neli 3050 | . . 3 ⊢ ¬ +∞ ∈ ℝ |
3 | eleq1 2826 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 ∈ ℝ ↔ +∞ ∈ ℝ)) | |
4 | 2, 3 | mtbiri 326 | . 2 ⊢ (𝐴 = +∞ → ¬ 𝐴 ∈ ℝ) |
5 | 4 | necon2ai 2972 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ℝcr 10801 +∞cpnf 10937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-nel 3049 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-pw 4532 df-sn 4559 df-pr 4561 df-uni 4837 df-pnf 10942 |
This theorem is referenced by: renepnfd 10957 renfdisj 10966 xrnepnf 12783 rexneg 12874 rexadd 12895 xaddnepnf 12900 xaddcom 12903 xaddid1 12904 xnn0xadd0 12910 xnegdi 12911 xpncan 12914 xleadd1a 12916 rexmul 12934 xmulpnf1 12937 xadddilem 12957 rpsup 13514 hashneq0 14007 hash1snb 14062 xrsnsgrp 20546 xaddeq0 30978 icorempo 35449 ovoliunnfl 35746 voliunnfl 35748 volsupnfl 35749 supxrgelem 42766 supxrge 42767 infleinflem1 42799 infleinflem2 42800 xrre4 42841 supminfxr2 42899 climxrre 43181 sge0repnf 43814 voliunsge0lem 43900 |
Copyright terms: Public domain | W3C validator |