| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > renepnf | Structured version Visualization version GIF version | ||
| Description: No (finite) real equals plus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| Ref | Expression |
|---|---|
| renepnf | ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnre 11215 | . . . 4 ⊢ +∞ ∉ ℝ | |
| 2 | 1 | neli 3031 | . . 3 ⊢ ¬ +∞ ∈ ℝ |
| 3 | eleq1 2816 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 ∈ ℝ ↔ +∞ ∈ ℝ)) | |
| 4 | 2, 3 | mtbiri 327 | . 2 ⊢ (𝐴 = +∞ → ¬ 𝐴 ∈ ℝ) |
| 5 | 4 | necon2ai 2954 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ℝcr 11067 +∞cpnf 11205 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-pr 5387 ax-un 7711 ax-resscn 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-nel 3030 df-rab 3406 df-v 3449 df-un 3919 df-in 3921 df-ss 3931 df-pw 4565 df-sn 4590 df-pr 4592 df-uni 4872 df-pnf 11210 |
| This theorem is referenced by: renepnfd 11225 renfdisj 11234 xrnepnf 13078 rexneg 13171 rexadd 13192 xaddnepnf 13197 xaddcom 13200 xaddrid 13201 xnn0xadd0 13207 xnegdi 13208 xpncan 13211 xleadd1a 13213 rexmul 13231 xmulpnf1 13234 xadddilem 13254 rpsup 13828 hashneq0 14329 hash1snb 14384 xrsnsgrp 21319 xaddeq0 32676 icorempo 37339 ovoliunnfl 37656 voliunnfl 37658 volsupnfl 37659 supxrgelem 45333 supxrge 45334 infleinflem1 45366 infleinflem2 45367 xrre4 45407 supminfxr2 45465 climxrre 45748 sge0repnf 46384 voliunsge0lem 46470 |
| Copyright terms: Public domain | W3C validator |