| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tposres2 | Structured version Visualization version GIF version | ||
| Description: The transposition restricted to a set. (Contributed by Zhi Wang, 6-Oct-2025.) |
| Ref | Expression |
|---|---|
| tposres2.1 | ⊢ (𝜑 → ¬ ∅ ∈ (dom 𝐹 ∩ 𝑅)) |
| Ref | Expression |
|---|---|
| tposres2 | ⊢ (𝜑 → (tpos 𝐹 ↾ 𝑅) = (tpos 𝐹 ↾ ◡◡𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tposresg 48854 | . . 3 ⊢ (tpos 𝐹 ↾ 𝑅) = ((tpos 𝐹 ↾ ◡◡𝑅) ∪ (𝐹 ↾ (𝑅 ∩ {∅}))) | |
| 2 | tposres2.1 | . . . . 5 ⊢ (𝜑 → ¬ ∅ ∈ (dom 𝐹 ∩ 𝑅)) | |
| 3 | resinsn 48848 | . . . . 5 ⊢ ((𝐹 ↾ (𝑅 ∩ {∅})) = ∅ ↔ ¬ ∅ ∈ (dom 𝐹 ∩ 𝑅)) | |
| 4 | 2, 3 | sylibr 234 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ (𝑅 ∩ {∅})) = ∅) |
| 5 | 4 | uneq2d 4133 | . . 3 ⊢ (𝜑 → ((tpos 𝐹 ↾ ◡◡𝑅) ∪ (𝐹 ↾ (𝑅 ∩ {∅}))) = ((tpos 𝐹 ↾ ◡◡𝑅) ∪ ∅)) |
| 6 | 1, 5 | eqtrid 2777 | . 2 ⊢ (𝜑 → (tpos 𝐹 ↾ 𝑅) = ((tpos 𝐹 ↾ ◡◡𝑅) ∪ ∅)) |
| 7 | un0 4359 | . 2 ⊢ ((tpos 𝐹 ↾ ◡◡𝑅) ∪ ∅) = (tpos 𝐹 ↾ ◡◡𝑅) | |
| 8 | 6, 7 | eqtrdi 2781 | 1 ⊢ (𝜑 → (tpos 𝐹 ↾ 𝑅) = (tpos 𝐹 ↾ ◡◡𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cun 3914 ∩ cin 3915 ∅c0 4298 {csn 4591 ◡ccnv 5639 dom cdm 5640 ↾ cres 5642 tpos ctpos 8206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-fv 6521 df-tpos 8207 |
| This theorem is referenced by: tposres3 48857 |
| Copyright terms: Public domain | W3C validator |