Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tposres2 Structured version   Visualization version   GIF version

Theorem tposres2 48753
Description: The transposition restricted to a set. (Contributed by Zhi Wang, 6-Oct-2025.)
Hypothesis
Ref Expression
tposres2.1 (𝜑 → ¬ ∅ ∈ (dom 𝐹𝑅))
Assertion
Ref Expression
tposres2 (𝜑 → (tpos 𝐹𝑅) = (tpos 𝐹𝑅))

Proof of Theorem tposres2
StepHypRef Expression
1 tposresg 48751 . . 3 (tpos 𝐹𝑅) = ((tpos 𝐹𝑅) ∪ (𝐹 ↾ (𝑅 ∩ {∅})))
2 tposres2.1 . . . . 5 (𝜑 → ¬ ∅ ∈ (dom 𝐹𝑅))
3 resinsn 48745 . . . . 5 ((𝐹 ↾ (𝑅 ∩ {∅})) = ∅ ↔ ¬ ∅ ∈ (dom 𝐹𝑅))
42, 3sylibr 234 . . . 4 (𝜑 → (𝐹 ↾ (𝑅 ∩ {∅})) = ∅)
54uneq2d 4167 . . 3 (𝜑 → ((tpos 𝐹𝑅) ∪ (𝐹 ↾ (𝑅 ∩ {∅}))) = ((tpos 𝐹𝑅) ∪ ∅))
61, 5eqtrid 2788 . 2 (𝜑 → (tpos 𝐹𝑅) = ((tpos 𝐹𝑅) ∪ ∅))
7 un0 4393 . 2 ((tpos 𝐹𝑅) ∪ ∅) = (tpos 𝐹𝑅)
86, 7eqtrdi 2792 1 (𝜑 → (tpos 𝐹𝑅) = (tpos 𝐹𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2108  cun 3948  cin 3949  c0 4332  {csn 4624  ccnv 5682  dom cdm 5683  cres 5685  tpos ctpos 8246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-br 5142  df-opab 5204  df-mpt 5224  df-id 5576  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-iota 6512  df-fun 6561  df-fn 6562  df-fv 6567  df-tpos 8247
This theorem is referenced by:  tposres3  48754
  Copyright terms: Public domain W3C validator