| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tposres2 | Structured version Visualization version GIF version | ||
| Description: The transposition restricted to a set. (Contributed by Zhi Wang, 6-Oct-2025.) |
| Ref | Expression |
|---|---|
| tposres2.1 | ⊢ (𝜑 → ¬ ∅ ∈ (dom 𝐹 ∩ 𝑅)) |
| Ref | Expression |
|---|---|
| tposres2 | ⊢ (𝜑 → (tpos 𝐹 ↾ 𝑅) = (tpos 𝐹 ↾ ◡◡𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tposresg 48839 | . . 3 ⊢ (tpos 𝐹 ↾ 𝑅) = ((tpos 𝐹 ↾ ◡◡𝑅) ∪ (𝐹 ↾ (𝑅 ∩ {∅}))) | |
| 2 | tposres2.1 | . . . . 5 ⊢ (𝜑 → ¬ ∅ ∈ (dom 𝐹 ∩ 𝑅)) | |
| 3 | resinsn 48833 | . . . . 5 ⊢ ((𝐹 ↾ (𝑅 ∩ {∅})) = ∅ ↔ ¬ ∅ ∈ (dom 𝐹 ∩ 𝑅)) | |
| 4 | 2, 3 | sylibr 234 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ (𝑅 ∩ {∅})) = ∅) |
| 5 | 4 | uneq2d 4127 | . . 3 ⊢ (𝜑 → ((tpos 𝐹 ↾ ◡◡𝑅) ∪ (𝐹 ↾ (𝑅 ∩ {∅}))) = ((tpos 𝐹 ↾ ◡◡𝑅) ∪ ∅)) |
| 6 | 1, 5 | eqtrid 2776 | . 2 ⊢ (𝜑 → (tpos 𝐹 ↾ 𝑅) = ((tpos 𝐹 ↾ ◡◡𝑅) ∪ ∅)) |
| 7 | un0 4353 | . 2 ⊢ ((tpos 𝐹 ↾ ◡◡𝑅) ∪ ∅) = (tpos 𝐹 ↾ ◡◡𝑅) | |
| 8 | 6, 7 | eqtrdi 2780 | 1 ⊢ (𝜑 → (tpos 𝐹 ↾ 𝑅) = (tpos 𝐹 ↾ ◡◡𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cun 3909 ∩ cin 3910 ∅c0 4292 {csn 4585 ◡ccnv 5630 dom cdm 5631 ↾ cres 5633 tpos ctpos 8181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-fv 6507 df-tpos 8182 |
| This theorem is referenced by: tposres3 48842 |
| Copyright terms: Public domain | W3C validator |