Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tposres2 Structured version   Visualization version   GIF version

Theorem tposres2 49041
Description: The transposition restricted to a set. (Contributed by Zhi Wang, 6-Oct-2025.)
Hypothesis
Ref Expression
tposres2.1 (𝜑 → ¬ ∅ ∈ (dom 𝐹𝑅))
Assertion
Ref Expression
tposres2 (𝜑 → (tpos 𝐹𝑅) = (tpos 𝐹𝑅))

Proof of Theorem tposres2
StepHypRef Expression
1 tposresg 49039 . . 3 (tpos 𝐹𝑅) = ((tpos 𝐹𝑅) ∪ (𝐹 ↾ (𝑅 ∩ {∅})))
2 tposres2.1 . . . . 5 (𝜑 → ¬ ∅ ∈ (dom 𝐹𝑅))
3 resinsn 49033 . . . . 5 ((𝐹 ↾ (𝑅 ∩ {∅})) = ∅ ↔ ¬ ∅ ∈ (dom 𝐹𝑅))
42, 3sylibr 234 . . . 4 (𝜑 → (𝐹 ↾ (𝑅 ∩ {∅})) = ∅)
54uneq2d 4117 . . 3 (𝜑 → ((tpos 𝐹𝑅) ∪ (𝐹 ↾ (𝑅 ∩ {∅}))) = ((tpos 𝐹𝑅) ∪ ∅))
61, 5eqtrid 2780 . 2 (𝜑 → (tpos 𝐹𝑅) = ((tpos 𝐹𝑅) ∪ ∅))
7 un0 4343 . 2 ((tpos 𝐹𝑅) ∪ ∅) = (tpos 𝐹𝑅)
86, 7eqtrdi 2784 1 (𝜑 → (tpos 𝐹𝑅) = (tpos 𝐹𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2113  cun 3896  cin 3897  c0 4282  {csn 4577  ccnv 5620  dom cdm 5621  cres 5623  tpos ctpos 8164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-fv 6497  df-tpos 8165
This theorem is referenced by:  tposres3  49042
  Copyright terms: Public domain W3C validator