| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tposres2 | Structured version Visualization version GIF version | ||
| Description: The transposition restricted to a set. (Contributed by Zhi Wang, 6-Oct-2025.) |
| Ref | Expression |
|---|---|
| tposres2.1 | ⊢ (𝜑 → ¬ ∅ ∈ (dom 𝐹 ∩ 𝑅)) |
| Ref | Expression |
|---|---|
| tposres2 | ⊢ (𝜑 → (tpos 𝐹 ↾ 𝑅) = (tpos 𝐹 ↾ ◡◡𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tposresg 48751 | . . 3 ⊢ (tpos 𝐹 ↾ 𝑅) = ((tpos 𝐹 ↾ ◡◡𝑅) ∪ (𝐹 ↾ (𝑅 ∩ {∅}))) | |
| 2 | tposres2.1 | . . . . 5 ⊢ (𝜑 → ¬ ∅ ∈ (dom 𝐹 ∩ 𝑅)) | |
| 3 | resinsn 48745 | . . . . 5 ⊢ ((𝐹 ↾ (𝑅 ∩ {∅})) = ∅ ↔ ¬ ∅ ∈ (dom 𝐹 ∩ 𝑅)) | |
| 4 | 2, 3 | sylibr 234 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ (𝑅 ∩ {∅})) = ∅) |
| 5 | 4 | uneq2d 4167 | . . 3 ⊢ (𝜑 → ((tpos 𝐹 ↾ ◡◡𝑅) ∪ (𝐹 ↾ (𝑅 ∩ {∅}))) = ((tpos 𝐹 ↾ ◡◡𝑅) ∪ ∅)) |
| 6 | 1, 5 | eqtrid 2788 | . 2 ⊢ (𝜑 → (tpos 𝐹 ↾ 𝑅) = ((tpos 𝐹 ↾ ◡◡𝑅) ∪ ∅)) |
| 7 | un0 4393 | . 2 ⊢ ((tpos 𝐹 ↾ ◡◡𝑅) ∪ ∅) = (tpos 𝐹 ↾ ◡◡𝑅) | |
| 8 | 6, 7 | eqtrdi 2792 | 1 ⊢ (𝜑 → (tpos 𝐹 ↾ 𝑅) = (tpos 𝐹 ↾ ◡◡𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2108 ∪ cun 3948 ∩ cin 3949 ∅c0 4332 {csn 4624 ◡ccnv 5682 dom cdm 5683 ↾ cres 5685 tpos ctpos 8246 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-br 5142 df-opab 5204 df-mpt 5224 df-id 5576 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-iota 6512 df-fun 6561 df-fn 6562 df-fv 6567 df-tpos 8247 |
| This theorem is referenced by: tposres3 48754 |
| Copyright terms: Public domain | W3C validator |