| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tposres2 | Structured version Visualization version GIF version | ||
| Description: The transposition restricted to a set. (Contributed by Zhi Wang, 6-Oct-2025.) |
| Ref | Expression |
|---|---|
| tposres2.1 | ⊢ (𝜑 → ¬ ∅ ∈ (dom 𝐹 ∩ 𝑅)) |
| Ref | Expression |
|---|---|
| tposres2 | ⊢ (𝜑 → (tpos 𝐹 ↾ 𝑅) = (tpos 𝐹 ↾ ◡◡𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tposresg 48909 | . . 3 ⊢ (tpos 𝐹 ↾ 𝑅) = ((tpos 𝐹 ↾ ◡◡𝑅) ∪ (𝐹 ↾ (𝑅 ∩ {∅}))) | |
| 2 | tposres2.1 | . . . . 5 ⊢ (𝜑 → ¬ ∅ ∈ (dom 𝐹 ∩ 𝑅)) | |
| 3 | resinsn 48903 | . . . . 5 ⊢ ((𝐹 ↾ (𝑅 ∩ {∅})) = ∅ ↔ ¬ ∅ ∈ (dom 𝐹 ∩ 𝑅)) | |
| 4 | 2, 3 | sylibr 234 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ (𝑅 ∩ {∅})) = ∅) |
| 5 | 4 | uneq2d 4113 | . . 3 ⊢ (𝜑 → ((tpos 𝐹 ↾ ◡◡𝑅) ∪ (𝐹 ↾ (𝑅 ∩ {∅}))) = ((tpos 𝐹 ↾ ◡◡𝑅) ∪ ∅)) |
| 6 | 1, 5 | eqtrid 2778 | . 2 ⊢ (𝜑 → (tpos 𝐹 ↾ 𝑅) = ((tpos 𝐹 ↾ ◡◡𝑅) ∪ ∅)) |
| 7 | un0 4339 | . 2 ⊢ ((tpos 𝐹 ↾ ◡◡𝑅) ∪ ∅) = (tpos 𝐹 ↾ ◡◡𝑅) | |
| 8 | 6, 7 | eqtrdi 2782 | 1 ⊢ (𝜑 → (tpos 𝐹 ↾ 𝑅) = (tpos 𝐹 ↾ ◡◡𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 ∪ cun 3895 ∩ cin 3896 ∅c0 4278 {csn 4571 ◡ccnv 5610 dom cdm 5611 ↾ cres 5613 tpos ctpos 8150 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-fv 6484 df-tpos 8151 |
| This theorem is referenced by: tposres3 48912 |
| Copyright terms: Public domain | W3C validator |