Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  restrreld Structured version   Visualization version   GIF version

Theorem restrreld 43656
Description: The restriction of a transitive relation is a transitive relation. (Contributed by RP, 24-Dec-2019.)
Hypotheses
Ref Expression
restrreld.r (𝜑 → (𝑅𝑅) ⊆ 𝑅)
restrreld.s (𝜑𝑆 = (𝑅𝐴))
Assertion
Ref Expression
restrreld (𝜑 → (𝑆𝑆) ⊆ 𝑆)

Proof of Theorem restrreld
StepHypRef Expression
1 restrreld.r . 2 (𝜑 → (𝑅𝑅) ⊆ 𝑅)
2 restrreld.s . . 3 (𝜑𝑆 = (𝑅𝐴))
3 df-res 5650 . . 3 (𝑅𝐴) = (𝑅 ∩ (𝐴 × V))
42, 3eqtrdi 2780 . 2 (𝜑𝑆 = (𝑅 ∩ (𝐴 × V)))
51, 4xpintrreld 43655 1 (𝜑 → (𝑆𝑆) ⊆ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  Vcvv 3447  cin 3913  wss 3914   × cxp 5636  cres 5640  ccom 5642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator