Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  restrreld Structured version   Visualization version   GIF version

Theorem restrreld 43618
Description: The restriction of a transitive relation is a transitive relation. (Contributed by RP, 24-Dec-2019.)
Hypotheses
Ref Expression
restrreld.r (𝜑 → (𝑅𝑅) ⊆ 𝑅)
restrreld.s (𝜑𝑆 = (𝑅𝐴))
Assertion
Ref Expression
restrreld (𝜑 → (𝑆𝑆) ⊆ 𝑆)

Proof of Theorem restrreld
StepHypRef Expression
1 restrreld.r . 2 (𝜑 → (𝑅𝑅) ⊆ 𝑅)
2 restrreld.s . . 3 (𝜑𝑆 = (𝑅𝐴))
3 df-res 5677 . . 3 (𝑅𝐴) = (𝑅 ∩ (𝐴 × V))
42, 3eqtrdi 2785 . 2 (𝜑𝑆 = (𝑅 ∩ (𝐴 × V)))
51, 4xpintrreld 43617 1 (𝜑 → (𝑆𝑆) ⊆ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  Vcvv 3463  cin 3930  wss 3931   × cxp 5663  cres 5667  ccom 5669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator