Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > restrreld | Structured version Visualization version GIF version |
Description: The restriction of a transitive relation is a transitive relation. (Contributed by RP, 24-Dec-2019.) |
Ref | Expression |
---|---|
restrreld.r | ⊢ (𝜑 → (𝑅 ∘ 𝑅) ⊆ 𝑅) |
restrreld.s | ⊢ (𝜑 → 𝑆 = (𝑅 ↾ 𝐴)) |
Ref | Expression |
---|---|
restrreld | ⊢ (𝜑 → (𝑆 ∘ 𝑆) ⊆ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restrreld.r | . 2 ⊢ (𝜑 → (𝑅 ∘ 𝑅) ⊆ 𝑅) | |
2 | restrreld.s | . . 3 ⊢ (𝜑 → 𝑆 = (𝑅 ↾ 𝐴)) | |
3 | df-res 5612 | . . 3 ⊢ (𝑅 ↾ 𝐴) = (𝑅 ∩ (𝐴 × V)) | |
4 | 2, 3 | eqtrdi 2792 | . 2 ⊢ (𝜑 → 𝑆 = (𝑅 ∩ (𝐴 × V))) |
5 | 1, 4 | xpintrreld 41312 | 1 ⊢ (𝜑 → (𝑆 ∘ 𝑆) ⊆ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 Vcvv 3437 ∩ cin 3891 ⊆ wss 3892 × cxp 5598 ↾ cres 5602 ∘ ccom 5604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |