Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  restrreld Structured version   Visualization version   GIF version

Theorem restrreld 42351
Description: The restriction of a transitive relation is a transitive relation. (Contributed by RP, 24-Dec-2019.)
Hypotheses
Ref Expression
restrreld.r (𝜑 → (𝑅𝑅) ⊆ 𝑅)
restrreld.s (𝜑𝑆 = (𝑅𝐴))
Assertion
Ref Expression
restrreld (𝜑 → (𝑆𝑆) ⊆ 𝑆)

Proof of Theorem restrreld
StepHypRef Expression
1 restrreld.r . 2 (𝜑 → (𝑅𝑅) ⊆ 𝑅)
2 restrreld.s . . 3 (𝜑𝑆 = (𝑅𝐴))
3 df-res 5687 . . 3 (𝑅𝐴) = (𝑅 ∩ (𝐴 × V))
42, 3eqtrdi 2789 . 2 (𝜑𝑆 = (𝑅 ∩ (𝐴 × V)))
51, 4xpintrreld 42350 1 (𝜑 → (𝑆𝑆) ⊆ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  Vcvv 3475  cin 3946  wss 3947   × cxp 5673  cres 5677  ccom 5679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator