Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > restrreld | Structured version Visualization version GIF version |
Description: The restriction of a transitive relation is a transitive relation. (Contributed by RP, 24-Dec-2019.) |
Ref | Expression |
---|---|
restrreld.r | ⊢ (𝜑 → (𝑅 ∘ 𝑅) ⊆ 𝑅) |
restrreld.s | ⊢ (𝜑 → 𝑆 = (𝑅 ↾ 𝐴)) |
Ref | Expression |
---|---|
restrreld | ⊢ (𝜑 → (𝑆 ∘ 𝑆) ⊆ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restrreld.r | . 2 ⊢ (𝜑 → (𝑅 ∘ 𝑅) ⊆ 𝑅) | |
2 | restrreld.s | . . 3 ⊢ (𝜑 → 𝑆 = (𝑅 ↾ 𝐴)) | |
3 | df-res 5600 | . . 3 ⊢ (𝑅 ↾ 𝐴) = (𝑅 ∩ (𝐴 × V)) | |
4 | 2, 3 | eqtrdi 2795 | . 2 ⊢ (𝜑 → 𝑆 = (𝑅 ∩ (𝐴 × V))) |
5 | 1, 4 | xpintrreld 41227 | 1 ⊢ (𝜑 → (𝑆 ∘ 𝑆) ⊆ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 Vcvv 3430 ∩ cin 3890 ⊆ wss 3891 × cxp 5586 ↾ cres 5590 ∘ ccom 5592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |