MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem12 Structured version   Visualization version   GIF version

Theorem 4sqlem12 16585
Description: Lemma for 4sq 16593. For any odd prime 𝑃, there is a 𝑘 < 𝑃 such that 𝑘𝑃 − 1 is a sum of two squares. (Contributed by Mario Carneiro, 15-Jul-2014.)
Hypotheses
Ref Expression
4sq.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
4sq.2 (𝜑𝑁 ∈ ℕ)
4sq.3 (𝜑𝑃 = ((2 · 𝑁) + 1))
4sq.4 (𝜑𝑃 ∈ ℙ)
4sqlem11.5 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}
4sqlem11.6 𝐹 = (𝑣𝐴 ↦ ((𝑃 − 1) − 𝑣))
Assertion
Ref Expression
4sqlem12 (𝜑 → ∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃))
Distinct variable groups:   𝑤,𝑛,𝑥,𝑦,𝑧   𝑘,𝑛,𝑣,𝐴   𝑛,𝐹   𝑢,𝑘,𝑛,𝑚,𝑁,𝑣   𝑃,𝑘,𝑚,𝑛,𝑢,𝑣   𝜑,𝑘,𝑚,𝑛,𝑢,𝑣   𝑆,𝑘,𝑚,𝑛,𝑢,𝑣
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑢,𝑚)   𝑃(𝑥,𝑦,𝑧,𝑤)   𝑆(𝑥,𝑦,𝑧,𝑤)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑘,𝑚)   𝑁(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem 4sqlem12
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 4sq.1 . . . 4 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
2 4sq.2 . . . 4 (𝜑𝑁 ∈ ℕ)
3 4sq.3 . . . 4 (𝜑𝑃 = ((2 · 𝑁) + 1))
4 4sq.4 . . . 4 (𝜑𝑃 ∈ ℙ)
5 4sqlem11.5 . . . 4 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}
6 4sqlem11.6 . . . 4 𝐹 = (𝑣𝐴 ↦ ((𝑃 − 1) − 𝑣))
71, 2, 3, 4, 5, 64sqlem11 16584 . . 3 (𝜑 → (𝐴 ∩ ran 𝐹) ≠ ∅)
8 n0 4277 . . 3 ((𝐴 ∩ ran 𝐹) ≠ ∅ ↔ ∃𝑗 𝑗 ∈ (𝐴 ∩ ran 𝐹))
97, 8sylib 217 . 2 (𝜑 → ∃𝑗 𝑗 ∈ (𝐴 ∩ ran 𝐹))
10 vex 3426 . . . . . . 7 𝑗 ∈ V
11 eqeq1 2742 . . . . . . . 8 (𝑢 = 𝑗 → (𝑢 = ((𝑚↑2) mod 𝑃) ↔ 𝑗 = ((𝑚↑2) mod 𝑃)))
1211rexbidv 3225 . . . . . . 7 (𝑢 = 𝑗 → (∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃) ↔ ∃𝑚 ∈ (0...𝑁)𝑗 = ((𝑚↑2) mod 𝑃)))
1310, 12, 5elab2 3606 . . . . . 6 (𝑗𝐴 ↔ ∃𝑚 ∈ (0...𝑁)𝑗 = ((𝑚↑2) mod 𝑃))
14 abid 2719 . . . . . . . . 9 (𝑗 ∈ {𝑗 ∣ ∃𝑣𝐴 𝑗 = ((𝑃 − 1) − 𝑣)} ↔ ∃𝑣𝐴 𝑗 = ((𝑃 − 1) − 𝑣))
155rexeqi 3338 . . . . . . . . 9 (∃𝑣𝐴 𝑗 = ((𝑃 − 1) − 𝑣) ↔ ∃𝑣 ∈ {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}𝑗 = ((𝑃 − 1) − 𝑣))
16 oveq1 7262 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (𝑚↑2) = (𝑛↑2))
1716oveq1d 7270 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → ((𝑚↑2) mod 𝑃) = ((𝑛↑2) mod 𝑃))
1817eqeq2d 2749 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑢 = ((𝑚↑2) mod 𝑃) ↔ 𝑢 = ((𝑛↑2) mod 𝑃)))
1918cbvrexvw 3373 . . . . . . . . . . 11 (∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃) ↔ ∃𝑛 ∈ (0...𝑁)𝑢 = ((𝑛↑2) mod 𝑃))
20 eqeq1 2742 . . . . . . . . . . . 12 (𝑢 = 𝑣 → (𝑢 = ((𝑛↑2) mod 𝑃) ↔ 𝑣 = ((𝑛↑2) mod 𝑃)))
2120rexbidv 3225 . . . . . . . . . . 11 (𝑢 = 𝑣 → (∃𝑛 ∈ (0...𝑁)𝑢 = ((𝑛↑2) mod 𝑃) ↔ ∃𝑛 ∈ (0...𝑁)𝑣 = ((𝑛↑2) mod 𝑃)))
2219, 21syl5bb 282 . . . . . . . . . 10 (𝑢 = 𝑣 → (∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃) ↔ ∃𝑛 ∈ (0...𝑁)𝑣 = ((𝑛↑2) mod 𝑃)))
2322rexab 3624 . . . . . . . . 9 (∃𝑣 ∈ {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}𝑗 = ((𝑃 − 1) − 𝑣) ↔ ∃𝑣(∃𝑛 ∈ (0...𝑁)𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣)))
2414, 15, 233bitri 296 . . . . . . . 8 (𝑗 ∈ {𝑗 ∣ ∃𝑣𝐴 𝑗 = ((𝑃 − 1) − 𝑣)} ↔ ∃𝑣(∃𝑛 ∈ (0...𝑁)𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣)))
256rnmpt 5853 . . . . . . . . 9 ran 𝐹 = {𝑗 ∣ ∃𝑣𝐴 𝑗 = ((𝑃 − 1) − 𝑣)}
2625eleq2i 2830 . . . . . . . 8 (𝑗 ∈ ran 𝐹𝑗 ∈ {𝑗 ∣ ∃𝑣𝐴 𝑗 = ((𝑃 − 1) − 𝑣)})
27 rexcom4 3179 . . . . . . . . 9 (∃𝑛 ∈ (0...𝑁)∃𝑣(𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣)) ↔ ∃𝑣𝑛 ∈ (0...𝑁)(𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣)))
28 r19.41v 3273 . . . . . . . . . 10 (∃𝑛 ∈ (0...𝑁)(𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣)) ↔ (∃𝑛 ∈ (0...𝑁)𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣)))
2928exbii 1851 . . . . . . . . 9 (∃𝑣𝑛 ∈ (0...𝑁)(𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣)) ↔ ∃𝑣(∃𝑛 ∈ (0...𝑁)𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣)))
3027, 29bitri 274 . . . . . . . 8 (∃𝑛 ∈ (0...𝑁)∃𝑣(𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣)) ↔ ∃𝑣(∃𝑛 ∈ (0...𝑁)𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣)))
3124, 26, 303bitr4i 302 . . . . . . 7 (𝑗 ∈ ran 𝐹 ↔ ∃𝑛 ∈ (0...𝑁)∃𝑣(𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣)))
32 ovex 7288 . . . . . . . . 9 ((𝑛↑2) mod 𝑃) ∈ V
33 oveq2 7263 . . . . . . . . . 10 (𝑣 = ((𝑛↑2) mod 𝑃) → ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃)))
3433eqeq2d 2749 . . . . . . . . 9 (𝑣 = ((𝑛↑2) mod 𝑃) → (𝑗 = ((𝑃 − 1) − 𝑣) ↔ 𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))))
3532, 34ceqsexv 3469 . . . . . . . 8 (∃𝑣(𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣)) ↔ 𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃)))
3635rexbii 3177 . . . . . . 7 (∃𝑛 ∈ (0...𝑁)∃𝑣(𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣)) ↔ ∃𝑛 ∈ (0...𝑁)𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃)))
3731, 36bitri 274 . . . . . 6 (𝑗 ∈ ran 𝐹 ↔ ∃𝑛 ∈ (0...𝑁)𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃)))
3813, 37anbi12i 626 . . . . 5 ((𝑗𝐴𝑗 ∈ ran 𝐹) ↔ (∃𝑚 ∈ (0...𝑁)𝑗 = ((𝑚↑2) mod 𝑃) ∧ ∃𝑛 ∈ (0...𝑁)𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))))
39 elin 3899 . . . . 5 (𝑗 ∈ (𝐴 ∩ ran 𝐹) ↔ (𝑗𝐴𝑗 ∈ ran 𝐹))
40 reeanv 3292 . . . . 5 (∃𝑚 ∈ (0...𝑁)∃𝑛 ∈ (0...𝑁)(𝑗 = ((𝑚↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) ↔ (∃𝑚 ∈ (0...𝑁)𝑗 = ((𝑚↑2) mod 𝑃) ∧ ∃𝑛 ∈ (0...𝑁)𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))))
4138, 39, 403bitr4i 302 . . . 4 (𝑗 ∈ (𝐴 ∩ ran 𝐹) ↔ ∃𝑚 ∈ (0...𝑁)∃𝑛 ∈ (0...𝑁)(𝑗 = ((𝑚↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))))
42 eqtr2 2762 . . . . . 6 ((𝑗 = ((𝑚↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃)))
4343ad2ant1 1131 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 ∈ ℙ)
44 prmnn 16307 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
4543, 44syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 ∈ ℕ)
46 nnm1nn0 12204 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
4745, 46syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑃 − 1) ∈ ℕ0)
4847nn0red 12224 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑃 − 1) ∈ ℝ)
4945nnrpd 12699 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 ∈ ℝ+)
5047nn0ge0d 12226 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 0 ≤ (𝑃 − 1))
5145nnred 11918 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 ∈ ℝ)
5251ltm1d 11837 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑃 − 1) < 𝑃)
53 modid 13544 . . . . . . . . . . . . . . . 16 ((((𝑃 − 1) ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (0 ≤ (𝑃 − 1) ∧ (𝑃 − 1) < 𝑃)) → ((𝑃 − 1) mod 𝑃) = (𝑃 − 1))
5448, 49, 50, 52, 53syl22anc 835 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑃 − 1) mod 𝑃) = (𝑃 − 1))
5554oveq1d 7270 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑃 − 1) mod 𝑃) − ((𝑛↑2) mod 𝑃)) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃)))
56 simp2r 1198 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑛 ∈ (0...𝑁))
5756elfzelzd 13186 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑛 ∈ ℤ)
58 zsqcl2 13784 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℤ → (𝑛↑2) ∈ ℕ0)
5957, 58syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑛↑2) ∈ ℕ0)
6059nn0red 12224 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑛↑2) ∈ ℝ)
61 modlt 13528 . . . . . . . . . . . . . . . . . 18 (((𝑛↑2) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((𝑛↑2) mod 𝑃) < 𝑃)
6260, 49, 61syl2anc 583 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑛↑2) mod 𝑃) < 𝑃)
63 zsqcl 13776 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℤ → (𝑛↑2) ∈ ℤ)
6457, 63syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑛↑2) ∈ ℤ)
6564, 45zmodcld 13540 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑛↑2) mod 𝑃) ∈ ℕ0)
6665nn0zd 12353 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑛↑2) mod 𝑃) ∈ ℤ)
67 prmz 16308 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
6843, 67syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 ∈ ℤ)
69 zltlem1 12303 . . . . . . . . . . . . . . . . . 18 ((((𝑛↑2) mod 𝑃) ∈ ℤ ∧ 𝑃 ∈ ℤ) → (((𝑛↑2) mod 𝑃) < 𝑃 ↔ ((𝑛↑2) mod 𝑃) ≤ (𝑃 − 1)))
7066, 68, 69syl2anc 583 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑛↑2) mod 𝑃) < 𝑃 ↔ ((𝑛↑2) mod 𝑃) ≤ (𝑃 − 1)))
7162, 70mpbid 231 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑛↑2) mod 𝑃) ≤ (𝑃 − 1))
7271, 54breqtrrd 5098 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑛↑2) mod 𝑃) ≤ ((𝑃 − 1) mod 𝑃))
73 modsubdir 13588 . . . . . . . . . . . . . . . 16 (((𝑃 − 1) ∈ ℝ ∧ (𝑛↑2) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → (((𝑛↑2) mod 𝑃) ≤ ((𝑃 − 1) mod 𝑃) ↔ (((𝑃 − 1) − (𝑛↑2)) mod 𝑃) = (((𝑃 − 1) mod 𝑃) − ((𝑛↑2) mod 𝑃))))
7448, 60, 49, 73syl3anc 1369 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑛↑2) mod 𝑃) ≤ ((𝑃 − 1) mod 𝑃) ↔ (((𝑃 − 1) − (𝑛↑2)) mod 𝑃) = (((𝑃 − 1) mod 𝑃) − ((𝑛↑2) mod 𝑃))))
7572, 74mpbid 231 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑃 − 1) − (𝑛↑2)) mod 𝑃) = (((𝑃 − 1) mod 𝑃) − ((𝑛↑2) mod 𝑃)))
76 simp3 1136 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃)))
7755, 75, 763eqtr4rd 2789 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) mod 𝑃) = (((𝑃 − 1) − (𝑛↑2)) mod 𝑃))
78 simp2l 1197 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑚 ∈ (0...𝑁))
7978elfzelzd 13186 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑚 ∈ ℤ)
80 zsqcl 13776 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℤ → (𝑚↑2) ∈ ℤ)
8179, 80syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑚↑2) ∈ ℤ)
8247nn0zd 12353 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑃 − 1) ∈ ℤ)
8382, 64zsubcld 12360 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑃 − 1) − (𝑛↑2)) ∈ ℤ)
84 moddvds 15902 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℕ ∧ (𝑚↑2) ∈ ℤ ∧ ((𝑃 − 1) − (𝑛↑2)) ∈ ℤ) → (((𝑚↑2) mod 𝑃) = (((𝑃 − 1) − (𝑛↑2)) mod 𝑃) ↔ 𝑃 ∥ ((𝑚↑2) − ((𝑃 − 1) − (𝑛↑2)))))
8545, 81, 83, 84syl3anc 1369 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑚↑2) mod 𝑃) = (((𝑃 − 1) − (𝑛↑2)) mod 𝑃) ↔ 𝑃 ∥ ((𝑚↑2) − ((𝑃 − 1) − (𝑛↑2)))))
8677, 85mpbid 231 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 ∥ ((𝑚↑2) − ((𝑃 − 1) − (𝑛↑2))))
87 zsqcl2 13784 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℤ → (𝑚↑2) ∈ ℕ0)
8879, 87syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑚↑2) ∈ ℕ0)
8988nn0cnd 12225 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑚↑2) ∈ ℂ)
9047nn0cnd 12225 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑃 − 1) ∈ ℂ)
9159nn0cnd 12225 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑛↑2) ∈ ℂ)
9289, 90, 91subsub3d 11292 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) − ((𝑃 − 1) − (𝑛↑2))) = (((𝑚↑2) + (𝑛↑2)) − (𝑃 − 1)))
9388, 59nn0addcld 12227 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) + (𝑛↑2)) ∈ ℕ0)
9493nn0cnd 12225 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) + (𝑛↑2)) ∈ ℂ)
9545nncnd 11919 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 ∈ ℂ)
96 1cnd 10901 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 1 ∈ ℂ)
9794, 95, 96subsub3d 11292 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑚↑2) + (𝑛↑2)) − (𝑃 − 1)) = ((((𝑚↑2) + (𝑛↑2)) + 1) − 𝑃))
9892, 97eqtrd 2778 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) − ((𝑃 − 1) − (𝑛↑2))) = ((((𝑚↑2) + (𝑛↑2)) + 1) − 𝑃))
9986, 98breqtrd 5096 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 ∥ ((((𝑚↑2) + (𝑛↑2)) + 1) − 𝑃))
100 nn0p1nn 12202 . . . . . . . . . . . . . 14 (((𝑚↑2) + (𝑛↑2)) ∈ ℕ0 → (((𝑚↑2) + (𝑛↑2)) + 1) ∈ ℕ)
10193, 100syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑚↑2) + (𝑛↑2)) + 1) ∈ ℕ)
102101nnzd 12354 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑚↑2) + (𝑛↑2)) + 1) ∈ ℤ)
103 dvdssubr 15942 . . . . . . . . . . . 12 ((𝑃 ∈ ℤ ∧ (((𝑚↑2) + (𝑛↑2)) + 1) ∈ ℤ) → (𝑃 ∥ (((𝑚↑2) + (𝑛↑2)) + 1) ↔ 𝑃 ∥ ((((𝑚↑2) + (𝑛↑2)) + 1) − 𝑃)))
10468, 102, 103syl2anc 583 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑃 ∥ (((𝑚↑2) + (𝑛↑2)) + 1) ↔ 𝑃 ∥ ((((𝑚↑2) + (𝑛↑2)) + 1) − 𝑃)))
10599, 104mpbird 256 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 ∥ (((𝑚↑2) + (𝑛↑2)) + 1))
10645nnne0d 11953 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 ≠ 0)
107 dvdsval2 15894 . . . . . . . . . . 11 ((𝑃 ∈ ℤ ∧ 𝑃 ≠ 0 ∧ (((𝑚↑2) + (𝑛↑2)) + 1) ∈ ℤ) → (𝑃 ∥ (((𝑚↑2) + (𝑛↑2)) + 1) ↔ ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ ℤ))
10868, 106, 102, 107syl3anc 1369 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑃 ∥ (((𝑚↑2) + (𝑛↑2)) + 1) ↔ ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ ℤ))
109105, 108mpbid 231 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ ℤ)
110 nnrp 12670 . . . . . . . . . . . . . 14 ((((𝑚↑2) + (𝑛↑2)) + 1) ∈ ℕ → (((𝑚↑2) + (𝑛↑2)) + 1) ∈ ℝ+)
111 nnrp 12670 . . . . . . . . . . . . . 14 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ+)
112 rpdivcl 12684 . . . . . . . . . . . . . 14 (((((𝑚↑2) + (𝑛↑2)) + 1) ∈ ℝ+𝑃 ∈ ℝ+) → ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ ℝ+)
113110, 111, 112syl2an 595 . . . . . . . . . . . . 13 (((((𝑚↑2) + (𝑛↑2)) + 1) ∈ ℕ ∧ 𝑃 ∈ ℕ) → ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ ℝ+)
114101, 45, 113syl2anc 583 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ ℝ+)
115114rpgt0d 12704 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 0 < ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃))
116 elnnz 12259 . . . . . . . . . . 11 (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ ℕ ↔ (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ ℤ ∧ 0 < ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃)))
117109, 115, 116sylanbrc 582 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ ℕ)
118117nnge1d 11951 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 1 ≤ ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃))
11993nn0red 12224 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) + (𝑛↑2)) ∈ ℝ)
120 2nn 11976 . . . . . . . . . . . . . . . 16 2 ∈ ℕ
12123ad2ant1 1131 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑁 ∈ ℕ)
122 nnmulcl 11927 . . . . . . . . . . . . . . . 16 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
123120, 121, 122sylancr 586 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · 𝑁) ∈ ℕ)
124123nnred 11918 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · 𝑁) ∈ ℝ)
125124resqcld 13893 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((2 · 𝑁)↑2) ∈ ℝ)
126 nnmulcl 11927 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ ∧ (2 · 𝑁) ∈ ℕ) → (2 · (2 · 𝑁)) ∈ ℕ)
127120, 123, 126sylancr 586 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · (2 · 𝑁)) ∈ ℕ)
128127nnred 11918 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · (2 · 𝑁)) ∈ ℝ)
129125, 128readdcld 10935 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) ∈ ℝ)
130 1red 10907 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 1 ∈ ℝ)
131121nnsqcld 13887 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑁↑2) ∈ ℕ)
132 nnmulcl 11927 . . . . . . . . . . . . . . . 16 ((2 ∈ ℕ ∧ (𝑁↑2) ∈ ℕ) → (2 · (𝑁↑2)) ∈ ℕ)
133120, 131, 132sylancr 586 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · (𝑁↑2)) ∈ ℕ)
134133nnred 11918 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · (𝑁↑2)) ∈ ℝ)
13588nn0red 12224 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑚↑2) ∈ ℝ)
136131nnred 11918 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑁↑2) ∈ ℝ)
13779zred 12355 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑚 ∈ ℝ)
138 elfzle1 13188 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (0...𝑁) → 0 ≤ 𝑚)
13978, 138syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 0 ≤ 𝑚)
140121nnred 11918 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑁 ∈ ℝ)
141 elfzle2 13189 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (0...𝑁) → 𝑚𝑁)
14278, 141syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑚𝑁)
143 le2sq2 13782 . . . . . . . . . . . . . . . . 17 (((𝑚 ∈ ℝ ∧ 0 ≤ 𝑚) ∧ (𝑁 ∈ ℝ ∧ 𝑚𝑁)) → (𝑚↑2) ≤ (𝑁↑2))
144137, 139, 140, 142, 143syl22anc 835 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑚↑2) ≤ (𝑁↑2))
14557zred 12355 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑛 ∈ ℝ)
146 elfzle1 13188 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (0...𝑁) → 0 ≤ 𝑛)
14756, 146syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 0 ≤ 𝑛)
148 elfzle2 13189 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (0...𝑁) → 𝑛𝑁)
14956, 148syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑛𝑁)
150 le2sq2 13782 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℝ ∧ 0 ≤ 𝑛) ∧ (𝑁 ∈ ℝ ∧ 𝑛𝑁)) → (𝑛↑2) ≤ (𝑁↑2))
151145, 147, 140, 149, 150syl22anc 835 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑛↑2) ≤ (𝑁↑2))
152135, 60, 136, 136, 144, 151le2addd 11524 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) + (𝑛↑2)) ≤ ((𝑁↑2) + (𝑁↑2)))
153131nncnd 11919 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑁↑2) ∈ ℂ)
1541532timesd 12146 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · (𝑁↑2)) = ((𝑁↑2) + (𝑁↑2)))
155152, 154breqtrrd 5098 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) + (𝑛↑2)) ≤ (2 · (𝑁↑2)))
156 2lt4 12078 . . . . . . . . . . . . . . . 16 2 < 4
157 2re 11977 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
158157a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 2 ∈ ℝ)
159 4re 11987 . . . . . . . . . . . . . . . . . 18 4 ∈ ℝ
160159a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 4 ∈ ℝ)
161131nngt0d 11952 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 0 < (𝑁↑2))
162 ltmul1 11755 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℝ ∧ 4 ∈ ℝ ∧ ((𝑁↑2) ∈ ℝ ∧ 0 < (𝑁↑2))) → (2 < 4 ↔ (2 · (𝑁↑2)) < (4 · (𝑁↑2))))
163158, 160, 136, 161, 162syl112anc 1372 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 < 4 ↔ (2 · (𝑁↑2)) < (4 · (𝑁↑2))))
164156, 163mpbii 232 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · (𝑁↑2)) < (4 · (𝑁↑2)))
165 2cn 11978 . . . . . . . . . . . . . . . . 17 2 ∈ ℂ
166121nncnd 11919 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑁 ∈ ℂ)
167 sqmul 13767 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((2 · 𝑁)↑2) = ((2↑2) · (𝑁↑2)))
168165, 166, 167sylancr 586 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((2 · 𝑁)↑2) = ((2↑2) · (𝑁↑2)))
169 sq2 13842 . . . . . . . . . . . . . . . . 17 (2↑2) = 4
170169oveq1i 7265 . . . . . . . . . . . . . . . 16 ((2↑2) · (𝑁↑2)) = (4 · (𝑁↑2))
171168, 170eqtrdi 2795 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((2 · 𝑁)↑2) = (4 · (𝑁↑2)))
172164, 171breqtrrd 5098 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · (𝑁↑2)) < ((2 · 𝑁)↑2))
173119, 134, 125, 155, 172lelttrd 11063 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) + (𝑛↑2)) < ((2 · 𝑁)↑2))
174127nnrpd 12699 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · (2 · 𝑁)) ∈ ℝ+)
175125, 174ltaddrpd 12734 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((2 · 𝑁)↑2) < (((2 · 𝑁)↑2) + (2 · (2 · 𝑁))))
176119, 125, 129, 173, 175lttrd 11066 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) + (𝑛↑2)) < (((2 · 𝑁)↑2) + (2 · (2 · 𝑁))))
177119, 129, 130, 176ltadd1dd 11516 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑚↑2) + (𝑛↑2)) + 1) < ((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1))
17833ad2ant1 1131 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 = ((2 · 𝑁) + 1))
179178oveq1d 7270 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑃↑2) = (((2 · 𝑁) + 1)↑2))
18095sqvald 13789 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑃↑2) = (𝑃 · 𝑃))
181123nncnd 11919 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · 𝑁) ∈ ℂ)
182 binom21 13862 . . . . . . . . . . . . 13 ((2 · 𝑁) ∈ ℂ → (((2 · 𝑁) + 1)↑2) = ((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1))
183181, 182syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((2 · 𝑁) + 1)↑2) = ((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1))
184179, 180, 1833eqtr3d 2786 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑃 · 𝑃) = ((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1))
185177, 184breqtrrd 5098 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑚↑2) + (𝑛↑2)) + 1) < (𝑃 · 𝑃))
186101nnred 11918 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑚↑2) + (𝑛↑2)) + 1) ∈ ℝ)
18745nngt0d 11952 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 0 < 𝑃)
188 ltdivmul 11780 . . . . . . . . . . 11 (((((𝑚↑2) + (𝑛↑2)) + 1) ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) < 𝑃 ↔ (((𝑚↑2) + (𝑛↑2)) + 1) < (𝑃 · 𝑃)))
189186, 51, 51, 187, 188syl112anc 1372 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) < 𝑃 ↔ (((𝑚↑2) + (𝑛↑2)) + 1) < (𝑃 · 𝑃)))
190185, 189mpbird 256 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) < 𝑃)
191 1z 12280 . . . . . . . . . 10 1 ∈ ℤ
192 elfzm11 13256 . . . . . . . . . 10 ((1 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ (1...(𝑃 − 1)) ↔ (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ ℤ ∧ 1 ≤ ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∧ ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) < 𝑃)))
193191, 68, 192sylancr 586 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ (1...(𝑃 − 1)) ↔ (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ ℤ ∧ 1 ≤ ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∧ ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) < 𝑃)))
194109, 118, 190, 193mpbir3and 1340 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ (1...(𝑃 − 1)))
195 gzreim 16568 . . . . . . . . 9 ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑚 + (i · 𝑛)) ∈ ℤ[i])
19679, 57, 195syl2anc 583 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑚 + (i · 𝑛)) ∈ ℤ[i])
197 gzcn 16561 . . . . . . . . . . . . 13 ((𝑚 + (i · 𝑛)) ∈ ℤ[i] → (𝑚 + (i · 𝑛)) ∈ ℂ)
198196, 197syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑚 + (i · 𝑛)) ∈ ℂ)
199198absvalsq2d 15083 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((abs‘(𝑚 + (i · 𝑛)))↑2) = (((ℜ‘(𝑚 + (i · 𝑛)))↑2) + ((ℑ‘(𝑚 + (i · 𝑛)))↑2)))
200137, 145crred 14870 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (ℜ‘(𝑚 + (i · 𝑛))) = 𝑚)
201200oveq1d 7270 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((ℜ‘(𝑚 + (i · 𝑛)))↑2) = (𝑚↑2))
202137, 145crimd 14871 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (ℑ‘(𝑚 + (i · 𝑛))) = 𝑛)
203202oveq1d 7270 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((ℑ‘(𝑚 + (i · 𝑛)))↑2) = (𝑛↑2))
204201, 203oveq12d 7273 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((ℜ‘(𝑚 + (i · 𝑛)))↑2) + ((ℑ‘(𝑚 + (i · 𝑛)))↑2)) = ((𝑚↑2) + (𝑛↑2)))
205199, 204eqtrd 2778 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((abs‘(𝑚 + (i · 𝑛)))↑2) = ((𝑚↑2) + (𝑛↑2)))
206205oveq1d 7270 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((abs‘(𝑚 + (i · 𝑛)))↑2) + 1) = (((𝑚↑2) + (𝑛↑2)) + 1))
207101nncnd 11919 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑚↑2) + (𝑛↑2)) + 1) ∈ ℂ)
208207, 95, 106divcan1d 11682 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) · 𝑃) = (((𝑚↑2) + (𝑛↑2)) + 1))
209206, 208eqtr4d 2781 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((abs‘(𝑚 + (i · 𝑛)))↑2) + 1) = (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) · 𝑃))
210 oveq1 7262 . . . . . . . . . 10 (𝑘 = ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) → (𝑘 · 𝑃) = (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) · 𝑃))
211210eqeq2d 2749 . . . . . . . . 9 (𝑘 = ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) → ((((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃) ↔ (((abs‘𝑢)↑2) + 1) = (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) · 𝑃)))
212 fveq2 6756 . . . . . . . . . . . 12 (𝑢 = (𝑚 + (i · 𝑛)) → (abs‘𝑢) = (abs‘(𝑚 + (i · 𝑛))))
213212oveq1d 7270 . . . . . . . . . . 11 (𝑢 = (𝑚 + (i · 𝑛)) → ((abs‘𝑢)↑2) = ((abs‘(𝑚 + (i · 𝑛)))↑2))
214213oveq1d 7270 . . . . . . . . . 10 (𝑢 = (𝑚 + (i · 𝑛)) → (((abs‘𝑢)↑2) + 1) = (((abs‘(𝑚 + (i · 𝑛)))↑2) + 1))
215214eqeq1d 2740 . . . . . . . . 9 (𝑢 = (𝑚 + (i · 𝑛)) → ((((abs‘𝑢)↑2) + 1) = (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) · 𝑃) ↔ (((abs‘(𝑚 + (i · 𝑛)))↑2) + 1) = (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) · 𝑃)))
216211, 215rspc2ev 3564 . . . . . . . 8 ((((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ (1...(𝑃 − 1)) ∧ (𝑚 + (i · 𝑛)) ∈ ℤ[i] ∧ (((abs‘(𝑚 + (i · 𝑛)))↑2) + 1) = (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) · 𝑃)) → ∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃))
217194, 196, 209, 216syl3anc 1369 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃))
2182173expia 1119 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁))) → (((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃)) → ∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)))
21942, 218syl5 34 . . . . 5 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁))) → ((𝑗 = ((𝑚↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)))
220219rexlimdvva 3222 . . . 4 (𝜑 → (∃𝑚 ∈ (0...𝑁)∃𝑛 ∈ (0...𝑁)(𝑗 = ((𝑚↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)))
22141, 220syl5bi 241 . . 3 (𝜑 → (𝑗 ∈ (𝐴 ∩ ran 𝐹) → ∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)))
222221exlimdv 1937 . 2 (𝜑 → (∃𝑗 𝑗 ∈ (𝐴 ∩ ran 𝐹) → ∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)))
2239, 222mpd 15 1 (𝜑 → ∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wne 2942  wrex 3064  cin 3882  c0 4253   class class class wbr 5070  cmpt 5153  ran crn 5581  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803  ici 10804   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  4c4 11960  0cn0 12163  cz 12249  +crp 12659  ...cfz 13168   mod cmo 13517  cexp 13710  cre 14736  cim 14737  abscabs 14873  cdvds 15891  cprime 16304  ℤ[i]cgz 16558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-gcd 16130  df-prm 16305  df-gz 16559
This theorem is referenced by:  4sqlem13  16586
  Copyright terms: Public domain W3C validator