MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsdilem1 Structured version   Visualization version   GIF version

Theorem addsdilem1 28195
Description: Lemma for surreal distribution. Expand the left hand side of the main expression. (Contributed by Scott Fenton, 8-Mar-2025.)
Hypotheses
Ref Expression
addsdilem.1 (𝜑𝐴 No )
addsdilem.2 (𝜑𝐵 No )
addsdilem.3 (𝜑𝐶 No )
Assertion
Ref Expression
addsdilem1 (𝜑 → (𝐴 ·s (𝐵 +s 𝐶)) = ((({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝐿 +s 𝐶)))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝐿)))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝑅 +s 𝐶)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝑅)))})) |s (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝑅 +s 𝐶)))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝑅)))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝐿 +s 𝐶)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝐿)))}))))
Distinct variable groups:   𝐴,𝑎,𝑥𝐿   𝐴,𝑥𝑅,𝑦𝐿   𝐴,𝑦𝑅   𝐴,𝑧𝐿   𝐴,𝑧𝑅   𝐵,𝑎,𝑥𝐿   𝐵,𝑥𝑅,𝑦𝐿   𝐵,𝑦𝑅   𝐵,𝑧𝐿   𝐵,𝑧𝑅   𝐶,𝑎,𝑥𝐿   𝐶,𝑥𝑅,𝑦𝐿   𝐶,𝑦𝑅   𝐶,𝑧𝐿   𝐶,𝑧𝑅   𝑎,𝑥𝑅,𝑦𝐿   𝑎,𝑦𝑅   𝑎,𝑧𝐿   𝑎,𝑧𝑅   𝑥𝐿,𝑦𝐿   𝑥𝐿,𝑦𝑅   𝑥𝐿,𝑧𝐿   𝑥𝐿,𝑧𝑅   𝑥𝑅,𝑦𝑅   𝑥𝑅,𝑧𝐿   𝑥𝑅,𝑧𝑅
Allowed substitution hints:   𝜑(𝑎,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅,𝑧𝐿,𝑧𝑅)

Proof of Theorem addsdilem1
Dummy variables 𝑏 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lltropt 27929 . . . 4 ( L ‘𝐴) <<s ( R ‘𝐴)
21a1i 11 . . 3 (𝜑 → ( L ‘𝐴) <<s ( R ‘𝐴))
3 addsdilem.2 . . . 4 (𝜑𝐵 No )
4 addsdilem.3 . . . 4 (𝜑𝐶 No )
53, 4addscut2 28030 . . 3 (𝜑 → ({𝑡 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (𝑦𝐿 +s 𝐶)} ∪ {𝑡 ∣ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (𝐵 +s 𝑧𝐿)}) <<s ({𝑡 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (𝑦𝑅 +s 𝐶)} ∪ {𝑡 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (𝐵 +s 𝑧𝑅)}))
6 addsdilem.1 . . . . 5 (𝜑𝐴 No )
7 lrcut 27959 . . . . 5 (𝐴 No → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴)
86, 7syl 17 . . . 4 (𝜑 → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴)
98eqcomd 2746 . . 3 (𝜑𝐴 = (( L ‘𝐴) |s ( R ‘𝐴)))
10 addsval2 28014 . . . 4 ((𝐵 No 𝐶 No ) → (𝐵 +s 𝐶) = (({𝑡 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (𝑦𝐿 +s 𝐶)} ∪ {𝑡 ∣ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (𝐵 +s 𝑧𝐿)}) |s ({𝑡 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (𝑦𝑅 +s 𝐶)} ∪ {𝑡 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (𝐵 +s 𝑧𝑅)})))
113, 4, 10syl2anc 583 . . 3 (𝜑 → (𝐵 +s 𝐶) = (({𝑡 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (𝑦𝐿 +s 𝐶)} ∪ {𝑡 ∣ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (𝐵 +s 𝑧𝐿)}) |s ({𝑡 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (𝑦𝑅 +s 𝐶)} ∪ {𝑡 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (𝐵 +s 𝑧𝑅)})))
122, 5, 9, 11mulsunif 28194 . 2 (𝜑 → (𝐴 ·s (𝐵 +s 𝐶)) = (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑏 ∈ ({𝑡 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (𝑦𝐿 +s 𝐶)} ∪ {𝑡 ∣ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (𝐵 +s 𝑧𝐿)})𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑏 ∈ ({𝑡 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (𝑦𝑅 +s 𝐶)} ∪ {𝑡 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (𝐵 +s 𝑧𝑅)})𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))}) |s ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑏 ∈ ({𝑡 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (𝑦𝑅 +s 𝐶)} ∪ {𝑡 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (𝐵 +s 𝑧𝑅)})𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑏 ∈ ({𝑡 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (𝑦𝐿 +s 𝐶)} ∪ {𝑡 ∣ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (𝐵 +s 𝑧𝐿)})𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))})))
13 unab 4327 . . . . 5 ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝐿 +s 𝐶)))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝐿)))}) = {𝑎 ∣ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝐿 +s 𝐶))) ∨ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝐿))))}
14 r19.43 3128 . . . . . . 7 (∃𝑥𝐿 ∈ ( L ‘𝐴)(∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝐿 +s 𝐶))) ∨ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝐿)))) ↔ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝐿 +s 𝐶))) ∨ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝐿)))))
15 rexun 4219 . . . . . . . . 9 (∃𝑏 ∈ ({𝑡 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (𝑦𝐿 +s 𝐶)} ∪ {𝑡 ∣ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (𝐵 +s 𝑧𝐿)})𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏)) ↔ (∃𝑏 ∈ {𝑡 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (𝑦𝐿 +s 𝐶)}𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏)) ∨ ∃𝑏 ∈ {𝑡 ∣ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (𝐵 +s 𝑧𝐿)}𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))))
16 eqeq1 2744 . . . . . . . . . . . . 13 (𝑡 = 𝑏 → (𝑡 = (𝑦𝐿 +s 𝐶) ↔ 𝑏 = (𝑦𝐿 +s 𝐶)))
1716rexbidv 3185 . . . . . . . . . . . 12 (𝑡 = 𝑏 → (∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (𝑦𝐿 +s 𝐶) ↔ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (𝑦𝐿 +s 𝐶)))
1817rexab 3716 . . . . . . . . . . 11 (∃𝑏 ∈ {𝑡 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (𝑦𝐿 +s 𝐶)}𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏)) ↔ ∃𝑏(∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (𝑦𝐿 +s 𝐶) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))))
19 rexcom4 3294 . . . . . . . . . . . 12 (∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑏(𝑏 = (𝑦𝐿 +s 𝐶) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))) ↔ ∃𝑏𝑦𝐿 ∈ ( L ‘𝐵)(𝑏 = (𝑦𝐿 +s 𝐶) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))))
20 ovex 7481 . . . . . . . . . . . . . 14 (𝑦𝐿 +s 𝐶) ∈ V
21 oveq2 7456 . . . . . . . . . . . . . . . . 17 (𝑏 = (𝑦𝐿 +s 𝐶) → (𝐴 ·s 𝑏) = (𝐴 ·s (𝑦𝐿 +s 𝐶)))
2221oveq2d 7464 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑦𝐿 +s 𝐶) → ((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) = ((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))))
23 oveq2 7456 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑦𝐿 +s 𝐶) → (𝑥𝐿 ·s 𝑏) = (𝑥𝐿 ·s (𝑦𝐿 +s 𝐶)))
2422, 23oveq12d 7466 . . . . . . . . . . . . . . 15 (𝑏 = (𝑦𝐿 +s 𝐶) → (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏)) = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝐿 +s 𝐶))))
2524eqeq2d 2751 . . . . . . . . . . . . . 14 (𝑏 = (𝑦𝐿 +s 𝐶) → (𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏)) ↔ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝐿 +s 𝐶)))))
2620, 25ceqsexv 3542 . . . . . . . . . . . . 13 (∃𝑏(𝑏 = (𝑦𝐿 +s 𝐶) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))) ↔ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝐿 +s 𝐶))))
2726rexbii 3100 . . . . . . . . . . . 12 (∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑏(𝑏 = (𝑦𝐿 +s 𝐶) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))) ↔ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝐿 +s 𝐶))))
28 r19.41v 3195 . . . . . . . . . . . . 13 (∃𝑦𝐿 ∈ ( L ‘𝐵)(𝑏 = (𝑦𝐿 +s 𝐶) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))) ↔ (∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (𝑦𝐿 +s 𝐶) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))))
2928exbii 1846 . . . . . . . . . . . 12 (∃𝑏𝑦𝐿 ∈ ( L ‘𝐵)(𝑏 = (𝑦𝐿 +s 𝐶) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))) ↔ ∃𝑏(∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (𝑦𝐿 +s 𝐶) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))))
3019, 27, 293bitr3ri 302 . . . . . . . . . . 11 (∃𝑏(∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (𝑦𝐿 +s 𝐶) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))) ↔ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝐿 +s 𝐶))))
3118, 30bitri 275 . . . . . . . . . 10 (∃𝑏 ∈ {𝑡 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (𝑦𝐿 +s 𝐶)}𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏)) ↔ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝐿 +s 𝐶))))
32 eqeq1 2744 . . . . . . . . . . . . 13 (𝑡 = 𝑏 → (𝑡 = (𝐵 +s 𝑧𝐿) ↔ 𝑏 = (𝐵 +s 𝑧𝐿)))
3332rexbidv 3185 . . . . . . . . . . . 12 (𝑡 = 𝑏 → (∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (𝐵 +s 𝑧𝐿) ↔ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (𝐵 +s 𝑧𝐿)))
3433rexab 3716 . . . . . . . . . . 11 (∃𝑏 ∈ {𝑡 ∣ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (𝐵 +s 𝑧𝐿)}𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏)) ↔ ∃𝑏(∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (𝐵 +s 𝑧𝐿) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))))
35 rexcom4 3294 . . . . . . . . . . . 12 (∃𝑧𝐿 ∈ ( L ‘𝐶)∃𝑏(𝑏 = (𝐵 +s 𝑧𝐿) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))) ↔ ∃𝑏𝑧𝐿 ∈ ( L ‘𝐶)(𝑏 = (𝐵 +s 𝑧𝐿) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))))
36 ovex 7481 . . . . . . . . . . . . . 14 (𝐵 +s 𝑧𝐿) ∈ V
37 oveq2 7456 . . . . . . . . . . . . . . . . 17 (𝑏 = (𝐵 +s 𝑧𝐿) → (𝐴 ·s 𝑏) = (𝐴 ·s (𝐵 +s 𝑧𝐿)))
3837oveq2d 7464 . . . . . . . . . . . . . . . 16 (𝑏 = (𝐵 +s 𝑧𝐿) → ((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) = ((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))))
39 oveq2 7456 . . . . . . . . . . . . . . . 16 (𝑏 = (𝐵 +s 𝑧𝐿) → (𝑥𝐿 ·s 𝑏) = (𝑥𝐿 ·s (𝐵 +s 𝑧𝐿)))
4038, 39oveq12d 7466 . . . . . . . . . . . . . . 15 (𝑏 = (𝐵 +s 𝑧𝐿) → (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏)) = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝐿))))
4140eqeq2d 2751 . . . . . . . . . . . . . 14 (𝑏 = (𝐵 +s 𝑧𝐿) → (𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏)) ↔ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝐿)))))
4236, 41ceqsexv 3542 . . . . . . . . . . . . 13 (∃𝑏(𝑏 = (𝐵 +s 𝑧𝐿) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))) ↔ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝐿))))
4342rexbii 3100 . . . . . . . . . . . 12 (∃𝑧𝐿 ∈ ( L ‘𝐶)∃𝑏(𝑏 = (𝐵 +s 𝑧𝐿) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))) ↔ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝐿))))
44 r19.41v 3195 . . . . . . . . . . . . 13 (∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑏 = (𝐵 +s 𝑧𝐿) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))) ↔ (∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (𝐵 +s 𝑧𝐿) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))))
4544exbii 1846 . . . . . . . . . . . 12 (∃𝑏𝑧𝐿 ∈ ( L ‘𝐶)(𝑏 = (𝐵 +s 𝑧𝐿) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))) ↔ ∃𝑏(∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (𝐵 +s 𝑧𝐿) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))))
4635, 43, 453bitr3ri 302 . . . . . . . . . . 11 (∃𝑏(∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (𝐵 +s 𝑧𝐿) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))) ↔ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝐿))))
4734, 46bitri 275 . . . . . . . . . 10 (∃𝑏 ∈ {𝑡 ∣ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (𝐵 +s 𝑧𝐿)}𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏)) ↔ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝐿))))
4831, 47orbi12i 913 . . . . . . . . 9 ((∃𝑏 ∈ {𝑡 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (𝑦𝐿 +s 𝐶)}𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏)) ∨ ∃𝑏 ∈ {𝑡 ∣ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (𝐵 +s 𝑧𝐿)}𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))) ↔ (∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝐿 +s 𝐶))) ∨ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝐿)))))
4915, 48bitr2i 276 . . . . . . . 8 ((∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝐿 +s 𝐶))) ∨ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝐿)))) ↔ ∃𝑏 ∈ ({𝑡 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (𝑦𝐿 +s 𝐶)} ∪ {𝑡 ∣ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (𝐵 +s 𝑧𝐿)})𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏)))
5049rexbii 3100 . . . . . . 7 (∃𝑥𝐿 ∈ ( L ‘𝐴)(∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝐿 +s 𝐶))) ∨ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝐿)))) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑏 ∈ ({𝑡 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (𝑦𝐿 +s 𝐶)} ∪ {𝑡 ∣ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (𝐵 +s 𝑧𝐿)})𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏)))
5114, 50bitr3i 277 . . . . . 6 ((∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝐿 +s 𝐶))) ∨ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝐿)))) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑏 ∈ ({𝑡 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (𝑦𝐿 +s 𝐶)} ∪ {𝑡 ∣ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (𝐵 +s 𝑧𝐿)})𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏)))
5251abbii 2812 . . . . 5 {𝑎 ∣ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝐿 +s 𝐶))) ∨ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝐿))))} = {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑏 ∈ ({𝑡 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (𝑦𝐿 +s 𝐶)} ∪ {𝑡 ∣ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (𝐵 +s 𝑧𝐿)})𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))}
5313, 52eqtri 2768 . . . 4 ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝐿 +s 𝐶)))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝐿)))}) = {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑏 ∈ ({𝑡 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (𝑦𝐿 +s 𝐶)} ∪ {𝑡 ∣ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (𝐵 +s 𝑧𝐿)})𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))}
54 unab 4327 . . . . 5 ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝑅 +s 𝐶)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝑅)))}) = {𝑎 ∣ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝑅 +s 𝐶))) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝑅))))}
55 r19.43 3128 . . . . . . 7 (∃𝑥𝑅 ∈ ( R ‘𝐴)(∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝑅 +s 𝐶))) ∨ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝑅)))) ↔ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝑅 +s 𝐶))) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝑅)))))
56 rexun 4219 . . . . . . . . 9 (∃𝑏 ∈ ({𝑡 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (𝑦𝑅 +s 𝐶)} ∪ {𝑡 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (𝐵 +s 𝑧𝑅)})𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏)) ↔ (∃𝑏 ∈ {𝑡 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (𝑦𝑅 +s 𝐶)}𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏)) ∨ ∃𝑏 ∈ {𝑡 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (𝐵 +s 𝑧𝑅)}𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))))
57 eqeq1 2744 . . . . . . . . . . . . 13 (𝑡 = 𝑏 → (𝑡 = (𝑦𝑅 +s 𝐶) ↔ 𝑏 = (𝑦𝑅 +s 𝐶)))
5857rexbidv 3185 . . . . . . . . . . . 12 (𝑡 = 𝑏 → (∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (𝑦𝑅 +s 𝐶) ↔ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (𝑦𝑅 +s 𝐶)))
5958rexab 3716 . . . . . . . . . . 11 (∃𝑏 ∈ {𝑡 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (𝑦𝑅 +s 𝐶)}𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏)) ↔ ∃𝑏(∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (𝑦𝑅 +s 𝐶) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))))
60 rexcom4 3294 . . . . . . . . . . . 12 (∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑏(𝑏 = (𝑦𝑅 +s 𝐶) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))) ↔ ∃𝑏𝑦𝑅 ∈ ( R ‘𝐵)(𝑏 = (𝑦𝑅 +s 𝐶) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))))
61 ovex 7481 . . . . . . . . . . . . . 14 (𝑦𝑅 +s 𝐶) ∈ V
62 oveq2 7456 . . . . . . . . . . . . . . . . 17 (𝑏 = (𝑦𝑅 +s 𝐶) → (𝐴 ·s 𝑏) = (𝐴 ·s (𝑦𝑅 +s 𝐶)))
6362oveq2d 7464 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑦𝑅 +s 𝐶) → ((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) = ((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))))
64 oveq2 7456 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑦𝑅 +s 𝐶) → (𝑥𝑅 ·s 𝑏) = (𝑥𝑅 ·s (𝑦𝑅 +s 𝐶)))
6563, 64oveq12d 7466 . . . . . . . . . . . . . . 15 (𝑏 = (𝑦𝑅 +s 𝐶) → (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏)) = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝑅 +s 𝐶))))
6665eqeq2d 2751 . . . . . . . . . . . . . 14 (𝑏 = (𝑦𝑅 +s 𝐶) → (𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏)) ↔ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝑅 +s 𝐶)))))
6761, 66ceqsexv 3542 . . . . . . . . . . . . 13 (∃𝑏(𝑏 = (𝑦𝑅 +s 𝐶) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))) ↔ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝑅 +s 𝐶))))
6867rexbii 3100 . . . . . . . . . . . 12 (∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑏(𝑏 = (𝑦𝑅 +s 𝐶) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))) ↔ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝑅 +s 𝐶))))
69 r19.41v 3195 . . . . . . . . . . . . 13 (∃𝑦𝑅 ∈ ( R ‘𝐵)(𝑏 = (𝑦𝑅 +s 𝐶) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))) ↔ (∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (𝑦𝑅 +s 𝐶) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))))
7069exbii 1846 . . . . . . . . . . . 12 (∃𝑏𝑦𝑅 ∈ ( R ‘𝐵)(𝑏 = (𝑦𝑅 +s 𝐶) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))) ↔ ∃𝑏(∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (𝑦𝑅 +s 𝐶) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))))
7160, 68, 703bitr3ri 302 . . . . . . . . . . 11 (∃𝑏(∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (𝑦𝑅 +s 𝐶) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))) ↔ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝑅 +s 𝐶))))
7259, 71bitri 275 . . . . . . . . . 10 (∃𝑏 ∈ {𝑡 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (𝑦𝑅 +s 𝐶)}𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏)) ↔ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝑅 +s 𝐶))))
73 eqeq1 2744 . . . . . . . . . . . . 13 (𝑡 = 𝑏 → (𝑡 = (𝐵 +s 𝑧𝑅) ↔ 𝑏 = (𝐵 +s 𝑧𝑅)))
7473rexbidv 3185 . . . . . . . . . . . 12 (𝑡 = 𝑏 → (∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (𝐵 +s 𝑧𝑅) ↔ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (𝐵 +s 𝑧𝑅)))
7574rexab 3716 . . . . . . . . . . 11 (∃𝑏 ∈ {𝑡 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (𝐵 +s 𝑧𝑅)}𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏)) ↔ ∃𝑏(∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (𝐵 +s 𝑧𝑅) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))))
76 rexcom4 3294 . . . . . . . . . . . 12 (∃𝑧𝑅 ∈ ( R ‘𝐶)∃𝑏(𝑏 = (𝐵 +s 𝑧𝑅) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))) ↔ ∃𝑏𝑧𝑅 ∈ ( R ‘𝐶)(𝑏 = (𝐵 +s 𝑧𝑅) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))))
77 ovex 7481 . . . . . . . . . . . . . 14 (𝐵 +s 𝑧𝑅) ∈ V
78 oveq2 7456 . . . . . . . . . . . . . . . . 17 (𝑏 = (𝐵 +s 𝑧𝑅) → (𝐴 ·s 𝑏) = (𝐴 ·s (𝐵 +s 𝑧𝑅)))
7978oveq2d 7464 . . . . . . . . . . . . . . . 16 (𝑏 = (𝐵 +s 𝑧𝑅) → ((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) = ((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))))
80 oveq2 7456 . . . . . . . . . . . . . . . 16 (𝑏 = (𝐵 +s 𝑧𝑅) → (𝑥𝑅 ·s 𝑏) = (𝑥𝑅 ·s (𝐵 +s 𝑧𝑅)))
8179, 80oveq12d 7466 . . . . . . . . . . . . . . 15 (𝑏 = (𝐵 +s 𝑧𝑅) → (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏)) = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝑅))))
8281eqeq2d 2751 . . . . . . . . . . . . . 14 (𝑏 = (𝐵 +s 𝑧𝑅) → (𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏)) ↔ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝑅)))))
8377, 82ceqsexv 3542 . . . . . . . . . . . . 13 (∃𝑏(𝑏 = (𝐵 +s 𝑧𝑅) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))) ↔ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝑅))))
8483rexbii 3100 . . . . . . . . . . . 12 (∃𝑧𝑅 ∈ ( R ‘𝐶)∃𝑏(𝑏 = (𝐵 +s 𝑧𝑅) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))) ↔ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝑅))))
85 r19.41v 3195 . . . . . . . . . . . . 13 (∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑏 = (𝐵 +s 𝑧𝑅) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))) ↔ (∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (𝐵 +s 𝑧𝑅) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))))
8685exbii 1846 . . . . . . . . . . . 12 (∃𝑏𝑧𝑅 ∈ ( R ‘𝐶)(𝑏 = (𝐵 +s 𝑧𝑅) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))) ↔ ∃𝑏(∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (𝐵 +s 𝑧𝑅) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))))
8776, 84, 863bitr3ri 302 . . . . . . . . . . 11 (∃𝑏(∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (𝐵 +s 𝑧𝑅) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))) ↔ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝑅))))
8875, 87bitri 275 . . . . . . . . . 10 (∃𝑏 ∈ {𝑡 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (𝐵 +s 𝑧𝑅)}𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏)) ↔ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝑅))))
8972, 88orbi12i 913 . . . . . . . . 9 ((∃𝑏 ∈ {𝑡 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (𝑦𝑅 +s 𝐶)}𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏)) ∨ ∃𝑏 ∈ {𝑡 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (𝐵 +s 𝑧𝑅)}𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))) ↔ (∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝑅 +s 𝐶))) ∨ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝑅)))))
9056, 89bitr2i 276 . . . . . . . 8 ((∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝑅 +s 𝐶))) ∨ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝑅)))) ↔ ∃𝑏 ∈ ({𝑡 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (𝑦𝑅 +s 𝐶)} ∪ {𝑡 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (𝐵 +s 𝑧𝑅)})𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏)))
9190rexbii 3100 . . . . . . 7 (∃𝑥𝑅 ∈ ( R ‘𝐴)(∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝑅 +s 𝐶))) ∨ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝑅)))) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑏 ∈ ({𝑡 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (𝑦𝑅 +s 𝐶)} ∪ {𝑡 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (𝐵 +s 𝑧𝑅)})𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏)))
9255, 91bitr3i 277 . . . . . 6 ((∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝑅 +s 𝐶))) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝑅)))) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑏 ∈ ({𝑡 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (𝑦𝑅 +s 𝐶)} ∪ {𝑡 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (𝐵 +s 𝑧𝑅)})𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏)))
9392abbii 2812 . . . . 5 {𝑎 ∣ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝑅 +s 𝐶))) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝑅))))} = {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑏 ∈ ({𝑡 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (𝑦𝑅 +s 𝐶)} ∪ {𝑡 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (𝐵 +s 𝑧𝑅)})𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))}
9454, 93eqtri 2768 . . . 4 ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝑅 +s 𝐶)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝑅)))}) = {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑏 ∈ ({𝑡 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (𝑦𝑅 +s 𝐶)} ∪ {𝑡 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (𝐵 +s 𝑧𝑅)})𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))}
9553, 94uneq12i 4189 . . 3 (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝐿 +s 𝐶)))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝐿)))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝑅 +s 𝐶)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝑅)))})) = ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑏 ∈ ({𝑡 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (𝑦𝐿 +s 𝐶)} ∪ {𝑡 ∣ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (𝐵 +s 𝑧𝐿)})𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑏 ∈ ({𝑡 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (𝑦𝑅 +s 𝐶)} ∪ {𝑡 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (𝐵 +s 𝑧𝑅)})𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))})
96 unab 4327 . . . . 5 ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝑅 +s 𝐶)))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝑅)))}) = {𝑎 ∣ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝑅 +s 𝐶))) ∨ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝑅))))}
97 r19.43 3128 . . . . . . 7 (∃𝑥𝐿 ∈ ( L ‘𝐴)(∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝑅 +s 𝐶))) ∨ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝑅)))) ↔ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝑅 +s 𝐶))) ∨ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝑅)))))
98 rexun 4219 . . . . . . . . 9 (∃𝑏 ∈ ({𝑡 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (𝑦𝑅 +s 𝐶)} ∪ {𝑡 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (𝐵 +s 𝑧𝑅)})𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏)) ↔ (∃𝑏 ∈ {𝑡 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (𝑦𝑅 +s 𝐶)}𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏)) ∨ ∃𝑏 ∈ {𝑡 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (𝐵 +s 𝑧𝑅)}𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))))
9958rexab 3716 . . . . . . . . . . 11 (∃𝑏 ∈ {𝑡 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (𝑦𝑅 +s 𝐶)}𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏)) ↔ ∃𝑏(∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (𝑦𝑅 +s 𝐶) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))))
100 rexcom4 3294 . . . . . . . . . . . 12 (∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑏(𝑏 = (𝑦𝑅 +s 𝐶) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))) ↔ ∃𝑏𝑦𝑅 ∈ ( R ‘𝐵)(𝑏 = (𝑦𝑅 +s 𝐶) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))))
10162oveq2d 7464 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑦𝑅 +s 𝐶) → ((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) = ((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))))
102 oveq2 7456 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑦𝑅 +s 𝐶) → (𝑥𝐿 ·s 𝑏) = (𝑥𝐿 ·s (𝑦𝑅 +s 𝐶)))
103101, 102oveq12d 7466 . . . . . . . . . . . . . . 15 (𝑏 = (𝑦𝑅 +s 𝐶) → (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏)) = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝑅 +s 𝐶))))
104103eqeq2d 2751 . . . . . . . . . . . . . 14 (𝑏 = (𝑦𝑅 +s 𝐶) → (𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏)) ↔ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝑅 +s 𝐶)))))
10561, 104ceqsexv 3542 . . . . . . . . . . . . 13 (∃𝑏(𝑏 = (𝑦𝑅 +s 𝐶) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))) ↔ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝑅 +s 𝐶))))
106105rexbii 3100 . . . . . . . . . . . 12 (∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑏(𝑏 = (𝑦𝑅 +s 𝐶) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))) ↔ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝑅 +s 𝐶))))
107 r19.41v 3195 . . . . . . . . . . . . 13 (∃𝑦𝑅 ∈ ( R ‘𝐵)(𝑏 = (𝑦𝑅 +s 𝐶) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))) ↔ (∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (𝑦𝑅 +s 𝐶) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))))
108107exbii 1846 . . . . . . . . . . . 12 (∃𝑏𝑦𝑅 ∈ ( R ‘𝐵)(𝑏 = (𝑦𝑅 +s 𝐶) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))) ↔ ∃𝑏(∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (𝑦𝑅 +s 𝐶) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))))
109100, 106, 1083bitr3ri 302 . . . . . . . . . . 11 (∃𝑏(∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (𝑦𝑅 +s 𝐶) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))) ↔ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝑅 +s 𝐶))))
11099, 109bitri 275 . . . . . . . . . 10 (∃𝑏 ∈ {𝑡 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (𝑦𝑅 +s 𝐶)}𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏)) ↔ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝑅 +s 𝐶))))
11174rexab 3716 . . . . . . . . . . 11 (∃𝑏 ∈ {𝑡 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (𝐵 +s 𝑧𝑅)}𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏)) ↔ ∃𝑏(∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (𝐵 +s 𝑧𝑅) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))))
112 rexcom4 3294 . . . . . . . . . . . 12 (∃𝑧𝑅 ∈ ( R ‘𝐶)∃𝑏(𝑏 = (𝐵 +s 𝑧𝑅) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))) ↔ ∃𝑏𝑧𝑅 ∈ ( R ‘𝐶)(𝑏 = (𝐵 +s 𝑧𝑅) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))))
11378oveq2d 7464 . . . . . . . . . . . . . . . 16 (𝑏 = (𝐵 +s 𝑧𝑅) → ((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) = ((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))))
114 oveq2 7456 . . . . . . . . . . . . . . . 16 (𝑏 = (𝐵 +s 𝑧𝑅) → (𝑥𝐿 ·s 𝑏) = (𝑥𝐿 ·s (𝐵 +s 𝑧𝑅)))
115113, 114oveq12d 7466 . . . . . . . . . . . . . . 15 (𝑏 = (𝐵 +s 𝑧𝑅) → (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏)) = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝑅))))
116115eqeq2d 2751 . . . . . . . . . . . . . 14 (𝑏 = (𝐵 +s 𝑧𝑅) → (𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏)) ↔ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝑅)))))
11777, 116ceqsexv 3542 . . . . . . . . . . . . 13 (∃𝑏(𝑏 = (𝐵 +s 𝑧𝑅) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))) ↔ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝑅))))
118117rexbii 3100 . . . . . . . . . . . 12 (∃𝑧𝑅 ∈ ( R ‘𝐶)∃𝑏(𝑏 = (𝐵 +s 𝑧𝑅) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))) ↔ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝑅))))
119 r19.41v 3195 . . . . . . . . . . . . 13 (∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑏 = (𝐵 +s 𝑧𝑅) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))) ↔ (∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (𝐵 +s 𝑧𝑅) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))))
120119exbii 1846 . . . . . . . . . . . 12 (∃𝑏𝑧𝑅 ∈ ( R ‘𝐶)(𝑏 = (𝐵 +s 𝑧𝑅) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))) ↔ ∃𝑏(∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (𝐵 +s 𝑧𝑅) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))))
121112, 118, 1203bitr3ri 302 . . . . . . . . . . 11 (∃𝑏(∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (𝐵 +s 𝑧𝑅) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))) ↔ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝑅))))
122111, 121bitri 275 . . . . . . . . . 10 (∃𝑏 ∈ {𝑡 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (𝐵 +s 𝑧𝑅)}𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏)) ↔ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝑅))))
123110, 122orbi12i 913 . . . . . . . . 9 ((∃𝑏 ∈ {𝑡 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (𝑦𝑅 +s 𝐶)}𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏)) ∨ ∃𝑏 ∈ {𝑡 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (𝐵 +s 𝑧𝑅)}𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))) ↔ (∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝑅 +s 𝐶))) ∨ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝑅)))))
12498, 123bitr2i 276 . . . . . . . 8 ((∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝑅 +s 𝐶))) ∨ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝑅)))) ↔ ∃𝑏 ∈ ({𝑡 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (𝑦𝑅 +s 𝐶)} ∪ {𝑡 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (𝐵 +s 𝑧𝑅)})𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏)))
125124rexbii 3100 . . . . . . 7 (∃𝑥𝐿 ∈ ( L ‘𝐴)(∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝑅 +s 𝐶))) ∨ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝑅)))) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑏 ∈ ({𝑡 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (𝑦𝑅 +s 𝐶)} ∪ {𝑡 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (𝐵 +s 𝑧𝑅)})𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏)))
12697, 125bitr3i 277 . . . . . 6 ((∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝑅 +s 𝐶))) ∨ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝑅)))) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑏 ∈ ({𝑡 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (𝑦𝑅 +s 𝐶)} ∪ {𝑡 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (𝐵 +s 𝑧𝑅)})𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏)))
127126abbii 2812 . . . . 5 {𝑎 ∣ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝑅 +s 𝐶))) ∨ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝑅))))} = {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑏 ∈ ({𝑡 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (𝑦𝑅 +s 𝐶)} ∪ {𝑡 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (𝐵 +s 𝑧𝑅)})𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))}
12896, 127eqtri 2768 . . . 4 ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝑅 +s 𝐶)))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝑅)))}) = {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑏 ∈ ({𝑡 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (𝑦𝑅 +s 𝐶)} ∪ {𝑡 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (𝐵 +s 𝑧𝑅)})𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))}
129 unab 4327 . . . . 5 ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝐿 +s 𝐶)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝐿)))}) = {𝑎 ∣ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝐿 +s 𝐶))) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝐿))))}
130 r19.43 3128 . . . . . . 7 (∃𝑥𝑅 ∈ ( R ‘𝐴)(∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝐿 +s 𝐶))) ∨ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝐿)))) ↔ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝐿 +s 𝐶))) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝐿)))))
131 rexun 4219 . . . . . . . . 9 (∃𝑏 ∈ ({𝑡 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (𝑦𝐿 +s 𝐶)} ∪ {𝑡 ∣ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (𝐵 +s 𝑧𝐿)})𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏)) ↔ (∃𝑏 ∈ {𝑡 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (𝑦𝐿 +s 𝐶)}𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏)) ∨ ∃𝑏 ∈ {𝑡 ∣ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (𝐵 +s 𝑧𝐿)}𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))))
13217rexab 3716 . . . . . . . . . . 11 (∃𝑏 ∈ {𝑡 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (𝑦𝐿 +s 𝐶)}𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏)) ↔ ∃𝑏(∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (𝑦𝐿 +s 𝐶) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))))
133 rexcom4 3294 . . . . . . . . . . . 12 (∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑏(𝑏 = (𝑦𝐿 +s 𝐶) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))) ↔ ∃𝑏𝑦𝐿 ∈ ( L ‘𝐵)(𝑏 = (𝑦𝐿 +s 𝐶) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))))
13421oveq2d 7464 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑦𝐿 +s 𝐶) → ((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) = ((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))))
135 oveq2 7456 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑦𝐿 +s 𝐶) → (𝑥𝑅 ·s 𝑏) = (𝑥𝑅 ·s (𝑦𝐿 +s 𝐶)))
136134, 135oveq12d 7466 . . . . . . . . . . . . . . 15 (𝑏 = (𝑦𝐿 +s 𝐶) → (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏)) = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝐿 +s 𝐶))))
137136eqeq2d 2751 . . . . . . . . . . . . . 14 (𝑏 = (𝑦𝐿 +s 𝐶) → (𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏)) ↔ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝐿 +s 𝐶)))))
13820, 137ceqsexv 3542 . . . . . . . . . . . . 13 (∃𝑏(𝑏 = (𝑦𝐿 +s 𝐶) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))) ↔ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝐿 +s 𝐶))))
139138rexbii 3100 . . . . . . . . . . . 12 (∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑏(𝑏 = (𝑦𝐿 +s 𝐶) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))) ↔ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝐿 +s 𝐶))))
140 r19.41v 3195 . . . . . . . . . . . . 13 (∃𝑦𝐿 ∈ ( L ‘𝐵)(𝑏 = (𝑦𝐿 +s 𝐶) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))) ↔ (∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (𝑦𝐿 +s 𝐶) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))))
141140exbii 1846 . . . . . . . . . . . 12 (∃𝑏𝑦𝐿 ∈ ( L ‘𝐵)(𝑏 = (𝑦𝐿 +s 𝐶) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))) ↔ ∃𝑏(∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (𝑦𝐿 +s 𝐶) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))))
142133, 139, 1413bitr3ri 302 . . . . . . . . . . 11 (∃𝑏(∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (𝑦𝐿 +s 𝐶) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))) ↔ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝐿 +s 𝐶))))
143132, 142bitri 275 . . . . . . . . . 10 (∃𝑏 ∈ {𝑡 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (𝑦𝐿 +s 𝐶)}𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏)) ↔ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝐿 +s 𝐶))))
14433rexab 3716 . . . . . . . . . . 11 (∃𝑏 ∈ {𝑡 ∣ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (𝐵 +s 𝑧𝐿)}𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏)) ↔ ∃𝑏(∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (𝐵 +s 𝑧𝐿) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))))
145 rexcom4 3294 . . . . . . . . . . . 12 (∃𝑧𝐿 ∈ ( L ‘𝐶)∃𝑏(𝑏 = (𝐵 +s 𝑧𝐿) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))) ↔ ∃𝑏𝑧𝐿 ∈ ( L ‘𝐶)(𝑏 = (𝐵 +s 𝑧𝐿) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))))
14637oveq2d 7464 . . . . . . . . . . . . . . . 16 (𝑏 = (𝐵 +s 𝑧𝐿) → ((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) = ((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))))
147 oveq2 7456 . . . . . . . . . . . . . . . 16 (𝑏 = (𝐵 +s 𝑧𝐿) → (𝑥𝑅 ·s 𝑏) = (𝑥𝑅 ·s (𝐵 +s 𝑧𝐿)))
148146, 147oveq12d 7466 . . . . . . . . . . . . . . 15 (𝑏 = (𝐵 +s 𝑧𝐿) → (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏)) = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝐿))))
149148eqeq2d 2751 . . . . . . . . . . . . . 14 (𝑏 = (𝐵 +s 𝑧𝐿) → (𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏)) ↔ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝐿)))))
15036, 149ceqsexv 3542 . . . . . . . . . . . . 13 (∃𝑏(𝑏 = (𝐵 +s 𝑧𝐿) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))) ↔ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝐿))))
151150rexbii 3100 . . . . . . . . . . . 12 (∃𝑧𝐿 ∈ ( L ‘𝐶)∃𝑏(𝑏 = (𝐵 +s 𝑧𝐿) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))) ↔ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝐿))))
152 r19.41v 3195 . . . . . . . . . . . . 13 (∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑏 = (𝐵 +s 𝑧𝐿) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))) ↔ (∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (𝐵 +s 𝑧𝐿) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))))
153152exbii 1846 . . . . . . . . . . . 12 (∃𝑏𝑧𝐿 ∈ ( L ‘𝐶)(𝑏 = (𝐵 +s 𝑧𝐿) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))) ↔ ∃𝑏(∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (𝐵 +s 𝑧𝐿) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))))
154145, 151, 1533bitr3ri 302 . . . . . . . . . . 11 (∃𝑏(∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (𝐵 +s 𝑧𝐿) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))) ↔ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝐿))))
155144, 154bitri 275 . . . . . . . . . 10 (∃𝑏 ∈ {𝑡 ∣ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (𝐵 +s 𝑧𝐿)}𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏)) ↔ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝐿))))
156143, 155orbi12i 913 . . . . . . . . 9 ((∃𝑏 ∈ {𝑡 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (𝑦𝐿 +s 𝐶)}𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏)) ∨ ∃𝑏 ∈ {𝑡 ∣ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (𝐵 +s 𝑧𝐿)}𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))) ↔ (∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝐿 +s 𝐶))) ∨ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝐿)))))
157131, 156bitr2i 276 . . . . . . . 8 ((∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝐿 +s 𝐶))) ∨ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝐿)))) ↔ ∃𝑏 ∈ ({𝑡 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (𝑦𝐿 +s 𝐶)} ∪ {𝑡 ∣ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (𝐵 +s 𝑧𝐿)})𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏)))
158157rexbii 3100 . . . . . . 7 (∃𝑥𝑅 ∈ ( R ‘𝐴)(∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝐿 +s 𝐶))) ∨ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝐿)))) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑏 ∈ ({𝑡 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (𝑦𝐿 +s 𝐶)} ∪ {𝑡 ∣ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (𝐵 +s 𝑧𝐿)})𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏)))
159130, 158bitr3i 277 . . . . . 6 ((∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝐿 +s 𝐶))) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝐿)))) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑏 ∈ ({𝑡 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (𝑦𝐿 +s 𝐶)} ∪ {𝑡 ∣ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (𝐵 +s 𝑧𝐿)})𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏)))
160159abbii 2812 . . . . 5 {𝑎 ∣ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝐿 +s 𝐶))) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝐿))))} = {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑏 ∈ ({𝑡 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (𝑦𝐿 +s 𝐶)} ∪ {𝑡 ∣ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (𝐵 +s 𝑧𝐿)})𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))}
161129, 160eqtri 2768 . . . 4 ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝐿 +s 𝐶)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝐿)))}) = {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑏 ∈ ({𝑡 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (𝑦𝐿 +s 𝐶)} ∪ {𝑡 ∣ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (𝐵 +s 𝑧𝐿)})𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))}
162128, 161uneq12i 4189 . . 3 (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝑅 +s 𝐶)))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝑅)))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝐿 +s 𝐶)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝐿)))})) = ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑏 ∈ ({𝑡 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (𝑦𝑅 +s 𝐶)} ∪ {𝑡 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (𝐵 +s 𝑧𝑅)})𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑏 ∈ ({𝑡 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (𝑦𝐿 +s 𝐶)} ∪ {𝑡 ∣ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (𝐵 +s 𝑧𝐿)})𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))})
16395, 162oveq12i 7460 . 2 ((({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝐿 +s 𝐶)))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝐿)))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝑅 +s 𝐶)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝑅)))})) |s (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝑅 +s 𝐶)))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝑅)))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝐿 +s 𝐶)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝐿)))}))) = (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑏 ∈ ({𝑡 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (𝑦𝐿 +s 𝐶)} ∪ {𝑡 ∣ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (𝐵 +s 𝑧𝐿)})𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑏 ∈ ({𝑡 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (𝑦𝑅 +s 𝐶)} ∪ {𝑡 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (𝐵 +s 𝑧𝑅)})𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))}) |s ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑏 ∈ ({𝑡 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (𝑦𝑅 +s 𝐶)} ∪ {𝑡 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (𝐵 +s 𝑧𝑅)})𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝐿 ·s 𝑏))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑏 ∈ ({𝑡 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (𝑦𝐿 +s 𝐶)} ∪ {𝑡 ∣ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (𝐵 +s 𝑧𝐿)})𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s 𝑏)) -s (𝑥𝑅 ·s 𝑏))}))
16412, 163eqtr4di 2798 1 (𝜑 → (𝐴 ·s (𝐵 +s 𝐶)) = ((({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝐿 +s 𝐶)))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝐿)))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝑅 +s 𝐶)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝑅)))})) |s (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝑅 +s 𝐶)))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝑅)))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝐿 +s 𝐶)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝐿)))}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wrex 3076  cun 3974   class class class wbr 5166  cfv 6573  (class class class)co 7448   No csur 27702   <<s csslt 27843   |s cscut 27845   L cleft 27902   R cright 27903   +s cadds 28010   -s csubs 28070   ·s cmuls 28150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-1o 8522  df-2o 8523  df-nadd 8722  df-no 27705  df-slt 27706  df-bday 27707  df-sle 27808  df-sslt 27844  df-scut 27846  df-0s 27887  df-made 27904  df-old 27905  df-left 27907  df-right 27908  df-norec 27989  df-norec2 28000  df-adds 28011  df-negs 28071  df-subs 28072  df-muls 28151
This theorem is referenced by:  addsdi  28199
  Copyright terms: Public domain W3C validator