Step | Hyp | Ref
| Expression |
1 | | eqeq1 2736 |
. . . . 5
β’ (π = π‘ β (π = (π βΎ (1...π)) β π‘ = (π βΎ (1...π)))) |
2 | 1 | rexbidv 3178 |
. . . 4
β’ (π = π‘ β (βπ β π π = (π βΎ (1...π)) β βπ β π π‘ = (π βΎ (1...π)))) |
3 | | reseq1 5973 |
. . . . . 6
β’ (π = π’ β (π βΎ (1...π)) = (π’ βΎ (1...π))) |
4 | 3 | eqeq2d 2743 |
. . . . 5
β’ (π = π’ β (π‘ = (π βΎ (1...π)) β π‘ = (π’ βΎ (1...π)))) |
5 | 4 | cbvrexvw 3235 |
. . . 4
β’
(βπ β
π π‘ = (π βΎ (1...π)) β βπ’ β π π‘ = (π’ βΎ (1...π))) |
6 | 2, 5 | bitrdi 286 |
. . 3
β’ (π = π‘ β (βπ β π π = (π βΎ (1...π)) β βπ’ β π π‘ = (π’ βΎ (1...π)))) |
7 | 6 | cbvabv 2805 |
. 2
β’ {π β£ βπ β π π = (π βΎ (1...π))} = {π‘ β£ βπ’ β π π‘ = (π’ βΎ (1...π))} |
8 | | rexeq 3321 |
. . . . . 6
β’ (π = {π β£ βπ β (β0
βm β)(π = (π βΎ (1...π)) β§ (πβπ) = 0)} β (βπ β π π = (π βΎ (1...π)) β βπ β {π β£ βπ β (β0
βm β)(π = (π βΎ (1...π)) β§ (πβπ) = 0)}π = (π βΎ (1...π)))) |
9 | 8 | abbidv 2801 |
. . . . 5
β’ (π = {π β£ βπ β (β0
βm β)(π = (π βΎ (1...π)) β§ (πβπ) = 0)} β {π β£ βπ β π π = (π βΎ (1...π))} = {π β£ βπ β {π β£ βπ β (β0
βm β)(π = (π βΎ (1...π)) β§ (πβπ) = 0)}π = (π βΎ (1...π))}) |
10 | 9 | adantl 482 |
. . . 4
β’ ((((π β β0
β§ π β
(β€β₯βπ) β§ π β (Diophβπ)) β§ π β (mzPolyββ)) β§ π = {π β£ βπ β (β0
βm β)(π = (π βΎ (1...π)) β§ (πβπ) = 0)}) β {π β£ βπ β π π = (π βΎ (1...π))} = {π β£ βπ β {π β£ βπ β (β0
βm β)(π = (π βΎ (1...π)) β§ (πβπ) = 0)}π = (π βΎ (1...π))}) |
11 | | eqeq1 2736 |
. . . . . . . . . . 11
β’ (π = π β (π = (π βΎ (1...π)) β π = (π βΎ (1...π)))) |
12 | 11 | anbi1d 630 |
. . . . . . . . . 10
β’ (π = π β ((π = (π βΎ (1...π)) β§ (πβπ) = 0) β (π = (π βΎ (1...π)) β§ (πβπ) = 0))) |
13 | 12 | rexbidv 3178 |
. . . . . . . . 9
β’ (π = π β (βπ β (β0
βm β)(π = (π βΎ (1...π)) β§ (πβπ) = 0) β βπ β (β0
βm β)(π = (π βΎ (1...π)) β§ (πβπ) = 0))) |
14 | 13 | rexab 3689 |
. . . . . . . 8
β’
(βπ β
{π β£ βπ β (β0
βm β)(π = (π βΎ (1...π)) β§ (πβπ) = 0)}π = (π βΎ (1...π)) β βπ(βπ β (β0
βm β)(π = (π βΎ (1...π)) β§ (πβπ) = 0) β§ π = (π βΎ (1...π)))) |
15 | | r19.41v 3188 |
. . . . . . . . . 10
β’
(βπ β
(β0 βm β)((π = (π βΎ (1...π)) β§ (πβπ) = 0) β§ π = (π βΎ (1...π))) β (βπ β (β0
βm β)(π = (π βΎ (1...π)) β§ (πβπ) = 0) β§ π = (π βΎ (1...π)))) |
16 | 15 | exbii 1850 |
. . . . . . . . 9
β’
(βπβπ β (β0
βm β)((π = (π βΎ (1...π)) β§ (πβπ) = 0) β§ π = (π βΎ (1...π))) β βπ(βπ β (β0
βm β)(π = (π βΎ (1...π)) β§ (πβπ) = 0) β§ π = (π βΎ (1...π)))) |
17 | | rexcom4 3285 |
. . . . . . . . . 10
β’
(βπ β
(β0 βm β)βπ((π = (π βΎ (1...π)) β§ (πβπ) = 0) β§ π = (π βΎ (1...π))) β βπβπ β (β0
βm β)((π = (π βΎ (1...π)) β§ (πβπ) = 0) β§ π = (π βΎ (1...π)))) |
18 | | anass 469 |
. . . . . . . . . . . . . 14
β’ (((π = (π βΎ (1...π)) β§ (πβπ) = 0) β§ π = (π βΎ (1...π))) β (π = (π βΎ (1...π)) β§ ((πβπ) = 0 β§ π = (π βΎ (1...π))))) |
19 | 18 | exbii 1850 |
. . . . . . . . . . . . 13
β’
(βπ((π = (π βΎ (1...π)) β§ (πβπ) = 0) β§ π = (π βΎ (1...π))) β βπ(π = (π βΎ (1...π)) β§ ((πβπ) = 0 β§ π = (π βΎ (1...π))))) |
20 | | vex 3478 |
. . . . . . . . . . . . . . 15
β’ π β V |
21 | 20 | resex 6027 |
. . . . . . . . . . . . . 14
β’ (π βΎ (1...π)) β V |
22 | | reseq1 5973 |
. . . . . . . . . . . . . . . 16
β’ (π = (π βΎ (1...π)) β (π βΎ (1...π)) = ((π βΎ (1...π)) βΎ (1...π))) |
23 | 22 | eqeq2d 2743 |
. . . . . . . . . . . . . . 15
β’ (π = (π βΎ (1...π)) β (π = (π βΎ (1...π)) β π = ((π βΎ (1...π)) βΎ (1...π)))) |
24 | 23 | anbi2d 629 |
. . . . . . . . . . . . . 14
β’ (π = (π βΎ (1...π)) β (((πβπ) = 0 β§ π = (π βΎ (1...π))) β ((πβπ) = 0 β§ π = ((π βΎ (1...π)) βΎ (1...π))))) |
25 | 21, 24 | ceqsexv 3525 |
. . . . . . . . . . . . 13
β’
(βπ(π = (π βΎ (1...π)) β§ ((πβπ) = 0 β§ π = (π βΎ (1...π)))) β ((πβπ) = 0 β§ π = ((π βΎ (1...π)) βΎ (1...π)))) |
26 | 19, 25 | bitri 274 |
. . . . . . . . . . . 12
β’
(βπ((π = (π βΎ (1...π)) β§ (πβπ) = 0) β§ π = (π βΎ (1...π))) β ((πβπ) = 0 β§ π = ((π βΎ (1...π)) βΎ (1...π)))) |
27 | | ancom 461 |
. . . . . . . . . . . . 13
β’ (((πβπ) = 0 β§ π = ((π βΎ (1...π)) βΎ (1...π))) β (π = ((π βΎ (1...π)) βΎ (1...π)) β§ (πβπ) = 0)) |
28 | | simpl2 1192 |
. . . . . . . . . . . . . . . 16
β’ (((π β β0
β§ π β
(β€β₯βπ) β§ π β (Diophβπ)) β§ π β (mzPolyββ)) β π β
(β€β₯βπ)) |
29 | | fzss2 13537 |
. . . . . . . . . . . . . . . 16
β’ (π β
(β€β₯βπ) β (1...π) β (1...π)) |
30 | | resabs1 6009 |
. . . . . . . . . . . . . . . 16
β’
((1...π) β
(1...π) β ((π βΎ (1...π)) βΎ (1...π)) = (π βΎ (1...π))) |
31 | 28, 29, 30 | 3syl 18 |
. . . . . . . . . . . . . . 15
β’ (((π β β0
β§ π β
(β€β₯βπ) β§ π β (Diophβπ)) β§ π β (mzPolyββ)) β
((π βΎ (1...π)) βΎ (1...π)) = (π βΎ (1...π))) |
32 | 31 | eqeq2d 2743 |
. . . . . . . . . . . . . 14
β’ (((π β β0
β§ π β
(β€β₯βπ) β§ π β (Diophβπ)) β§ π β (mzPolyββ)) β (π = ((π βΎ (1...π)) βΎ (1...π)) β π = (π βΎ (1...π)))) |
33 | 32 | anbi1d 630 |
. . . . . . . . . . . . 13
β’ (((π β β0
β§ π β
(β€β₯βπ) β§ π β (Diophβπ)) β§ π β (mzPolyββ)) β
((π = ((π βΎ (1...π)) βΎ (1...π)) β§ (πβπ) = 0) β (π = (π βΎ (1...π)) β§ (πβπ) = 0))) |
34 | 27, 33 | bitrid 282 |
. . . . . . . . . . . 12
β’ (((π β β0
β§ π β
(β€β₯βπ) β§ π β (Diophβπ)) β§ π β (mzPolyββ)) β
(((πβπ) = 0 β§ π = ((π βΎ (1...π)) βΎ (1...π))) β (π = (π βΎ (1...π)) β§ (πβπ) = 0))) |
35 | 26, 34 | bitrid 282 |
. . . . . . . . . . 11
β’ (((π β β0
β§ π β
(β€β₯βπ) β§ π β (Diophβπ)) β§ π β (mzPolyββ)) β
(βπ((π = (π βΎ (1...π)) β§ (πβπ) = 0) β§ π = (π βΎ (1...π))) β (π = (π βΎ (1...π)) β§ (πβπ) = 0))) |
36 | 35 | rexbidv 3178 |
. . . . . . . . . 10
β’ (((π β β0
β§ π β
(β€β₯βπ) β§ π β (Diophβπ)) β§ π β (mzPolyββ)) β
(βπ β
(β0 βm β)βπ((π = (π βΎ (1...π)) β§ (πβπ) = 0) β§ π = (π βΎ (1...π))) β βπ β (β0
βm β)(π = (π βΎ (1...π)) β§ (πβπ) = 0))) |
37 | 17, 36 | bitr3id 284 |
. . . . . . . . 9
β’ (((π β β0
β§ π β
(β€β₯βπ) β§ π β (Diophβπ)) β§ π β (mzPolyββ)) β
(βπβπ β (β0
βm β)((π = (π βΎ (1...π)) β§ (πβπ) = 0) β§ π = (π βΎ (1...π))) β βπ β (β0
βm β)(π = (π βΎ (1...π)) β§ (πβπ) = 0))) |
38 | 16, 37 | bitr3id 284 |
. . . . . . . 8
β’ (((π β β0
β§ π β
(β€β₯βπ) β§ π β (Diophβπ)) β§ π β (mzPolyββ)) β
(βπ(βπ β (β0
βm β)(π = (π βΎ (1...π)) β§ (πβπ) = 0) β§ π = (π βΎ (1...π))) β βπ β (β0
βm β)(π = (π βΎ (1...π)) β§ (πβπ) = 0))) |
39 | 14, 38 | bitrid 282 |
. . . . . . 7
β’ (((π β β0
β§ π β
(β€β₯βπ) β§ π β (Diophβπ)) β§ π β (mzPolyββ)) β
(βπ β {π β£ βπ β (β0
βm β)(π = (π βΎ (1...π)) β§ (πβπ) = 0)}π = (π βΎ (1...π)) β βπ β (β0
βm β)(π = (π βΎ (1...π)) β§ (πβπ) = 0))) |
40 | 39 | abbidv 2801 |
. . . . . 6
β’ (((π β β0
β§ π β
(β€β₯βπ) β§ π β (Diophβπ)) β§ π β (mzPolyββ)) β {π β£ βπ β {π β£ βπ β (β0
βm β)(π = (π βΎ (1...π)) β§ (πβπ) = 0)}π = (π βΎ (1...π))} = {π β£ βπ β (β0
βm β)(π = (π βΎ (1...π)) β§ (πβπ) = 0)}) |
41 | | eldioph3 41489 |
. . . . . . 7
β’ ((π β β0
β§ π β
(mzPolyββ)) β {π β£ βπ β (β0
βm β)(π = (π βΎ (1...π)) β§ (πβπ) = 0)} β (Diophβπ)) |
42 | 41 | 3ad2antl1 1185 |
. . . . . 6
β’ (((π β β0
β§ π β
(β€β₯βπ) β§ π β (Diophβπ)) β§ π β (mzPolyββ)) β {π β£ βπ β (β0
βm β)(π = (π βΎ (1...π)) β§ (πβπ) = 0)} β (Diophβπ)) |
43 | 40, 42 | eqeltrd 2833 |
. . . . 5
β’ (((π β β0
β§ π β
(β€β₯βπ) β§ π β (Diophβπ)) β§ π β (mzPolyββ)) β {π β£ βπ β {π β£ βπ β (β0
βm β)(π = (π βΎ (1...π)) β§ (πβπ) = 0)}π = (π βΎ (1...π))} β (Diophβπ)) |
44 | 43 | adantr 481 |
. . . 4
β’ ((((π β β0
β§ π β
(β€β₯βπ) β§ π β (Diophβπ)) β§ π β (mzPolyββ)) β§ π = {π β£ βπ β (β0
βm β)(π = (π βΎ (1...π)) β§ (πβπ) = 0)}) β {π β£ βπ β {π β£ βπ β (β0
βm β)(π = (π βΎ (1...π)) β§ (πβπ) = 0)}π = (π βΎ (1...π))} β (Diophβπ)) |
45 | 10, 44 | eqeltrd 2833 |
. . 3
β’ ((((π β β0
β§ π β
(β€β₯βπ) β§ π β (Diophβπ)) β§ π β (mzPolyββ)) β§ π = {π β£ βπ β (β0
βm β)(π = (π βΎ (1...π)) β§ (πβπ) = 0)}) β {π β£ βπ β π π = (π βΎ (1...π))} β (Diophβπ)) |
46 | | eldioph3b 41488 |
. . . . 5
β’ (π β (Diophβπ) β (π β β0 β§
βπ β
(mzPolyββ)π =
{π β£ βπ β (β0
βm β)(π = (π βΎ (1...π)) β§ (πβπ) = 0)})) |
47 | 46 | simprbi 497 |
. . . 4
β’ (π β (Diophβπ) β βπ β
(mzPolyββ)π =
{π β£ βπ β (β0
βm β)(π = (π βΎ (1...π)) β§ (πβπ) = 0)}) |
48 | 47 | 3ad2ant3 1135 |
. . 3
β’ ((π β β0
β§ π β
(β€β₯βπ) β§ π β (Diophβπ)) β βπ β (mzPolyββ)π = {π β£ βπ β (β0
βm β)(π = (π βΎ (1...π)) β§ (πβπ) = 0)}) |
49 | 45, 48 | r19.29a 3162 |
. 2
β’ ((π β β0
β§ π β
(β€β₯βπ) β§ π β (Diophβπ)) β {π β£ βπ β π π = (π βΎ (1...π))} β (Diophβπ)) |
50 | 7, 49 | eqeltrrid 2838 |
1
β’ ((π β β0
β§ π β
(β€β₯βπ) β§ π β (Diophβπ)) β {π‘ β£ βπ’ β π π‘ = (π’ βΎ (1...π))} β (Diophβπ)) |