Step | Hyp | Ref
| Expression |
1 | | eqeq1 2742 |
. . . . 5
⊢ (𝑎 = 𝑡 → (𝑎 = (𝑏 ↾ (1...𝑁)) ↔ 𝑡 = (𝑏 ↾ (1...𝑁)))) |
2 | 1 | rexbidv 3226 |
. . . 4
⊢ (𝑎 = 𝑡 → (∃𝑏 ∈ 𝑆 𝑎 = (𝑏 ↾ (1...𝑁)) ↔ ∃𝑏 ∈ 𝑆 𝑡 = (𝑏 ↾ (1...𝑁)))) |
3 | | reseq1 5885 |
. . . . . 6
⊢ (𝑏 = 𝑢 → (𝑏 ↾ (1...𝑁)) = (𝑢 ↾ (1...𝑁))) |
4 | 3 | eqeq2d 2749 |
. . . . 5
⊢ (𝑏 = 𝑢 → (𝑡 = (𝑏 ↾ (1...𝑁)) ↔ 𝑡 = (𝑢 ↾ (1...𝑁)))) |
5 | 4 | cbvrexvw 3384 |
. . . 4
⊢
(∃𝑏 ∈
𝑆 𝑡 = (𝑏 ↾ (1...𝑁)) ↔ ∃𝑢 ∈ 𝑆 𝑡 = (𝑢 ↾ (1...𝑁))) |
6 | 2, 5 | bitrdi 287 |
. . 3
⊢ (𝑎 = 𝑡 → (∃𝑏 ∈ 𝑆 𝑎 = (𝑏 ↾ (1...𝑁)) ↔ ∃𝑢 ∈ 𝑆 𝑡 = (𝑢 ↾ (1...𝑁)))) |
7 | 6 | cbvabv 2811 |
. 2
⊢ {𝑎 ∣ ∃𝑏 ∈ 𝑆 𝑎 = (𝑏 ↾ (1...𝑁))} = {𝑡 ∣ ∃𝑢 ∈ 𝑆 𝑡 = (𝑢 ↾ (1...𝑁))} |
8 | | rexeq 3343 |
. . . . . 6
⊢ (𝑆 = {𝑑 ∣ ∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐‘𝑒) = 0)} → (∃𝑏 ∈ 𝑆 𝑎 = (𝑏 ↾ (1...𝑁)) ↔ ∃𝑏 ∈ {𝑑 ∣ ∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐‘𝑒) = 0)}𝑎 = (𝑏 ↾ (1...𝑁)))) |
9 | 8 | abbidv 2807 |
. . . . 5
⊢ (𝑆 = {𝑑 ∣ ∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐‘𝑒) = 0)} → {𝑎 ∣ ∃𝑏 ∈ 𝑆 𝑎 = (𝑏 ↾ (1...𝑁))} = {𝑎 ∣ ∃𝑏 ∈ {𝑑 ∣ ∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐‘𝑒) = 0)}𝑎 = (𝑏 ↾ (1...𝑁))}) |
10 | 9 | adantl 482 |
. . . 4
⊢ ((((𝑁 ∈ ℕ0
∧ 𝑀 ∈
(ℤ≥‘𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) ∧ 𝑆 = {𝑑 ∣ ∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐‘𝑒) = 0)}) → {𝑎 ∣ ∃𝑏 ∈ 𝑆 𝑎 = (𝑏 ↾ (1...𝑁))} = {𝑎 ∣ ∃𝑏 ∈ {𝑑 ∣ ∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐‘𝑒) = 0)}𝑎 = (𝑏 ↾ (1...𝑁))}) |
11 | | eqeq1 2742 |
. . . . . . . . . . 11
⊢ (𝑑 = 𝑏 → (𝑑 = (𝑒 ↾ (1...𝑀)) ↔ 𝑏 = (𝑒 ↾ (1...𝑀)))) |
12 | 11 | anbi1d 630 |
. . . . . . . . . 10
⊢ (𝑑 = 𝑏 → ((𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐‘𝑒) = 0) ↔ (𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐‘𝑒) = 0))) |
13 | 12 | rexbidv 3226 |
. . . . . . . . 9
⊢ (𝑑 = 𝑏 → (∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐‘𝑒) = 0) ↔ ∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐‘𝑒) = 0))) |
14 | 13 | rexab 3631 |
. . . . . . . 8
⊢
(∃𝑏 ∈
{𝑑 ∣ ∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐‘𝑒) = 0)}𝑎 = (𝑏 ↾ (1...𝑁)) ↔ ∃𝑏(∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐‘𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁)))) |
15 | | r19.41v 3276 |
. . . . . . . . . 10
⊢
(∃𝑒 ∈
(ℕ0 ↑m ℕ)((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐‘𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ (∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐‘𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁)))) |
16 | 15 | exbii 1850 |
. . . . . . . . 9
⊢
(∃𝑏∃𝑒 ∈ (ℕ0
↑m ℕ)((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐‘𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ ∃𝑏(∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐‘𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁)))) |
17 | | rexcom4 3233 |
. . . . . . . . . 10
⊢
(∃𝑒 ∈
(ℕ0 ↑m ℕ)∃𝑏((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐‘𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ ∃𝑏∃𝑒 ∈ (ℕ0
↑m ℕ)((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐‘𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁)))) |
18 | | anass 469 |
. . . . . . . . . . . . . 14
⊢ (((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐‘𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ (𝑏 = (𝑒 ↾ (1...𝑀)) ∧ ((𝑐‘𝑒) = 0 ∧ 𝑎 = (𝑏 ↾ (1...𝑁))))) |
19 | 18 | exbii 1850 |
. . . . . . . . . . . . 13
⊢
(∃𝑏((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐‘𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ ∃𝑏(𝑏 = (𝑒 ↾ (1...𝑀)) ∧ ((𝑐‘𝑒) = 0 ∧ 𝑎 = (𝑏 ↾ (1...𝑁))))) |
20 | | vex 3436 |
. . . . . . . . . . . . . . 15
⊢ 𝑒 ∈ V |
21 | 20 | resex 5939 |
. . . . . . . . . . . . . 14
⊢ (𝑒 ↾ (1...𝑀)) ∈ V |
22 | | reseq1 5885 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = (𝑒 ↾ (1...𝑀)) → (𝑏 ↾ (1...𝑁)) = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁))) |
23 | 22 | eqeq2d 2749 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = (𝑒 ↾ (1...𝑀)) → (𝑎 = (𝑏 ↾ (1...𝑁)) ↔ 𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁)))) |
24 | 23 | anbi2d 629 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = (𝑒 ↾ (1...𝑀)) → (((𝑐‘𝑒) = 0 ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ ((𝑐‘𝑒) = 0 ∧ 𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁))))) |
25 | 21, 24 | ceqsexv 3479 |
. . . . . . . . . . . . 13
⊢
(∃𝑏(𝑏 = (𝑒 ↾ (1...𝑀)) ∧ ((𝑐‘𝑒) = 0 ∧ 𝑎 = (𝑏 ↾ (1...𝑁)))) ↔ ((𝑐‘𝑒) = 0 ∧ 𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁)))) |
26 | 19, 25 | bitri 274 |
. . . . . . . . . . . 12
⊢
(∃𝑏((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐‘𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ ((𝑐‘𝑒) = 0 ∧ 𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁)))) |
27 | | ancom 461 |
. . . . . . . . . . . . 13
⊢ (((𝑐‘𝑒) = 0 ∧ 𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁))) ↔ (𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁)) ∧ (𝑐‘𝑒) = 0)) |
28 | | simpl2 1191 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ0
∧ 𝑀 ∈
(ℤ≥‘𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → 𝑀 ∈
(ℤ≥‘𝑁)) |
29 | | fzss2 13296 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → (1...𝑁) ⊆ (1...𝑀)) |
30 | | resabs1 5921 |
. . . . . . . . . . . . . . . 16
⊢
((1...𝑁) ⊆
(1...𝑀) → ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁)) = (𝑒 ↾ (1...𝑁))) |
31 | 28, 29, 30 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ0
∧ 𝑀 ∈
(ℤ≥‘𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) →
((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁)) = (𝑒 ↾ (1...𝑁))) |
32 | 31 | eqeq2d 2749 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ 𝑀 ∈
(ℤ≥‘𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → (𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁)) ↔ 𝑎 = (𝑒 ↾ (1...𝑁)))) |
33 | 32 | anbi1d 630 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ0
∧ 𝑀 ∈
(ℤ≥‘𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) →
((𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁)) ∧ (𝑐‘𝑒) = 0) ↔ (𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐‘𝑒) = 0))) |
34 | 27, 33 | syl5bb 283 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ 𝑀 ∈
(ℤ≥‘𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) →
(((𝑐‘𝑒) = 0 ∧ 𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁))) ↔ (𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐‘𝑒) = 0))) |
35 | 26, 34 | syl5bb 283 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ 𝑀 ∈
(ℤ≥‘𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) →
(∃𝑏((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐‘𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ (𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐‘𝑒) = 0))) |
36 | 35 | rexbidv 3226 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ 𝑀 ∈
(ℤ≥‘𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) →
(∃𝑒 ∈
(ℕ0 ↑m ℕ)∃𝑏((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐‘𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ ∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐‘𝑒) = 0))) |
37 | 17, 36 | bitr3id 285 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ 𝑀 ∈
(ℤ≥‘𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) →
(∃𝑏∃𝑒 ∈ (ℕ0
↑m ℕ)((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐‘𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ ∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐‘𝑒) = 0))) |
38 | 16, 37 | bitr3id 285 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ 𝑀 ∈
(ℤ≥‘𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) →
(∃𝑏(∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐‘𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ ∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐‘𝑒) = 0))) |
39 | 14, 38 | syl5bb 283 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝑀 ∈
(ℤ≥‘𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) →
(∃𝑏 ∈ {𝑑 ∣ ∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐‘𝑒) = 0)}𝑎 = (𝑏 ↾ (1...𝑁)) ↔ ∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐‘𝑒) = 0))) |
40 | 39 | abbidv 2807 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝑀 ∈
(ℤ≥‘𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → {𝑎 ∣ ∃𝑏 ∈ {𝑑 ∣ ∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐‘𝑒) = 0)}𝑎 = (𝑏 ↾ (1...𝑁))} = {𝑎 ∣ ∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐‘𝑒) = 0)}) |
41 | | eldioph3 40588 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝑐 ∈
(mzPoly‘ℕ)) → {𝑎 ∣ ∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐‘𝑒) = 0)} ∈ (Dioph‘𝑁)) |
42 | 41 | 3ad2antl1 1184 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝑀 ∈
(ℤ≥‘𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → {𝑎 ∣ ∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐‘𝑒) = 0)} ∈ (Dioph‘𝑁)) |
43 | 40, 42 | eqeltrd 2839 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝑀 ∈
(ℤ≥‘𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → {𝑎 ∣ ∃𝑏 ∈ {𝑑 ∣ ∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐‘𝑒) = 0)}𝑎 = (𝑏 ↾ (1...𝑁))} ∈ (Dioph‘𝑁)) |
44 | 43 | adantr 481 |
. . . 4
⊢ ((((𝑁 ∈ ℕ0
∧ 𝑀 ∈
(ℤ≥‘𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) ∧ 𝑆 = {𝑑 ∣ ∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐‘𝑒) = 0)}) → {𝑎 ∣ ∃𝑏 ∈ {𝑑 ∣ ∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐‘𝑒) = 0)}𝑎 = (𝑏 ↾ (1...𝑁))} ∈ (Dioph‘𝑁)) |
45 | 10, 44 | eqeltrd 2839 |
. . 3
⊢ ((((𝑁 ∈ ℕ0
∧ 𝑀 ∈
(ℤ≥‘𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) ∧ 𝑆 = {𝑑 ∣ ∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐‘𝑒) = 0)}) → {𝑎 ∣ ∃𝑏 ∈ 𝑆 𝑎 = (𝑏 ↾ (1...𝑁))} ∈ (Dioph‘𝑁)) |
46 | | eldioph3b 40587 |
. . . . 5
⊢ (𝑆 ∈ (Dioph‘𝑀) ↔ (𝑀 ∈ ℕ0 ∧
∃𝑐 ∈
(mzPoly‘ℕ)𝑆 =
{𝑑 ∣ ∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐‘𝑒) = 0)})) |
47 | 46 | simprbi 497 |
. . . 4
⊢ (𝑆 ∈ (Dioph‘𝑀) → ∃𝑐 ∈
(mzPoly‘ℕ)𝑆 =
{𝑑 ∣ ∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐‘𝑒) = 0)}) |
48 | 47 | 3ad2ant3 1134 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝑀 ∈
(ℤ≥‘𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) → ∃𝑐 ∈ (mzPoly‘ℕ)𝑆 = {𝑑 ∣ ∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐‘𝑒) = 0)}) |
49 | 45, 48 | r19.29a 3218 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ 𝑀 ∈
(ℤ≥‘𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) → {𝑎 ∣ ∃𝑏 ∈ 𝑆 𝑎 = (𝑏 ↾ (1...𝑁))} ∈ (Dioph‘𝑁)) |
50 | 7, 49 | eqeltrrid 2844 |
1
⊢ ((𝑁 ∈ ℕ0
∧ 𝑀 ∈
(ℤ≥‘𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) → {𝑡 ∣ ∃𝑢 ∈ 𝑆 𝑡 = (𝑢 ↾ (1...𝑁))} ∈ (Dioph‘𝑁)) |