Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diophrex Structured version   Visualization version   GIF version

Theorem diophrex 42731
Description: Projecting a Diophantine set by removing a coordinate results in a Diophantine set. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
diophrex ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) → {𝑡 ∣ ∃𝑢𝑆 𝑡 = (𝑢 ↾ (1...𝑁))} ∈ (Dioph‘𝑁))
Distinct variable groups:   𝑡,𝑁,𝑢   𝑡,𝑆,𝑢
Allowed substitution hints:   𝑀(𝑢,𝑡)

Proof of Theorem diophrex
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2744 . . . . 5 (𝑎 = 𝑡 → (𝑎 = (𝑏 ↾ (1...𝑁)) ↔ 𝑡 = (𝑏 ↾ (1...𝑁))))
21rexbidv 3185 . . . 4 (𝑎 = 𝑡 → (∃𝑏𝑆 𝑎 = (𝑏 ↾ (1...𝑁)) ↔ ∃𝑏𝑆 𝑡 = (𝑏 ↾ (1...𝑁))))
3 reseq1 6003 . . . . . 6 (𝑏 = 𝑢 → (𝑏 ↾ (1...𝑁)) = (𝑢 ↾ (1...𝑁)))
43eqeq2d 2751 . . . . 5 (𝑏 = 𝑢 → (𝑡 = (𝑏 ↾ (1...𝑁)) ↔ 𝑡 = (𝑢 ↾ (1...𝑁))))
54cbvrexvw 3244 . . . 4 (∃𝑏𝑆 𝑡 = (𝑏 ↾ (1...𝑁)) ↔ ∃𝑢𝑆 𝑡 = (𝑢 ↾ (1...𝑁)))
62, 5bitrdi 287 . . 3 (𝑎 = 𝑡 → (∃𝑏𝑆 𝑎 = (𝑏 ↾ (1...𝑁)) ↔ ∃𝑢𝑆 𝑡 = (𝑢 ↾ (1...𝑁))))
76cbvabv 2815 . 2 {𝑎 ∣ ∃𝑏𝑆 𝑎 = (𝑏 ↾ (1...𝑁))} = {𝑡 ∣ ∃𝑢𝑆 𝑡 = (𝑢 ↾ (1...𝑁))}
8 rexeq 3330 . . . . . 6 (𝑆 = {𝑑 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)} → (∃𝑏𝑆 𝑎 = (𝑏 ↾ (1...𝑁)) ↔ ∃𝑏 ∈ {𝑑 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}𝑎 = (𝑏 ↾ (1...𝑁))))
98abbidv 2811 . . . . 5 (𝑆 = {𝑑 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)} → {𝑎 ∣ ∃𝑏𝑆 𝑎 = (𝑏 ↾ (1...𝑁))} = {𝑎 ∣ ∃𝑏 ∈ {𝑑 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}𝑎 = (𝑏 ↾ (1...𝑁))})
109adantl 481 . . . 4 ((((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) ∧ 𝑆 = {𝑑 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}) → {𝑎 ∣ ∃𝑏𝑆 𝑎 = (𝑏 ↾ (1...𝑁))} = {𝑎 ∣ ∃𝑏 ∈ {𝑑 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}𝑎 = (𝑏 ↾ (1...𝑁))})
11 eqeq1 2744 . . . . . . . . . . 11 (𝑑 = 𝑏 → (𝑑 = (𝑒 ↾ (1...𝑀)) ↔ 𝑏 = (𝑒 ↾ (1...𝑀))))
1211anbi1d 630 . . . . . . . . . 10 (𝑑 = 𝑏 → ((𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ↔ (𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)))
1312rexbidv 3185 . . . . . . . . 9 (𝑑 = 𝑏 → (∃𝑒 ∈ (ℕ0m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ↔ ∃𝑒 ∈ (ℕ0m ℕ)(𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)))
1413rexab 3716 . . . . . . . 8 (∃𝑏 ∈ {𝑑 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}𝑎 = (𝑏 ↾ (1...𝑁)) ↔ ∃𝑏(∃𝑒 ∈ (ℕ0m ℕ)(𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))))
15 r19.41v 3195 . . . . . . . . . 10 (∃𝑒 ∈ (ℕ0m ℕ)((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ (∃𝑒 ∈ (ℕ0m ℕ)(𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))))
1615exbii 1846 . . . . . . . . 9 (∃𝑏𝑒 ∈ (ℕ0m ℕ)((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ ∃𝑏(∃𝑒 ∈ (ℕ0m ℕ)(𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))))
17 rexcom4 3294 . . . . . . . . . 10 (∃𝑒 ∈ (ℕ0m ℕ)∃𝑏((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ ∃𝑏𝑒 ∈ (ℕ0m ℕ)((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))))
18 anass 468 . . . . . . . . . . . . . 14 (((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ (𝑏 = (𝑒 ↾ (1...𝑀)) ∧ ((𝑐𝑒) = 0 ∧ 𝑎 = (𝑏 ↾ (1...𝑁)))))
1918exbii 1846 . . . . . . . . . . . . 13 (∃𝑏((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ ∃𝑏(𝑏 = (𝑒 ↾ (1...𝑀)) ∧ ((𝑐𝑒) = 0 ∧ 𝑎 = (𝑏 ↾ (1...𝑁)))))
20 vex 3492 . . . . . . . . . . . . . . 15 𝑒 ∈ V
2120resex 6058 . . . . . . . . . . . . . 14 (𝑒 ↾ (1...𝑀)) ∈ V
22 reseq1 6003 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑒 ↾ (1...𝑀)) → (𝑏 ↾ (1...𝑁)) = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁)))
2322eqeq2d 2751 . . . . . . . . . . . . . . 15 (𝑏 = (𝑒 ↾ (1...𝑀)) → (𝑎 = (𝑏 ↾ (1...𝑁)) ↔ 𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁))))
2423anbi2d 629 . . . . . . . . . . . . . 14 (𝑏 = (𝑒 ↾ (1...𝑀)) → (((𝑐𝑒) = 0 ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ ((𝑐𝑒) = 0 ∧ 𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁)))))
2521, 24ceqsexv 3542 . . . . . . . . . . . . 13 (∃𝑏(𝑏 = (𝑒 ↾ (1...𝑀)) ∧ ((𝑐𝑒) = 0 ∧ 𝑎 = (𝑏 ↾ (1...𝑁)))) ↔ ((𝑐𝑒) = 0 ∧ 𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁))))
2619, 25bitri 275 . . . . . . . . . . . 12 (∃𝑏((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ ((𝑐𝑒) = 0 ∧ 𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁))))
27 ancom 460 . . . . . . . . . . . . 13 (((𝑐𝑒) = 0 ∧ 𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁))) ↔ (𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0))
28 simpl2 1192 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → 𝑀 ∈ (ℤ𝑁))
29 fzss2 13624 . . . . . . . . . . . . . . . 16 (𝑀 ∈ (ℤ𝑁) → (1...𝑁) ⊆ (1...𝑀))
30 resabs1 6036 . . . . . . . . . . . . . . . 16 ((1...𝑁) ⊆ (1...𝑀) → ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁)) = (𝑒 ↾ (1...𝑁)))
3128, 29, 303syl 18 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁)) = (𝑒 ↾ (1...𝑁)))
3231eqeq2d 2751 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → (𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁)) ↔ 𝑎 = (𝑒 ↾ (1...𝑁))))
3332anbi1d 630 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → ((𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0) ↔ (𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0)))
3427, 33bitrid 283 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → (((𝑐𝑒) = 0 ∧ 𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁))) ↔ (𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0)))
3526, 34bitrid 283 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → (∃𝑏((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ (𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0)))
3635rexbidv 3185 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → (∃𝑒 ∈ (ℕ0m ℕ)∃𝑏((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ ∃𝑒 ∈ (ℕ0m ℕ)(𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0)))
3717, 36bitr3id 285 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → (∃𝑏𝑒 ∈ (ℕ0m ℕ)((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ ∃𝑒 ∈ (ℕ0m ℕ)(𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0)))
3816, 37bitr3id 285 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → (∃𝑏(∃𝑒 ∈ (ℕ0m ℕ)(𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ ∃𝑒 ∈ (ℕ0m ℕ)(𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0)))
3914, 38bitrid 283 . . . . . . 7 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → (∃𝑏 ∈ {𝑑 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}𝑎 = (𝑏 ↾ (1...𝑁)) ↔ ∃𝑒 ∈ (ℕ0m ℕ)(𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0)))
4039abbidv 2811 . . . . . 6 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → {𝑎 ∣ ∃𝑏 ∈ {𝑑 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}𝑎 = (𝑏 ↾ (1...𝑁))} = {𝑎 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0)})
41 eldioph3 42722 . . . . . . 7 ((𝑁 ∈ ℕ0𝑐 ∈ (mzPoly‘ℕ)) → {𝑎 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0)} ∈ (Dioph‘𝑁))
42413ad2antl1 1185 . . . . . 6 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → {𝑎 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0)} ∈ (Dioph‘𝑁))
4340, 42eqeltrd 2844 . . . . 5 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → {𝑎 ∣ ∃𝑏 ∈ {𝑑 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}𝑎 = (𝑏 ↾ (1...𝑁))} ∈ (Dioph‘𝑁))
4443adantr 480 . . . 4 ((((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) ∧ 𝑆 = {𝑑 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}) → {𝑎 ∣ ∃𝑏 ∈ {𝑑 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}𝑎 = (𝑏 ↾ (1...𝑁))} ∈ (Dioph‘𝑁))
4510, 44eqeltrd 2844 . . 3 ((((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) ∧ 𝑆 = {𝑑 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}) → {𝑎 ∣ ∃𝑏𝑆 𝑎 = (𝑏 ↾ (1...𝑁))} ∈ (Dioph‘𝑁))
46 eldioph3b 42721 . . . . 5 (𝑆 ∈ (Dioph‘𝑀) ↔ (𝑀 ∈ ℕ0 ∧ ∃𝑐 ∈ (mzPoly‘ℕ)𝑆 = {𝑑 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}))
4746simprbi 496 . . . 4 (𝑆 ∈ (Dioph‘𝑀) → ∃𝑐 ∈ (mzPoly‘ℕ)𝑆 = {𝑑 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)})
48473ad2ant3 1135 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) → ∃𝑐 ∈ (mzPoly‘ℕ)𝑆 = {𝑑 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)})
4945, 48r19.29a 3168 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) → {𝑎 ∣ ∃𝑏𝑆 𝑎 = (𝑏 ↾ (1...𝑁))} ∈ (Dioph‘𝑁))
507, 49eqeltrrid 2849 1 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) → {𝑡 ∣ ∃𝑢𝑆 𝑡 = (𝑢 ↾ (1...𝑁))} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wrex 3076  wss 3976  cres 5702  cfv 6573  (class class class)co 7448  m cmap 8884  0cc0 11184  1c1 11185  cn 12293  0cn0 12553  cuz 12903  ...cfz 13567  mzPolycmzp 42678  Diophcdioph 42711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-hash 14380  df-mzpcl 42679  df-mzp 42680  df-dioph 42712
This theorem is referenced by:  rexrabdioph  42750
  Copyright terms: Public domain W3C validator