Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diophrex Structured version   Visualization version   GIF version

Theorem diophrex 42814
Description: Projecting a Diophantine set by removing a coordinate results in a Diophantine set. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
diophrex ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) → {𝑡 ∣ ∃𝑢𝑆 𝑡 = (𝑢 ↾ (1...𝑁))} ∈ (Dioph‘𝑁))
Distinct variable groups:   𝑡,𝑁,𝑢   𝑡,𝑆,𝑢
Allowed substitution hints:   𝑀(𝑢,𝑡)

Proof of Theorem diophrex
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2735 . . . . 5 (𝑎 = 𝑡 → (𝑎 = (𝑏 ↾ (1...𝑁)) ↔ 𝑡 = (𝑏 ↾ (1...𝑁))))
21rexbidv 3156 . . . 4 (𝑎 = 𝑡 → (∃𝑏𝑆 𝑎 = (𝑏 ↾ (1...𝑁)) ↔ ∃𝑏𝑆 𝑡 = (𝑏 ↾ (1...𝑁))))
3 reseq1 5922 . . . . . 6 (𝑏 = 𝑢 → (𝑏 ↾ (1...𝑁)) = (𝑢 ↾ (1...𝑁)))
43eqeq2d 2742 . . . . 5 (𝑏 = 𝑢 → (𝑡 = (𝑏 ↾ (1...𝑁)) ↔ 𝑡 = (𝑢 ↾ (1...𝑁))))
54cbvrexvw 3211 . . . 4 (∃𝑏𝑆 𝑡 = (𝑏 ↾ (1...𝑁)) ↔ ∃𝑢𝑆 𝑡 = (𝑢 ↾ (1...𝑁)))
62, 5bitrdi 287 . . 3 (𝑎 = 𝑡 → (∃𝑏𝑆 𝑎 = (𝑏 ↾ (1...𝑁)) ↔ ∃𝑢𝑆 𝑡 = (𝑢 ↾ (1...𝑁))))
76cbvabv 2801 . 2 {𝑎 ∣ ∃𝑏𝑆 𝑎 = (𝑏 ↾ (1...𝑁))} = {𝑡 ∣ ∃𝑢𝑆 𝑡 = (𝑢 ↾ (1...𝑁))}
8 rexeq 3288 . . . . . 6 (𝑆 = {𝑑 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)} → (∃𝑏𝑆 𝑎 = (𝑏 ↾ (1...𝑁)) ↔ ∃𝑏 ∈ {𝑑 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}𝑎 = (𝑏 ↾ (1...𝑁))))
98abbidv 2797 . . . . 5 (𝑆 = {𝑑 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)} → {𝑎 ∣ ∃𝑏𝑆 𝑎 = (𝑏 ↾ (1...𝑁))} = {𝑎 ∣ ∃𝑏 ∈ {𝑑 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}𝑎 = (𝑏 ↾ (1...𝑁))})
109adantl 481 . . . 4 ((((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) ∧ 𝑆 = {𝑑 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}) → {𝑎 ∣ ∃𝑏𝑆 𝑎 = (𝑏 ↾ (1...𝑁))} = {𝑎 ∣ ∃𝑏 ∈ {𝑑 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}𝑎 = (𝑏 ↾ (1...𝑁))})
11 eqeq1 2735 . . . . . . . . . . 11 (𝑑 = 𝑏 → (𝑑 = (𝑒 ↾ (1...𝑀)) ↔ 𝑏 = (𝑒 ↾ (1...𝑀))))
1211anbi1d 631 . . . . . . . . . 10 (𝑑 = 𝑏 → ((𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ↔ (𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)))
1312rexbidv 3156 . . . . . . . . 9 (𝑑 = 𝑏 → (∃𝑒 ∈ (ℕ0m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ↔ ∃𝑒 ∈ (ℕ0m ℕ)(𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)))
1413rexab 3654 . . . . . . . 8 (∃𝑏 ∈ {𝑑 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}𝑎 = (𝑏 ↾ (1...𝑁)) ↔ ∃𝑏(∃𝑒 ∈ (ℕ0m ℕ)(𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))))
15 r19.41v 3162 . . . . . . . . . 10 (∃𝑒 ∈ (ℕ0m ℕ)((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ (∃𝑒 ∈ (ℕ0m ℕ)(𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))))
1615exbii 1849 . . . . . . . . 9 (∃𝑏𝑒 ∈ (ℕ0m ℕ)((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ ∃𝑏(∃𝑒 ∈ (ℕ0m ℕ)(𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))))
17 rexcom4 3259 . . . . . . . . . 10 (∃𝑒 ∈ (ℕ0m ℕ)∃𝑏((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ ∃𝑏𝑒 ∈ (ℕ0m ℕ)((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))))
18 anass 468 . . . . . . . . . . . . . 14 (((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ (𝑏 = (𝑒 ↾ (1...𝑀)) ∧ ((𝑐𝑒) = 0 ∧ 𝑎 = (𝑏 ↾ (1...𝑁)))))
1918exbii 1849 . . . . . . . . . . . . 13 (∃𝑏((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ ∃𝑏(𝑏 = (𝑒 ↾ (1...𝑀)) ∧ ((𝑐𝑒) = 0 ∧ 𝑎 = (𝑏 ↾ (1...𝑁)))))
20 vex 3440 . . . . . . . . . . . . . . 15 𝑒 ∈ V
2120resex 5978 . . . . . . . . . . . . . 14 (𝑒 ↾ (1...𝑀)) ∈ V
22 reseq1 5922 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑒 ↾ (1...𝑀)) → (𝑏 ↾ (1...𝑁)) = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁)))
2322eqeq2d 2742 . . . . . . . . . . . . . . 15 (𝑏 = (𝑒 ↾ (1...𝑀)) → (𝑎 = (𝑏 ↾ (1...𝑁)) ↔ 𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁))))
2423anbi2d 630 . . . . . . . . . . . . . 14 (𝑏 = (𝑒 ↾ (1...𝑀)) → (((𝑐𝑒) = 0 ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ ((𝑐𝑒) = 0 ∧ 𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁)))))
2521, 24ceqsexv 3487 . . . . . . . . . . . . 13 (∃𝑏(𝑏 = (𝑒 ↾ (1...𝑀)) ∧ ((𝑐𝑒) = 0 ∧ 𝑎 = (𝑏 ↾ (1...𝑁)))) ↔ ((𝑐𝑒) = 0 ∧ 𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁))))
2619, 25bitri 275 . . . . . . . . . . . 12 (∃𝑏((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ ((𝑐𝑒) = 0 ∧ 𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁))))
27 ancom 460 . . . . . . . . . . . . 13 (((𝑐𝑒) = 0 ∧ 𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁))) ↔ (𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0))
28 simpl2 1193 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → 𝑀 ∈ (ℤ𝑁))
29 fzss2 13464 . . . . . . . . . . . . . . . 16 (𝑀 ∈ (ℤ𝑁) → (1...𝑁) ⊆ (1...𝑀))
30 resabs1 5955 . . . . . . . . . . . . . . . 16 ((1...𝑁) ⊆ (1...𝑀) → ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁)) = (𝑒 ↾ (1...𝑁)))
3128, 29, 303syl 18 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁)) = (𝑒 ↾ (1...𝑁)))
3231eqeq2d 2742 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → (𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁)) ↔ 𝑎 = (𝑒 ↾ (1...𝑁))))
3332anbi1d 631 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → ((𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0) ↔ (𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0)))
3427, 33bitrid 283 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → (((𝑐𝑒) = 0 ∧ 𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁))) ↔ (𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0)))
3526, 34bitrid 283 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → (∃𝑏((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ (𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0)))
3635rexbidv 3156 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → (∃𝑒 ∈ (ℕ0m ℕ)∃𝑏((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ ∃𝑒 ∈ (ℕ0m ℕ)(𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0)))
3717, 36bitr3id 285 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → (∃𝑏𝑒 ∈ (ℕ0m ℕ)((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ ∃𝑒 ∈ (ℕ0m ℕ)(𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0)))
3816, 37bitr3id 285 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → (∃𝑏(∃𝑒 ∈ (ℕ0m ℕ)(𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ ∃𝑒 ∈ (ℕ0m ℕ)(𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0)))
3914, 38bitrid 283 . . . . . . 7 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → (∃𝑏 ∈ {𝑑 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}𝑎 = (𝑏 ↾ (1...𝑁)) ↔ ∃𝑒 ∈ (ℕ0m ℕ)(𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0)))
4039abbidv 2797 . . . . . 6 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → {𝑎 ∣ ∃𝑏 ∈ {𝑑 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}𝑎 = (𝑏 ↾ (1...𝑁))} = {𝑎 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0)})
41 eldioph3 42805 . . . . . . 7 ((𝑁 ∈ ℕ0𝑐 ∈ (mzPoly‘ℕ)) → {𝑎 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0)} ∈ (Dioph‘𝑁))
42413ad2antl1 1186 . . . . . 6 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → {𝑎 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0)} ∈ (Dioph‘𝑁))
4340, 42eqeltrd 2831 . . . . 5 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → {𝑎 ∣ ∃𝑏 ∈ {𝑑 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}𝑎 = (𝑏 ↾ (1...𝑁))} ∈ (Dioph‘𝑁))
4443adantr 480 . . . 4 ((((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) ∧ 𝑆 = {𝑑 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}) → {𝑎 ∣ ∃𝑏 ∈ {𝑑 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}𝑎 = (𝑏 ↾ (1...𝑁))} ∈ (Dioph‘𝑁))
4510, 44eqeltrd 2831 . . 3 ((((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) ∧ 𝑆 = {𝑑 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}) → {𝑎 ∣ ∃𝑏𝑆 𝑎 = (𝑏 ↾ (1...𝑁))} ∈ (Dioph‘𝑁))
46 eldioph3b 42804 . . . . 5 (𝑆 ∈ (Dioph‘𝑀) ↔ (𝑀 ∈ ℕ0 ∧ ∃𝑐 ∈ (mzPoly‘ℕ)𝑆 = {𝑑 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}))
4746simprbi 496 . . . 4 (𝑆 ∈ (Dioph‘𝑀) → ∃𝑐 ∈ (mzPoly‘ℕ)𝑆 = {𝑑 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)})
48473ad2ant3 1135 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) → ∃𝑐 ∈ (mzPoly‘ℕ)𝑆 = {𝑑 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)})
4945, 48r19.29a 3140 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) → {𝑎 ∣ ∃𝑏𝑆 𝑎 = (𝑏 ↾ (1...𝑁))} ∈ (Dioph‘𝑁))
507, 49eqeltrrid 2836 1 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) → {𝑡 ∣ ∃𝑢𝑆 𝑡 = (𝑢 ↾ (1...𝑁))} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wrex 3056  wss 3902  cres 5618  cfv 6481  (class class class)co 7346  m cmap 8750  0cc0 11006  1c1 11007  cn 12125  0cn0 12381  cuz 12732  ...cfz 13407  mzPolycmzp 42761  Diophcdioph 42794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-hash 14238  df-mzpcl 42762  df-mzp 42763  df-dioph 42795
This theorem is referenced by:  rexrabdioph  42833
  Copyright terms: Public domain W3C validator