MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsasslem2 Structured version   Visualization version   GIF version

Theorem addsasslem2 28055
Description: Lemma for addition associativity. Expand the other form of the triple sum. (Contributed by Scott Fenton, 21-Jan-2025.)
Hypotheses
Ref Expression
addsasslem.1 (𝜑𝐴 No )
addsasslem.2 (𝜑𝐵 No )
addsasslem.3 (𝜑𝐶 No )
Assertion
Ref Expression
addsasslem2 (𝜑 → (𝐴 +s (𝐵 +s 𝐶)) = ((({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s (𝐵 +s 𝐶))} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶))}) ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = (𝐴 +s (𝐵 +s 𝑛))}) |s (({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = (𝑝 +s (𝐵 +s 𝐶))} ∪ {𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶))}) ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = (𝐴 +s (𝐵 +s 𝑟))})))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑐,𝑙,𝑚,𝑛,𝑝,𝑞,𝑟,𝑤,𝑦,𝑧   𝐵,𝑎,𝑏,𝑐,𝑙,𝑚,𝑛,𝑝,𝑞,𝑟,𝑤,𝑦,𝑧   𝐶,𝑎,𝑏,𝑐,𝑙,𝑚,𝑛,𝑝,𝑞,𝑟,𝑤,𝑦,𝑧   𝜑,𝑎,𝑏,𝑐,𝑙,𝑚,𝑛,𝑝,𝑞,𝑟,𝑤,𝑦,𝑧

Proof of Theorem addsasslem2
Dummy variables 𝑑 𝑒 𝑓 𝑔 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lltropt 27929 . . . 4 ( L ‘𝐴) <<s ( R ‘𝐴)
21a1i 11 . . 3 (𝜑 → ( L ‘𝐴) <<s ( R ‘𝐴))
3 addsasslem.2 . . . . . 6 (𝜑𝐵 No )
4 addsasslem.3 . . . . . 6 (𝜑𝐶 No )
53, 4addscut 28029 . . . . 5 (𝜑 → ((𝐵 +s 𝐶) ∈ No ∧ ({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)}) <<s {(𝐵 +s 𝐶)} ∧ {(𝐵 +s 𝐶)} <<s ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)})))
65simp2d 1143 . . . 4 (𝜑 → ({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)}) <<s {(𝐵 +s 𝐶)})
75simp3d 1144 . . . 4 (𝜑 → {(𝐵 +s 𝐶)} <<s ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)}))
8 ovex 7481 . . . . . 6 (𝐵 +s 𝐶) ∈ V
98snnz 4801 . . . . 5 {(𝐵 +s 𝐶)} ≠ ∅
10 sslttr 27870 . . . . 5 ((({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)}) <<s {(𝐵 +s 𝐶)} ∧ {(𝐵 +s 𝐶)} <<s ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)}) ∧ {(𝐵 +s 𝐶)} ≠ ∅) → ({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)}) <<s ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)}))
119, 10mp3an3 1450 . . . 4 ((({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)}) <<s {(𝐵 +s 𝐶)} ∧ {(𝐵 +s 𝐶)} <<s ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)})) → ({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)}) <<s ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)}))
126, 7, 11syl2anc 583 . . 3 (𝜑 → ({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)}) <<s ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)}))
13 addsasslem.1 . . . . 5 (𝜑𝐴 No )
14 lrcut 27959 . . . . 5 (𝐴 No → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴)
1513, 14syl 17 . . . 4 (𝜑 → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴)
1615eqcomd 2746 . . 3 (𝜑𝐴 = (( L ‘𝐴) |s ( R ‘𝐴)))
17 addsval2 28014 . . . 4 ((𝐵 No 𝐶 No ) → (𝐵 +s 𝐶) = (({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)}) |s ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)})))
183, 4, 17syl2anc 583 . . 3 (𝜑 → (𝐵 +s 𝐶) = (({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)}) |s ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)})))
192, 12, 16, 18addsunif 28053 . 2 (𝜑 → (𝐴 +s (𝐵 +s 𝐶)) = (({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s (𝐵 +s 𝐶))} ∪ {𝑧 ∣ ∃ ∈ ({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)})𝑧 = (𝐴 +s )}) |s ({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = (𝑝 +s (𝐵 +s 𝐶))} ∪ {𝑏 ∣ ∃𝑖 ∈ ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)})𝑏 = (𝐴 +s 𝑖)})))
20 rexun 4219 . . . . . . . 8 (∃ ∈ ({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)})𝑧 = (𝐴 +s ) ↔ (∃ ∈ {𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)}𝑧 = (𝐴 +s ) ∨ ∃ ∈ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)}𝑧 = (𝐴 +s )))
21 eqeq1 2744 . . . . . . . . . . . 12 (𝑑 = → (𝑑 = (𝑚 +s 𝐶) ↔ = (𝑚 +s 𝐶)))
2221rexbidv 3185 . . . . . . . . . . 11 (𝑑 = → (∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶) ↔ ∃𝑚 ∈ ( L ‘𝐵) = (𝑚 +s 𝐶)))
2322rexab 3716 . . . . . . . . . 10 (∃ ∈ {𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)}𝑧 = (𝐴 +s ) ↔ ∃(∃𝑚 ∈ ( L ‘𝐵) = (𝑚 +s 𝐶) ∧ 𝑧 = (𝐴 +s )))
24 rexcom4 3294 . . . . . . . . . . 11 (∃𝑚 ∈ ( L ‘𝐵)∃( = (𝑚 +s 𝐶) ∧ 𝑧 = (𝐴 +s )) ↔ ∃𝑚 ∈ ( L ‘𝐵)( = (𝑚 +s 𝐶) ∧ 𝑧 = (𝐴 +s )))
25 ovex 7481 . . . . . . . . . . . . 13 (𝑚 +s 𝐶) ∈ V
26 oveq2 7456 . . . . . . . . . . . . . 14 ( = (𝑚 +s 𝐶) → (𝐴 +s ) = (𝐴 +s (𝑚 +s 𝐶)))
2726eqeq2d 2751 . . . . . . . . . . . . 13 ( = (𝑚 +s 𝐶) → (𝑧 = (𝐴 +s ) ↔ 𝑧 = (𝐴 +s (𝑚 +s 𝐶))))
2825, 27ceqsexv 3542 . . . . . . . . . . . 12 (∃( = (𝑚 +s 𝐶) ∧ 𝑧 = (𝐴 +s )) ↔ 𝑧 = (𝐴 +s (𝑚 +s 𝐶)))
2928rexbii 3100 . . . . . . . . . . 11 (∃𝑚 ∈ ( L ‘𝐵)∃( = (𝑚 +s 𝐶) ∧ 𝑧 = (𝐴 +s )) ↔ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶)))
30 r19.41v 3195 . . . . . . . . . . . 12 (∃𝑚 ∈ ( L ‘𝐵)( = (𝑚 +s 𝐶) ∧ 𝑧 = (𝐴 +s )) ↔ (∃𝑚 ∈ ( L ‘𝐵) = (𝑚 +s 𝐶) ∧ 𝑧 = (𝐴 +s )))
3130exbii 1846 . . . . . . . . . . 11 (∃𝑚 ∈ ( L ‘𝐵)( = (𝑚 +s 𝐶) ∧ 𝑧 = (𝐴 +s )) ↔ ∃(∃𝑚 ∈ ( L ‘𝐵) = (𝑚 +s 𝐶) ∧ 𝑧 = (𝐴 +s )))
3224, 29, 313bitr3ri 302 . . . . . . . . . 10 (∃(∃𝑚 ∈ ( L ‘𝐵) = (𝑚 +s 𝐶) ∧ 𝑧 = (𝐴 +s )) ↔ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶)))
3323, 32bitri 275 . . . . . . . . 9 (∃ ∈ {𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)}𝑧 = (𝐴 +s ) ↔ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶)))
34 eqeq1 2744 . . . . . . . . . . . 12 (𝑒 = → (𝑒 = (𝐵 +s 𝑛) ↔ = (𝐵 +s 𝑛)))
3534rexbidv 3185 . . . . . . . . . . 11 (𝑒 = → (∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛) ↔ ∃𝑛 ∈ ( L ‘𝐶) = (𝐵 +s 𝑛)))
3635rexab 3716 . . . . . . . . . 10 (∃ ∈ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)}𝑧 = (𝐴 +s ) ↔ ∃(∃𝑛 ∈ ( L ‘𝐶) = (𝐵 +s 𝑛) ∧ 𝑧 = (𝐴 +s )))
37 rexcom4 3294 . . . . . . . . . . 11 (∃𝑛 ∈ ( L ‘𝐶)∃( = (𝐵 +s 𝑛) ∧ 𝑧 = (𝐴 +s )) ↔ ∃𝑛 ∈ ( L ‘𝐶)( = (𝐵 +s 𝑛) ∧ 𝑧 = (𝐴 +s )))
38 ovex 7481 . . . . . . . . . . . . 13 (𝐵 +s 𝑛) ∈ V
39 oveq2 7456 . . . . . . . . . . . . . 14 ( = (𝐵 +s 𝑛) → (𝐴 +s ) = (𝐴 +s (𝐵 +s 𝑛)))
4039eqeq2d 2751 . . . . . . . . . . . . 13 ( = (𝐵 +s 𝑛) → (𝑧 = (𝐴 +s ) ↔ 𝑧 = (𝐴 +s (𝐵 +s 𝑛))))
4138, 40ceqsexv 3542 . . . . . . . . . . . 12 (∃( = (𝐵 +s 𝑛) ∧ 𝑧 = (𝐴 +s )) ↔ 𝑧 = (𝐴 +s (𝐵 +s 𝑛)))
4241rexbii 3100 . . . . . . . . . . 11 (∃𝑛 ∈ ( L ‘𝐶)∃( = (𝐵 +s 𝑛) ∧ 𝑧 = (𝐴 +s )) ↔ ∃𝑛 ∈ ( L ‘𝐶)𝑧 = (𝐴 +s (𝐵 +s 𝑛)))
43 r19.41v 3195 . . . . . . . . . . . 12 (∃𝑛 ∈ ( L ‘𝐶)( = (𝐵 +s 𝑛) ∧ 𝑧 = (𝐴 +s )) ↔ (∃𝑛 ∈ ( L ‘𝐶) = (𝐵 +s 𝑛) ∧ 𝑧 = (𝐴 +s )))
4443exbii 1846 . . . . . . . . . . 11 (∃𝑛 ∈ ( L ‘𝐶)( = (𝐵 +s 𝑛) ∧ 𝑧 = (𝐴 +s )) ↔ ∃(∃𝑛 ∈ ( L ‘𝐶) = (𝐵 +s 𝑛) ∧ 𝑧 = (𝐴 +s )))
4537, 42, 443bitr3ri 302 . . . . . . . . . 10 (∃(∃𝑛 ∈ ( L ‘𝐶) = (𝐵 +s 𝑛) ∧ 𝑧 = (𝐴 +s )) ↔ ∃𝑛 ∈ ( L ‘𝐶)𝑧 = (𝐴 +s (𝐵 +s 𝑛)))
4636, 45bitri 275 . . . . . . . . 9 (∃ ∈ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)}𝑧 = (𝐴 +s ) ↔ ∃𝑛 ∈ ( L ‘𝐶)𝑧 = (𝐴 +s (𝐵 +s 𝑛)))
4733, 46orbi12i 913 . . . . . . . 8 ((∃ ∈ {𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)}𝑧 = (𝐴 +s ) ∨ ∃ ∈ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)}𝑧 = (𝐴 +s )) ↔ (∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶)) ∨ ∃𝑛 ∈ ( L ‘𝐶)𝑧 = (𝐴 +s (𝐵 +s 𝑛))))
4820, 47bitri 275 . . . . . . 7 (∃ ∈ ({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)})𝑧 = (𝐴 +s ) ↔ (∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶)) ∨ ∃𝑛 ∈ ( L ‘𝐶)𝑧 = (𝐴 +s (𝐵 +s 𝑛))))
4948abbii 2812 . . . . . 6 {𝑧 ∣ ∃ ∈ ({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)})𝑧 = (𝐴 +s )} = {𝑧 ∣ (∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶)) ∨ ∃𝑛 ∈ ( L ‘𝐶)𝑧 = (𝐴 +s (𝐵 +s 𝑛)))}
50 unab 4327 . . . . . 6 ({𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶))} ∪ {𝑧 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑧 = (𝐴 +s (𝐵 +s 𝑛))}) = {𝑧 ∣ (∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶)) ∨ ∃𝑛 ∈ ( L ‘𝐶)𝑧 = (𝐴 +s (𝐵 +s 𝑛)))}
51 eqeq1 2744 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧 = (𝐴 +s (𝐵 +s 𝑛)) ↔ 𝑤 = (𝐴 +s (𝐵 +s 𝑛))))
5251rexbidv 3185 . . . . . . . 8 (𝑧 = 𝑤 → (∃𝑛 ∈ ( L ‘𝐶)𝑧 = (𝐴 +s (𝐵 +s 𝑛)) ↔ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = (𝐴 +s (𝐵 +s 𝑛))))
5352cbvabv 2815 . . . . . . 7 {𝑧 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑧 = (𝐴 +s (𝐵 +s 𝑛))} = {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = (𝐴 +s (𝐵 +s 𝑛))}
5453uneq2i 4188 . . . . . 6 ({𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶))} ∪ {𝑧 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑧 = (𝐴 +s (𝐵 +s 𝑛))}) = ({𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶))} ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = (𝐴 +s (𝐵 +s 𝑛))})
5549, 50, 543eqtr2i 2774 . . . . 5 {𝑧 ∣ ∃ ∈ ({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)})𝑧 = (𝐴 +s )} = ({𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶))} ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = (𝐴 +s (𝐵 +s 𝑛))})
5655uneq2i 4188 . . . 4 ({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s (𝐵 +s 𝐶))} ∪ {𝑧 ∣ ∃ ∈ ({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)})𝑧 = (𝐴 +s )}) = ({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s (𝐵 +s 𝐶))} ∪ ({𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶))} ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = (𝐴 +s (𝐵 +s 𝑛))}))
57 unass 4195 . . . 4 (({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s (𝐵 +s 𝐶))} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶))}) ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = (𝐴 +s (𝐵 +s 𝑛))}) = ({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s (𝐵 +s 𝐶))} ∪ ({𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶))} ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = (𝐴 +s (𝐵 +s 𝑛))}))
5856, 57eqtr4i 2771 . . 3 ({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s (𝐵 +s 𝐶))} ∪ {𝑧 ∣ ∃ ∈ ({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)})𝑧 = (𝐴 +s )}) = (({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s (𝐵 +s 𝐶))} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶))}) ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = (𝐴 +s (𝐵 +s 𝑛))})
59 rexun 4219 . . . . . . . 8 (∃𝑖 ∈ ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)})𝑏 = (𝐴 +s 𝑖) ↔ (∃𝑖 ∈ {𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)}𝑏 = (𝐴 +s 𝑖) ∨ ∃𝑖 ∈ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)}𝑏 = (𝐴 +s 𝑖)))
60 eqeq1 2744 . . . . . . . . . . . 12 (𝑓 = 𝑖 → (𝑓 = (𝑞 +s 𝐶) ↔ 𝑖 = (𝑞 +s 𝐶)))
6160rexbidv 3185 . . . . . . . . . . 11 (𝑓 = 𝑖 → (∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶) ↔ ∃𝑞 ∈ ( R ‘𝐵)𝑖 = (𝑞 +s 𝐶)))
6261rexab 3716 . . . . . . . . . 10 (∃𝑖 ∈ {𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)}𝑏 = (𝐴 +s 𝑖) ↔ ∃𝑖(∃𝑞 ∈ ( R ‘𝐵)𝑖 = (𝑞 +s 𝐶) ∧ 𝑏 = (𝐴 +s 𝑖)))
63 rexcom4 3294 . . . . . . . . . . 11 (∃𝑞 ∈ ( R ‘𝐵)∃𝑖(𝑖 = (𝑞 +s 𝐶) ∧ 𝑏 = (𝐴 +s 𝑖)) ↔ ∃𝑖𝑞 ∈ ( R ‘𝐵)(𝑖 = (𝑞 +s 𝐶) ∧ 𝑏 = (𝐴 +s 𝑖)))
64 ovex 7481 . . . . . . . . . . . . 13 (𝑞 +s 𝐶) ∈ V
65 oveq2 7456 . . . . . . . . . . . . . 14 (𝑖 = (𝑞 +s 𝐶) → (𝐴 +s 𝑖) = (𝐴 +s (𝑞 +s 𝐶)))
6665eqeq2d 2751 . . . . . . . . . . . . 13 (𝑖 = (𝑞 +s 𝐶) → (𝑏 = (𝐴 +s 𝑖) ↔ 𝑏 = (𝐴 +s (𝑞 +s 𝐶))))
6764, 66ceqsexv 3542 . . . . . . . . . . . 12 (∃𝑖(𝑖 = (𝑞 +s 𝐶) ∧ 𝑏 = (𝐴 +s 𝑖)) ↔ 𝑏 = (𝐴 +s (𝑞 +s 𝐶)))
6867rexbii 3100 . . . . . . . . . . 11 (∃𝑞 ∈ ( R ‘𝐵)∃𝑖(𝑖 = (𝑞 +s 𝐶) ∧ 𝑏 = (𝐴 +s 𝑖)) ↔ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶)))
69 r19.41v 3195 . . . . . . . . . . . 12 (∃𝑞 ∈ ( R ‘𝐵)(𝑖 = (𝑞 +s 𝐶) ∧ 𝑏 = (𝐴 +s 𝑖)) ↔ (∃𝑞 ∈ ( R ‘𝐵)𝑖 = (𝑞 +s 𝐶) ∧ 𝑏 = (𝐴 +s 𝑖)))
7069exbii 1846 . . . . . . . . . . 11 (∃𝑖𝑞 ∈ ( R ‘𝐵)(𝑖 = (𝑞 +s 𝐶) ∧ 𝑏 = (𝐴 +s 𝑖)) ↔ ∃𝑖(∃𝑞 ∈ ( R ‘𝐵)𝑖 = (𝑞 +s 𝐶) ∧ 𝑏 = (𝐴 +s 𝑖)))
7163, 68, 703bitr3ri 302 . . . . . . . . . 10 (∃𝑖(∃𝑞 ∈ ( R ‘𝐵)𝑖 = (𝑞 +s 𝐶) ∧ 𝑏 = (𝐴 +s 𝑖)) ↔ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶)))
7262, 71bitri 275 . . . . . . . . 9 (∃𝑖 ∈ {𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)}𝑏 = (𝐴 +s 𝑖) ↔ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶)))
73 eqeq1 2744 . . . . . . . . . . . 12 (𝑔 = 𝑖 → (𝑔 = (𝐵 +s 𝑟) ↔ 𝑖 = (𝐵 +s 𝑟)))
7473rexbidv 3185 . . . . . . . . . . 11 (𝑔 = 𝑖 → (∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟) ↔ ∃𝑟 ∈ ( R ‘𝐶)𝑖 = (𝐵 +s 𝑟)))
7574rexab 3716 . . . . . . . . . 10 (∃𝑖 ∈ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)}𝑏 = (𝐴 +s 𝑖) ↔ ∃𝑖(∃𝑟 ∈ ( R ‘𝐶)𝑖 = (𝐵 +s 𝑟) ∧ 𝑏 = (𝐴 +s 𝑖)))
76 rexcom4 3294 . . . . . . . . . . 11 (∃𝑟 ∈ ( R ‘𝐶)∃𝑖(𝑖 = (𝐵 +s 𝑟) ∧ 𝑏 = (𝐴 +s 𝑖)) ↔ ∃𝑖𝑟 ∈ ( R ‘𝐶)(𝑖 = (𝐵 +s 𝑟) ∧ 𝑏 = (𝐴 +s 𝑖)))
77 ovex 7481 . . . . . . . . . . . . 13 (𝐵 +s 𝑟) ∈ V
78 oveq2 7456 . . . . . . . . . . . . . 14 (𝑖 = (𝐵 +s 𝑟) → (𝐴 +s 𝑖) = (𝐴 +s (𝐵 +s 𝑟)))
7978eqeq2d 2751 . . . . . . . . . . . . 13 (𝑖 = (𝐵 +s 𝑟) → (𝑏 = (𝐴 +s 𝑖) ↔ 𝑏 = (𝐴 +s (𝐵 +s 𝑟))))
8077, 79ceqsexv 3542 . . . . . . . . . . . 12 (∃𝑖(𝑖 = (𝐵 +s 𝑟) ∧ 𝑏 = (𝐴 +s 𝑖)) ↔ 𝑏 = (𝐴 +s (𝐵 +s 𝑟)))
8180rexbii 3100 . . . . . . . . . . 11 (∃𝑟 ∈ ( R ‘𝐶)∃𝑖(𝑖 = (𝐵 +s 𝑟) ∧ 𝑏 = (𝐴 +s 𝑖)) ↔ ∃𝑟 ∈ ( R ‘𝐶)𝑏 = (𝐴 +s (𝐵 +s 𝑟)))
82 r19.41v 3195 . . . . . . . . . . . 12 (∃𝑟 ∈ ( R ‘𝐶)(𝑖 = (𝐵 +s 𝑟) ∧ 𝑏 = (𝐴 +s 𝑖)) ↔ (∃𝑟 ∈ ( R ‘𝐶)𝑖 = (𝐵 +s 𝑟) ∧ 𝑏 = (𝐴 +s 𝑖)))
8382exbii 1846 . . . . . . . . . . 11 (∃𝑖𝑟 ∈ ( R ‘𝐶)(𝑖 = (𝐵 +s 𝑟) ∧ 𝑏 = (𝐴 +s 𝑖)) ↔ ∃𝑖(∃𝑟 ∈ ( R ‘𝐶)𝑖 = (𝐵 +s 𝑟) ∧ 𝑏 = (𝐴 +s 𝑖)))
8476, 81, 833bitr3ri 302 . . . . . . . . . 10 (∃𝑖(∃𝑟 ∈ ( R ‘𝐶)𝑖 = (𝐵 +s 𝑟) ∧ 𝑏 = (𝐴 +s 𝑖)) ↔ ∃𝑟 ∈ ( R ‘𝐶)𝑏 = (𝐴 +s (𝐵 +s 𝑟)))
8575, 84bitri 275 . . . . . . . . 9 (∃𝑖 ∈ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)}𝑏 = (𝐴 +s 𝑖) ↔ ∃𝑟 ∈ ( R ‘𝐶)𝑏 = (𝐴 +s (𝐵 +s 𝑟)))
8672, 85orbi12i 913 . . . . . . . 8 ((∃𝑖 ∈ {𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)}𝑏 = (𝐴 +s 𝑖) ∨ ∃𝑖 ∈ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)}𝑏 = (𝐴 +s 𝑖)) ↔ (∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶)) ∨ ∃𝑟 ∈ ( R ‘𝐶)𝑏 = (𝐴 +s (𝐵 +s 𝑟))))
8759, 86bitri 275 . . . . . . 7 (∃𝑖 ∈ ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)})𝑏 = (𝐴 +s 𝑖) ↔ (∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶)) ∨ ∃𝑟 ∈ ( R ‘𝐶)𝑏 = (𝐴 +s (𝐵 +s 𝑟))))
8887abbii 2812 . . . . . 6 {𝑏 ∣ ∃𝑖 ∈ ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)})𝑏 = (𝐴 +s 𝑖)} = {𝑏 ∣ (∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶)) ∨ ∃𝑟 ∈ ( R ‘𝐶)𝑏 = (𝐴 +s (𝐵 +s 𝑟)))}
89 unab 4327 . . . . . 6 ({𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑏 = (𝐴 +s (𝐵 +s 𝑟))}) = {𝑏 ∣ (∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶)) ∨ ∃𝑟 ∈ ( R ‘𝐶)𝑏 = (𝐴 +s (𝐵 +s 𝑟)))}
90 eqeq1 2744 . . . . . . . . 9 (𝑏 = 𝑐 → (𝑏 = (𝐴 +s (𝐵 +s 𝑟)) ↔ 𝑐 = (𝐴 +s (𝐵 +s 𝑟))))
9190rexbidv 3185 . . . . . . . 8 (𝑏 = 𝑐 → (∃𝑟 ∈ ( R ‘𝐶)𝑏 = (𝐴 +s (𝐵 +s 𝑟)) ↔ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = (𝐴 +s (𝐵 +s 𝑟))))
9291cbvabv 2815 . . . . . . 7 {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑏 = (𝐴 +s (𝐵 +s 𝑟))} = {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = (𝐴 +s (𝐵 +s 𝑟))}
9392uneq2i 4188 . . . . . 6 ({𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑏 = (𝐴 +s (𝐵 +s 𝑟))}) = ({𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶))} ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = (𝐴 +s (𝐵 +s 𝑟))})
9488, 89, 933eqtr2i 2774 . . . . 5 {𝑏 ∣ ∃𝑖 ∈ ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)})𝑏 = (𝐴 +s 𝑖)} = ({𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶))} ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = (𝐴 +s (𝐵 +s 𝑟))})
9594uneq2i 4188 . . . 4 ({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = (𝑝 +s (𝐵 +s 𝐶))} ∪ {𝑏 ∣ ∃𝑖 ∈ ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)})𝑏 = (𝐴 +s 𝑖)}) = ({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = (𝑝 +s (𝐵 +s 𝐶))} ∪ ({𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶))} ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = (𝐴 +s (𝐵 +s 𝑟))}))
96 unass 4195 . . . 4 (({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = (𝑝 +s (𝐵 +s 𝐶))} ∪ {𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶))}) ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = (𝐴 +s (𝐵 +s 𝑟))}) = ({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = (𝑝 +s (𝐵 +s 𝐶))} ∪ ({𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶))} ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = (𝐴 +s (𝐵 +s 𝑟))}))
9795, 96eqtr4i 2771 . . 3 ({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = (𝑝 +s (𝐵 +s 𝐶))} ∪ {𝑏 ∣ ∃𝑖 ∈ ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)})𝑏 = (𝐴 +s 𝑖)}) = (({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = (𝑝 +s (𝐵 +s 𝐶))} ∪ {𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶))}) ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = (𝐴 +s (𝐵 +s 𝑟))})
9858, 97oveq12i 7460 . 2 (({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s (𝐵 +s 𝐶))} ∪ {𝑧 ∣ ∃ ∈ ({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)})𝑧 = (𝐴 +s )}) |s ({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = (𝑝 +s (𝐵 +s 𝐶))} ∪ {𝑏 ∣ ∃𝑖 ∈ ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)})𝑏 = (𝐴 +s 𝑖)})) = ((({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s (𝐵 +s 𝐶))} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶))}) ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = (𝐴 +s (𝐵 +s 𝑛))}) |s (({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = (𝑝 +s (𝐵 +s 𝐶))} ∪ {𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶))}) ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = (𝐴 +s (𝐵 +s 𝑟))}))
9919, 98eqtrdi 2796 1 (𝜑 → (𝐴 +s (𝐵 +s 𝐶)) = ((({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s (𝐵 +s 𝐶))} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶))}) ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = (𝐴 +s (𝐵 +s 𝑛))}) |s (({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = (𝑝 +s (𝐵 +s 𝐶))} ∪ {𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶))}) ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = (𝐴 +s (𝐵 +s 𝑟))})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wne 2946  wrex 3076  cun 3974  c0 4352  {csn 4648   class class class wbr 5166  cfv 6573  (class class class)co 7448   No csur 27702   <<s csslt 27843   |s cscut 27845   L cleft 27902   R cright 27903   +s cadds 28010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-1o 8522  df-2o 8523  df-nadd 8722  df-no 27705  df-slt 27706  df-bday 27707  df-sle 27808  df-sslt 27844  df-scut 27846  df-0s 27887  df-made 27904  df-old 27905  df-left 27907  df-right 27908  df-norec2 28000  df-adds 28011
This theorem is referenced by:  addsass  28056
  Copyright terms: Public domain W3C validator