Step | Hyp | Ref
| Expression |
1 | | addsasslem.1 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ No
) |
2 | | lltropt 27205 |
. . . 4
⊢ (𝐴 ∈
No → ( L ‘𝐴) <<s ( R ‘𝐴)) |
3 | 1, 2 | syl 17 |
. . 3
⊢ (𝜑 → ( L ‘𝐴) <<s ( R ‘𝐴)) |
4 | | addsasslem.2 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ No
) |
5 | | addsasslem.3 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ No
) |
6 | 4, 5 | addscut 27292 |
. . . . 5
⊢ (𝜑 → ((𝐵 +s 𝐶) ∈ No
∧ ({𝑑 ∣
∃𝑚 ∈ ( L
‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)}) <<s {(𝐵 +s 𝐶)} ∧ {(𝐵 +s 𝐶)} <<s ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)}))) |
7 | 6 | simp2d 1144 |
. . . 4
⊢ (𝜑 → ({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)}) <<s {(𝐵 +s 𝐶)}) |
8 | 6 | simp3d 1145 |
. . . 4
⊢ (𝜑 → {(𝐵 +s 𝐶)} <<s ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)})) |
9 | | ovex 7391 |
. . . . . 6
⊢ (𝐵 +s 𝐶) ∈ V |
10 | 9 | snnz 4738 |
. . . . 5
⊢ {(𝐵 +s 𝐶)} ≠ ∅ |
11 | | sslttr 27149 |
. . . . 5
⊢ ((({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)}) <<s {(𝐵 +s 𝐶)} ∧ {(𝐵 +s 𝐶)} <<s ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)}) ∧ {(𝐵 +s 𝐶)} ≠ ∅) → ({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)}) <<s ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)})) |
12 | 10, 11 | mp3an3 1451 |
. . . 4
⊢ ((({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)}) <<s {(𝐵 +s 𝐶)} ∧ {(𝐵 +s 𝐶)} <<s ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)})) → ({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)}) <<s ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)})) |
13 | 7, 8, 12 | syl2anc 585 |
. . 3
⊢ (𝜑 → ({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)}) <<s ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)})) |
14 | | lrcut 27235 |
. . . . 5
⊢ (𝐴 ∈
No → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴) |
15 | 1, 14 | syl 17 |
. . . 4
⊢ (𝜑 → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴) |
16 | 15 | eqcomd 2743 |
. . 3
⊢ (𝜑 → 𝐴 = (( L ‘𝐴) |s ( R ‘𝐴))) |
17 | | addsval2 27278 |
. . . 4
⊢ ((𝐵 ∈
No ∧ 𝐶 ∈
No ) → (𝐵 +s 𝐶) = (({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)}) |s ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)}))) |
18 | 4, 5, 17 | syl2anc 585 |
. . 3
⊢ (𝜑 → (𝐵 +s 𝐶) = (({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)}) |s ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)}))) |
19 | 3, 13, 16, 18 | addsunif 27313 |
. 2
⊢ (𝜑 → (𝐴 +s (𝐵 +s 𝐶)) = (({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s (𝐵 +s 𝐶))} ∪ {𝑧 ∣ ∃ℎ ∈ ({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)})𝑧 = (𝐴 +s ℎ)}) |s ({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = (𝑝 +s (𝐵 +s 𝐶))} ∪ {𝑏 ∣ ∃𝑖 ∈ ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)})𝑏 = (𝐴 +s 𝑖)}))) |
20 | | rexun 4151 |
. . . . . . . 8
⊢
(∃ℎ ∈
({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)})𝑧 = (𝐴 +s ℎ) ↔ (∃ℎ ∈ {𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)}𝑧 = (𝐴 +s ℎ) ∨ ∃ℎ ∈ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)}𝑧 = (𝐴 +s ℎ))) |
21 | | eqeq1 2741 |
. . . . . . . . . . . 12
⊢ (𝑑 = ℎ → (𝑑 = (𝑚 +s 𝐶) ↔ ℎ = (𝑚 +s 𝐶))) |
22 | 21 | rexbidv 3176 |
. . . . . . . . . . 11
⊢ (𝑑 = ℎ → (∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶) ↔ ∃𝑚 ∈ ( L ‘𝐵)ℎ = (𝑚 +s 𝐶))) |
23 | 22 | rexab 3653 |
. . . . . . . . . 10
⊢
(∃ℎ ∈
{𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)}𝑧 = (𝐴 +s ℎ) ↔ ∃ℎ(∃𝑚 ∈ ( L ‘𝐵)ℎ = (𝑚 +s 𝐶) ∧ 𝑧 = (𝐴 +s ℎ))) |
24 | | rexcom4 3272 |
. . . . . . . . . . 11
⊢
(∃𝑚 ∈ ( L
‘𝐵)∃ℎ(ℎ = (𝑚 +s 𝐶) ∧ 𝑧 = (𝐴 +s ℎ)) ↔ ∃ℎ∃𝑚 ∈ ( L ‘𝐵)(ℎ = (𝑚 +s 𝐶) ∧ 𝑧 = (𝐴 +s ℎ))) |
25 | | ovex 7391 |
. . . . . . . . . . . . 13
⊢ (𝑚 +s 𝐶) ∈ V |
26 | | oveq2 7366 |
. . . . . . . . . . . . . 14
⊢ (ℎ = (𝑚 +s 𝐶) → (𝐴 +s ℎ) = (𝐴 +s (𝑚 +s 𝐶))) |
27 | 26 | eqeq2d 2748 |
. . . . . . . . . . . . 13
⊢ (ℎ = (𝑚 +s 𝐶) → (𝑧 = (𝐴 +s ℎ) ↔ 𝑧 = (𝐴 +s (𝑚 +s 𝐶)))) |
28 | 25, 27 | ceqsexv 3495 |
. . . . . . . . . . . 12
⊢
(∃ℎ(ℎ = (𝑚 +s 𝐶) ∧ 𝑧 = (𝐴 +s ℎ)) ↔ 𝑧 = (𝐴 +s (𝑚 +s 𝐶))) |
29 | 28 | rexbii 3098 |
. . . . . . . . . . 11
⊢
(∃𝑚 ∈ ( L
‘𝐵)∃ℎ(ℎ = (𝑚 +s 𝐶) ∧ 𝑧 = (𝐴 +s ℎ)) ↔ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶))) |
30 | | r19.41v 3186 |
. . . . . . . . . . . 12
⊢
(∃𝑚 ∈ ( L
‘𝐵)(ℎ = (𝑚 +s 𝐶) ∧ 𝑧 = (𝐴 +s ℎ)) ↔ (∃𝑚 ∈ ( L ‘𝐵)ℎ = (𝑚 +s 𝐶) ∧ 𝑧 = (𝐴 +s ℎ))) |
31 | 30 | exbii 1851 |
. . . . . . . . . . 11
⊢
(∃ℎ∃𝑚 ∈ ( L ‘𝐵)(ℎ = (𝑚 +s 𝐶) ∧ 𝑧 = (𝐴 +s ℎ)) ↔ ∃ℎ(∃𝑚 ∈ ( L ‘𝐵)ℎ = (𝑚 +s 𝐶) ∧ 𝑧 = (𝐴 +s ℎ))) |
32 | 24, 29, 31 | 3bitr3ri 302 |
. . . . . . . . . 10
⊢
(∃ℎ(∃𝑚 ∈ ( L ‘𝐵)ℎ = (𝑚 +s 𝐶) ∧ 𝑧 = (𝐴 +s ℎ)) ↔ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶))) |
33 | 23, 32 | bitri 275 |
. . . . . . . . 9
⊢
(∃ℎ ∈
{𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)}𝑧 = (𝐴 +s ℎ) ↔ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶))) |
34 | | eqeq1 2741 |
. . . . . . . . . . . 12
⊢ (𝑒 = ℎ → (𝑒 = (𝐵 +s 𝑛) ↔ ℎ = (𝐵 +s 𝑛))) |
35 | 34 | rexbidv 3176 |
. . . . . . . . . . 11
⊢ (𝑒 = ℎ → (∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛) ↔ ∃𝑛 ∈ ( L ‘𝐶)ℎ = (𝐵 +s 𝑛))) |
36 | 35 | rexab 3653 |
. . . . . . . . . 10
⊢
(∃ℎ ∈
{𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)}𝑧 = (𝐴 +s ℎ) ↔ ∃ℎ(∃𝑛 ∈ ( L ‘𝐶)ℎ = (𝐵 +s 𝑛) ∧ 𝑧 = (𝐴 +s ℎ))) |
37 | | rexcom4 3272 |
. . . . . . . . . . 11
⊢
(∃𝑛 ∈ ( L
‘𝐶)∃ℎ(ℎ = (𝐵 +s 𝑛) ∧ 𝑧 = (𝐴 +s ℎ)) ↔ ∃ℎ∃𝑛 ∈ ( L ‘𝐶)(ℎ = (𝐵 +s 𝑛) ∧ 𝑧 = (𝐴 +s ℎ))) |
38 | | ovex 7391 |
. . . . . . . . . . . . 13
⊢ (𝐵 +s 𝑛) ∈ V |
39 | | oveq2 7366 |
. . . . . . . . . . . . . 14
⊢ (ℎ = (𝐵 +s 𝑛) → (𝐴 +s ℎ) = (𝐴 +s (𝐵 +s 𝑛))) |
40 | 39 | eqeq2d 2748 |
. . . . . . . . . . . . 13
⊢ (ℎ = (𝐵 +s 𝑛) → (𝑧 = (𝐴 +s ℎ) ↔ 𝑧 = (𝐴 +s (𝐵 +s 𝑛)))) |
41 | 38, 40 | ceqsexv 3495 |
. . . . . . . . . . . 12
⊢
(∃ℎ(ℎ = (𝐵 +s 𝑛) ∧ 𝑧 = (𝐴 +s ℎ)) ↔ 𝑧 = (𝐴 +s (𝐵 +s 𝑛))) |
42 | 41 | rexbii 3098 |
. . . . . . . . . . 11
⊢
(∃𝑛 ∈ ( L
‘𝐶)∃ℎ(ℎ = (𝐵 +s 𝑛) ∧ 𝑧 = (𝐴 +s ℎ)) ↔ ∃𝑛 ∈ ( L ‘𝐶)𝑧 = (𝐴 +s (𝐵 +s 𝑛))) |
43 | | r19.41v 3186 |
. . . . . . . . . . . 12
⊢
(∃𝑛 ∈ ( L
‘𝐶)(ℎ = (𝐵 +s 𝑛) ∧ 𝑧 = (𝐴 +s ℎ)) ↔ (∃𝑛 ∈ ( L ‘𝐶)ℎ = (𝐵 +s 𝑛) ∧ 𝑧 = (𝐴 +s ℎ))) |
44 | 43 | exbii 1851 |
. . . . . . . . . . 11
⊢
(∃ℎ∃𝑛 ∈ ( L ‘𝐶)(ℎ = (𝐵 +s 𝑛) ∧ 𝑧 = (𝐴 +s ℎ)) ↔ ∃ℎ(∃𝑛 ∈ ( L ‘𝐶)ℎ = (𝐵 +s 𝑛) ∧ 𝑧 = (𝐴 +s ℎ))) |
45 | 37, 42, 44 | 3bitr3ri 302 |
. . . . . . . . . 10
⊢
(∃ℎ(∃𝑛 ∈ ( L ‘𝐶)ℎ = (𝐵 +s 𝑛) ∧ 𝑧 = (𝐴 +s ℎ)) ↔ ∃𝑛 ∈ ( L ‘𝐶)𝑧 = (𝐴 +s (𝐵 +s 𝑛))) |
46 | 36, 45 | bitri 275 |
. . . . . . . . 9
⊢
(∃ℎ ∈
{𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)}𝑧 = (𝐴 +s ℎ) ↔ ∃𝑛 ∈ ( L ‘𝐶)𝑧 = (𝐴 +s (𝐵 +s 𝑛))) |
47 | 33, 46 | orbi12i 914 |
. . . . . . . 8
⊢
((∃ℎ ∈
{𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)}𝑧 = (𝐴 +s ℎ) ∨ ∃ℎ ∈ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)}𝑧 = (𝐴 +s ℎ)) ↔ (∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶)) ∨ ∃𝑛 ∈ ( L ‘𝐶)𝑧 = (𝐴 +s (𝐵 +s 𝑛)))) |
48 | 20, 47 | bitri 275 |
. . . . . . 7
⊢
(∃ℎ ∈
({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)})𝑧 = (𝐴 +s ℎ) ↔ (∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶)) ∨ ∃𝑛 ∈ ( L ‘𝐶)𝑧 = (𝐴 +s (𝐵 +s 𝑛)))) |
49 | 48 | abbii 2807 |
. . . . . 6
⊢ {𝑧 ∣ ∃ℎ ∈ ({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)})𝑧 = (𝐴 +s ℎ)} = {𝑧 ∣ (∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶)) ∨ ∃𝑛 ∈ ( L ‘𝐶)𝑧 = (𝐴 +s (𝐵 +s 𝑛)))} |
50 | | unab 4259 |
. . . . . 6
⊢ ({𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶))} ∪ {𝑧 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑧 = (𝐴 +s (𝐵 +s 𝑛))}) = {𝑧 ∣ (∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶)) ∨ ∃𝑛 ∈ ( L ‘𝐶)𝑧 = (𝐴 +s (𝐵 +s 𝑛)))} |
51 | | eqeq1 2741 |
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → (𝑧 = (𝐴 +s (𝐵 +s 𝑛)) ↔ 𝑤 = (𝐴 +s (𝐵 +s 𝑛)))) |
52 | 51 | rexbidv 3176 |
. . . . . . . 8
⊢ (𝑧 = 𝑤 → (∃𝑛 ∈ ( L ‘𝐶)𝑧 = (𝐴 +s (𝐵 +s 𝑛)) ↔ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = (𝐴 +s (𝐵 +s 𝑛)))) |
53 | 52 | cbvabv 2810 |
. . . . . . 7
⊢ {𝑧 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑧 = (𝐴 +s (𝐵 +s 𝑛))} = {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = (𝐴 +s (𝐵 +s 𝑛))} |
54 | 53 | uneq2i 4121 |
. . . . . 6
⊢ ({𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶))} ∪ {𝑧 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑧 = (𝐴 +s (𝐵 +s 𝑛))}) = ({𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶))} ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = (𝐴 +s (𝐵 +s 𝑛))}) |
55 | 49, 50, 54 | 3eqtr2i 2771 |
. . . . 5
⊢ {𝑧 ∣ ∃ℎ ∈ ({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)})𝑧 = (𝐴 +s ℎ)} = ({𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶))} ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = (𝐴 +s (𝐵 +s 𝑛))}) |
56 | 55 | uneq2i 4121 |
. . . 4
⊢ ({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s (𝐵 +s 𝐶))} ∪ {𝑧 ∣ ∃ℎ ∈ ({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)})𝑧 = (𝐴 +s ℎ)}) = ({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s (𝐵 +s 𝐶))} ∪ ({𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶))} ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = (𝐴 +s (𝐵 +s 𝑛))})) |
57 | | unass 4127 |
. . . 4
⊢ (({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s (𝐵 +s 𝐶))} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶))}) ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = (𝐴 +s (𝐵 +s 𝑛))}) = ({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s (𝐵 +s 𝐶))} ∪ ({𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶))} ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = (𝐴 +s (𝐵 +s 𝑛))})) |
58 | 56, 57 | eqtr4i 2768 |
. . 3
⊢ ({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s (𝐵 +s 𝐶))} ∪ {𝑧 ∣ ∃ℎ ∈ ({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)})𝑧 = (𝐴 +s ℎ)}) = (({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s (𝐵 +s 𝐶))} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶))}) ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = (𝐴 +s (𝐵 +s 𝑛))}) |
59 | | rexun 4151 |
. . . . . . . 8
⊢
(∃𝑖 ∈
({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)})𝑏 = (𝐴 +s 𝑖) ↔ (∃𝑖 ∈ {𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)}𝑏 = (𝐴 +s 𝑖) ∨ ∃𝑖 ∈ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)}𝑏 = (𝐴 +s 𝑖))) |
60 | | eqeq1 2741 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑖 → (𝑓 = (𝑞 +s 𝐶) ↔ 𝑖 = (𝑞 +s 𝐶))) |
61 | 60 | rexbidv 3176 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑖 → (∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶) ↔ ∃𝑞 ∈ ( R ‘𝐵)𝑖 = (𝑞 +s 𝐶))) |
62 | 61 | rexab 3653 |
. . . . . . . . . 10
⊢
(∃𝑖 ∈
{𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)}𝑏 = (𝐴 +s 𝑖) ↔ ∃𝑖(∃𝑞 ∈ ( R ‘𝐵)𝑖 = (𝑞 +s 𝐶) ∧ 𝑏 = (𝐴 +s 𝑖))) |
63 | | rexcom4 3272 |
. . . . . . . . . . 11
⊢
(∃𝑞 ∈ ( R
‘𝐵)∃𝑖(𝑖 = (𝑞 +s 𝐶) ∧ 𝑏 = (𝐴 +s 𝑖)) ↔ ∃𝑖∃𝑞 ∈ ( R ‘𝐵)(𝑖 = (𝑞 +s 𝐶) ∧ 𝑏 = (𝐴 +s 𝑖))) |
64 | | ovex 7391 |
. . . . . . . . . . . . 13
⊢ (𝑞 +s 𝐶) ∈ V |
65 | | oveq2 7366 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = (𝑞 +s 𝐶) → (𝐴 +s 𝑖) = (𝐴 +s (𝑞 +s 𝐶))) |
66 | 65 | eqeq2d 2748 |
. . . . . . . . . . . . 13
⊢ (𝑖 = (𝑞 +s 𝐶) → (𝑏 = (𝐴 +s 𝑖) ↔ 𝑏 = (𝐴 +s (𝑞 +s 𝐶)))) |
67 | 64, 66 | ceqsexv 3495 |
. . . . . . . . . . . 12
⊢
(∃𝑖(𝑖 = (𝑞 +s 𝐶) ∧ 𝑏 = (𝐴 +s 𝑖)) ↔ 𝑏 = (𝐴 +s (𝑞 +s 𝐶))) |
68 | 67 | rexbii 3098 |
. . . . . . . . . . 11
⊢
(∃𝑞 ∈ ( R
‘𝐵)∃𝑖(𝑖 = (𝑞 +s 𝐶) ∧ 𝑏 = (𝐴 +s 𝑖)) ↔ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶))) |
69 | | r19.41v 3186 |
. . . . . . . . . . . 12
⊢
(∃𝑞 ∈ ( R
‘𝐵)(𝑖 = (𝑞 +s 𝐶) ∧ 𝑏 = (𝐴 +s 𝑖)) ↔ (∃𝑞 ∈ ( R ‘𝐵)𝑖 = (𝑞 +s 𝐶) ∧ 𝑏 = (𝐴 +s 𝑖))) |
70 | 69 | exbii 1851 |
. . . . . . . . . . 11
⊢
(∃𝑖∃𝑞 ∈ ( R ‘𝐵)(𝑖 = (𝑞 +s 𝐶) ∧ 𝑏 = (𝐴 +s 𝑖)) ↔ ∃𝑖(∃𝑞 ∈ ( R ‘𝐵)𝑖 = (𝑞 +s 𝐶) ∧ 𝑏 = (𝐴 +s 𝑖))) |
71 | 63, 68, 70 | 3bitr3ri 302 |
. . . . . . . . . 10
⊢
(∃𝑖(∃𝑞 ∈ ( R ‘𝐵)𝑖 = (𝑞 +s 𝐶) ∧ 𝑏 = (𝐴 +s 𝑖)) ↔ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶))) |
72 | 62, 71 | bitri 275 |
. . . . . . . . 9
⊢
(∃𝑖 ∈
{𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)}𝑏 = (𝐴 +s 𝑖) ↔ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶))) |
73 | | eqeq1 2741 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑖 → (𝑔 = (𝐵 +s 𝑟) ↔ 𝑖 = (𝐵 +s 𝑟))) |
74 | 73 | rexbidv 3176 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑖 → (∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟) ↔ ∃𝑟 ∈ ( R ‘𝐶)𝑖 = (𝐵 +s 𝑟))) |
75 | 74 | rexab 3653 |
. . . . . . . . . 10
⊢
(∃𝑖 ∈
{𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)}𝑏 = (𝐴 +s 𝑖) ↔ ∃𝑖(∃𝑟 ∈ ( R ‘𝐶)𝑖 = (𝐵 +s 𝑟) ∧ 𝑏 = (𝐴 +s 𝑖))) |
76 | | rexcom4 3272 |
. . . . . . . . . . 11
⊢
(∃𝑟 ∈ ( R
‘𝐶)∃𝑖(𝑖 = (𝐵 +s 𝑟) ∧ 𝑏 = (𝐴 +s 𝑖)) ↔ ∃𝑖∃𝑟 ∈ ( R ‘𝐶)(𝑖 = (𝐵 +s 𝑟) ∧ 𝑏 = (𝐴 +s 𝑖))) |
77 | | ovex 7391 |
. . . . . . . . . . . . 13
⊢ (𝐵 +s 𝑟) ∈ V |
78 | | oveq2 7366 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = (𝐵 +s 𝑟) → (𝐴 +s 𝑖) = (𝐴 +s (𝐵 +s 𝑟))) |
79 | 78 | eqeq2d 2748 |
. . . . . . . . . . . . 13
⊢ (𝑖 = (𝐵 +s 𝑟) → (𝑏 = (𝐴 +s 𝑖) ↔ 𝑏 = (𝐴 +s (𝐵 +s 𝑟)))) |
80 | 77, 79 | ceqsexv 3495 |
. . . . . . . . . . . 12
⊢
(∃𝑖(𝑖 = (𝐵 +s 𝑟) ∧ 𝑏 = (𝐴 +s 𝑖)) ↔ 𝑏 = (𝐴 +s (𝐵 +s 𝑟))) |
81 | 80 | rexbii 3098 |
. . . . . . . . . . 11
⊢
(∃𝑟 ∈ ( R
‘𝐶)∃𝑖(𝑖 = (𝐵 +s 𝑟) ∧ 𝑏 = (𝐴 +s 𝑖)) ↔ ∃𝑟 ∈ ( R ‘𝐶)𝑏 = (𝐴 +s (𝐵 +s 𝑟))) |
82 | | r19.41v 3186 |
. . . . . . . . . . . 12
⊢
(∃𝑟 ∈ ( R
‘𝐶)(𝑖 = (𝐵 +s 𝑟) ∧ 𝑏 = (𝐴 +s 𝑖)) ↔ (∃𝑟 ∈ ( R ‘𝐶)𝑖 = (𝐵 +s 𝑟) ∧ 𝑏 = (𝐴 +s 𝑖))) |
83 | 82 | exbii 1851 |
. . . . . . . . . . 11
⊢
(∃𝑖∃𝑟 ∈ ( R ‘𝐶)(𝑖 = (𝐵 +s 𝑟) ∧ 𝑏 = (𝐴 +s 𝑖)) ↔ ∃𝑖(∃𝑟 ∈ ( R ‘𝐶)𝑖 = (𝐵 +s 𝑟) ∧ 𝑏 = (𝐴 +s 𝑖))) |
84 | 76, 81, 83 | 3bitr3ri 302 |
. . . . . . . . . 10
⊢
(∃𝑖(∃𝑟 ∈ ( R ‘𝐶)𝑖 = (𝐵 +s 𝑟) ∧ 𝑏 = (𝐴 +s 𝑖)) ↔ ∃𝑟 ∈ ( R ‘𝐶)𝑏 = (𝐴 +s (𝐵 +s 𝑟))) |
85 | 75, 84 | bitri 275 |
. . . . . . . . 9
⊢
(∃𝑖 ∈
{𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)}𝑏 = (𝐴 +s 𝑖) ↔ ∃𝑟 ∈ ( R ‘𝐶)𝑏 = (𝐴 +s (𝐵 +s 𝑟))) |
86 | 72, 85 | orbi12i 914 |
. . . . . . . 8
⊢
((∃𝑖 ∈
{𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)}𝑏 = (𝐴 +s 𝑖) ∨ ∃𝑖 ∈ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)}𝑏 = (𝐴 +s 𝑖)) ↔ (∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶)) ∨ ∃𝑟 ∈ ( R ‘𝐶)𝑏 = (𝐴 +s (𝐵 +s 𝑟)))) |
87 | 59, 86 | bitri 275 |
. . . . . . 7
⊢
(∃𝑖 ∈
({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)})𝑏 = (𝐴 +s 𝑖) ↔ (∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶)) ∨ ∃𝑟 ∈ ( R ‘𝐶)𝑏 = (𝐴 +s (𝐵 +s 𝑟)))) |
88 | 87 | abbii 2807 |
. . . . . 6
⊢ {𝑏 ∣ ∃𝑖 ∈ ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)})𝑏 = (𝐴 +s 𝑖)} = {𝑏 ∣ (∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶)) ∨ ∃𝑟 ∈ ( R ‘𝐶)𝑏 = (𝐴 +s (𝐵 +s 𝑟)))} |
89 | | unab 4259 |
. . . . . 6
⊢ ({𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑏 = (𝐴 +s (𝐵 +s 𝑟))}) = {𝑏 ∣ (∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶)) ∨ ∃𝑟 ∈ ( R ‘𝐶)𝑏 = (𝐴 +s (𝐵 +s 𝑟)))} |
90 | | eqeq1 2741 |
. . . . . . . . 9
⊢ (𝑏 = 𝑐 → (𝑏 = (𝐴 +s (𝐵 +s 𝑟)) ↔ 𝑐 = (𝐴 +s (𝐵 +s 𝑟)))) |
91 | 90 | rexbidv 3176 |
. . . . . . . 8
⊢ (𝑏 = 𝑐 → (∃𝑟 ∈ ( R ‘𝐶)𝑏 = (𝐴 +s (𝐵 +s 𝑟)) ↔ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = (𝐴 +s (𝐵 +s 𝑟)))) |
92 | 91 | cbvabv 2810 |
. . . . . . 7
⊢ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑏 = (𝐴 +s (𝐵 +s 𝑟))} = {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = (𝐴 +s (𝐵 +s 𝑟))} |
93 | 92 | uneq2i 4121 |
. . . . . 6
⊢ ({𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑏 = (𝐴 +s (𝐵 +s 𝑟))}) = ({𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶))} ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = (𝐴 +s (𝐵 +s 𝑟))}) |
94 | 88, 89, 93 | 3eqtr2i 2771 |
. . . . 5
⊢ {𝑏 ∣ ∃𝑖 ∈ ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)})𝑏 = (𝐴 +s 𝑖)} = ({𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶))} ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = (𝐴 +s (𝐵 +s 𝑟))}) |
95 | 94 | uneq2i 4121 |
. . . 4
⊢ ({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = (𝑝 +s (𝐵 +s 𝐶))} ∪ {𝑏 ∣ ∃𝑖 ∈ ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)})𝑏 = (𝐴 +s 𝑖)}) = ({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = (𝑝 +s (𝐵 +s 𝐶))} ∪ ({𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶))} ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = (𝐴 +s (𝐵 +s 𝑟))})) |
96 | | unass 4127 |
. . . 4
⊢ (({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = (𝑝 +s (𝐵 +s 𝐶))} ∪ {𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶))}) ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = (𝐴 +s (𝐵 +s 𝑟))}) = ({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = (𝑝 +s (𝐵 +s 𝐶))} ∪ ({𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶))} ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = (𝐴 +s (𝐵 +s 𝑟))})) |
97 | 95, 96 | eqtr4i 2768 |
. . 3
⊢ ({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = (𝑝 +s (𝐵 +s 𝐶))} ∪ {𝑏 ∣ ∃𝑖 ∈ ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)})𝑏 = (𝐴 +s 𝑖)}) = (({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = (𝑝 +s (𝐵 +s 𝐶))} ∪ {𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶))}) ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = (𝐴 +s (𝐵 +s 𝑟))}) |
98 | 58, 97 | oveq12i 7370 |
. 2
⊢ (({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s (𝐵 +s 𝐶))} ∪ {𝑧 ∣ ∃ℎ ∈ ({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)})𝑧 = (𝐴 +s ℎ)}) |s ({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = (𝑝 +s (𝐵 +s 𝐶))} ∪ {𝑏 ∣ ∃𝑖 ∈ ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)})𝑏 = (𝐴 +s 𝑖)})) = ((({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s (𝐵 +s 𝐶))} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶))}) ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = (𝐴 +s (𝐵 +s 𝑛))}) |s (({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = (𝑝 +s (𝐵 +s 𝐶))} ∪ {𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶))}) ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = (𝐴 +s (𝐵 +s 𝑟))})) |
99 | 19, 98 | eqtrdi 2793 |
1
⊢ (𝜑 → (𝐴 +s (𝐵 +s 𝐶)) = ((({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s (𝐵 +s 𝐶))} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶))}) ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = (𝐴 +s (𝐵 +s 𝑛))}) |s (({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = (𝑝 +s (𝐵 +s 𝐶))} ∪ {𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶))}) ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = (𝐴 +s (𝐵 +s 𝑟))}))) |