MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsasslem2 Structured version   Visualization version   GIF version

Theorem addsasslem2 28037
Description: Lemma for addition associativity. Expand the other form of the triple sum. (Contributed by Scott Fenton, 21-Jan-2025.)
Hypotheses
Ref Expression
addsasslem.1 (𝜑𝐴 No )
addsasslem.2 (𝜑𝐵 No )
addsasslem.3 (𝜑𝐶 No )
Assertion
Ref Expression
addsasslem2 (𝜑 → (𝐴 +s (𝐵 +s 𝐶)) = ((({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s (𝐵 +s 𝐶))} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶))}) ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = (𝐴 +s (𝐵 +s 𝑛))}) |s (({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = (𝑝 +s (𝐵 +s 𝐶))} ∪ {𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶))}) ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = (𝐴 +s (𝐵 +s 𝑟))})))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑐,𝑙,𝑚,𝑛,𝑝,𝑞,𝑟,𝑤,𝑦,𝑧   𝐵,𝑎,𝑏,𝑐,𝑙,𝑚,𝑛,𝑝,𝑞,𝑟,𝑤,𝑦,𝑧   𝐶,𝑎,𝑏,𝑐,𝑙,𝑚,𝑛,𝑝,𝑞,𝑟,𝑤,𝑦,𝑧   𝜑,𝑎,𝑏,𝑐,𝑙,𝑚,𝑛,𝑝,𝑞,𝑟,𝑤,𝑦,𝑧

Proof of Theorem addsasslem2
Dummy variables 𝑑 𝑒 𝑓 𝑔 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lltropt 27911 . . . 4 ( L ‘𝐴) <<s ( R ‘𝐴)
21a1i 11 . . 3 (𝜑 → ( L ‘𝐴) <<s ( R ‘𝐴))
3 addsasslem.2 . . . . . 6 (𝜑𝐵 No )
4 addsasslem.3 . . . . . 6 (𝜑𝐶 No )
53, 4addscut 28011 . . . . 5 (𝜑 → ((𝐵 +s 𝐶) ∈ No ∧ ({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)}) <<s {(𝐵 +s 𝐶)} ∧ {(𝐵 +s 𝐶)} <<s ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)})))
65simp2d 1144 . . . 4 (𝜑 → ({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)}) <<s {(𝐵 +s 𝐶)})
75simp3d 1145 . . . 4 (𝜑 → {(𝐵 +s 𝐶)} <<s ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)}))
8 ovex 7464 . . . . . 6 (𝐵 +s 𝐶) ∈ V
98snnz 4776 . . . . 5 {(𝐵 +s 𝐶)} ≠ ∅
10 sslttr 27852 . . . . 5 ((({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)}) <<s {(𝐵 +s 𝐶)} ∧ {(𝐵 +s 𝐶)} <<s ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)}) ∧ {(𝐵 +s 𝐶)} ≠ ∅) → ({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)}) <<s ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)}))
119, 10mp3an3 1452 . . . 4 ((({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)}) <<s {(𝐵 +s 𝐶)} ∧ {(𝐵 +s 𝐶)} <<s ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)})) → ({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)}) <<s ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)}))
126, 7, 11syl2anc 584 . . 3 (𝜑 → ({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)}) <<s ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)}))
13 addsasslem.1 . . . . 5 (𝜑𝐴 No )
14 lrcut 27941 . . . . 5 (𝐴 No → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴)
1513, 14syl 17 . . . 4 (𝜑 → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴)
1615eqcomd 2743 . . 3 (𝜑𝐴 = (( L ‘𝐴) |s ( R ‘𝐴)))
17 addsval2 27996 . . . 4 ((𝐵 No 𝐶 No ) → (𝐵 +s 𝐶) = (({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)}) |s ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)})))
183, 4, 17syl2anc 584 . . 3 (𝜑 → (𝐵 +s 𝐶) = (({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)}) |s ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)})))
192, 12, 16, 18addsunif 28035 . 2 (𝜑 → (𝐴 +s (𝐵 +s 𝐶)) = (({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s (𝐵 +s 𝐶))} ∪ {𝑧 ∣ ∃ ∈ ({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)})𝑧 = (𝐴 +s )}) |s ({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = (𝑝 +s (𝐵 +s 𝐶))} ∪ {𝑏 ∣ ∃𝑖 ∈ ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)})𝑏 = (𝐴 +s 𝑖)})))
20 rexun 4196 . . . . . . . 8 (∃ ∈ ({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)})𝑧 = (𝐴 +s ) ↔ (∃ ∈ {𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)}𝑧 = (𝐴 +s ) ∨ ∃ ∈ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)}𝑧 = (𝐴 +s )))
21 eqeq1 2741 . . . . . . . . . . . 12 (𝑑 = → (𝑑 = (𝑚 +s 𝐶) ↔ = (𝑚 +s 𝐶)))
2221rexbidv 3179 . . . . . . . . . . 11 (𝑑 = → (∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶) ↔ ∃𝑚 ∈ ( L ‘𝐵) = (𝑚 +s 𝐶)))
2322rexab 3700 . . . . . . . . . 10 (∃ ∈ {𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)}𝑧 = (𝐴 +s ) ↔ ∃(∃𝑚 ∈ ( L ‘𝐵) = (𝑚 +s 𝐶) ∧ 𝑧 = (𝐴 +s )))
24 rexcom4 3288 . . . . . . . . . . 11 (∃𝑚 ∈ ( L ‘𝐵)∃( = (𝑚 +s 𝐶) ∧ 𝑧 = (𝐴 +s )) ↔ ∃𝑚 ∈ ( L ‘𝐵)( = (𝑚 +s 𝐶) ∧ 𝑧 = (𝐴 +s )))
25 ovex 7464 . . . . . . . . . . . . 13 (𝑚 +s 𝐶) ∈ V
26 oveq2 7439 . . . . . . . . . . . . . 14 ( = (𝑚 +s 𝐶) → (𝐴 +s ) = (𝐴 +s (𝑚 +s 𝐶)))
2726eqeq2d 2748 . . . . . . . . . . . . 13 ( = (𝑚 +s 𝐶) → (𝑧 = (𝐴 +s ) ↔ 𝑧 = (𝐴 +s (𝑚 +s 𝐶))))
2825, 27ceqsexv 3532 . . . . . . . . . . . 12 (∃( = (𝑚 +s 𝐶) ∧ 𝑧 = (𝐴 +s )) ↔ 𝑧 = (𝐴 +s (𝑚 +s 𝐶)))
2928rexbii 3094 . . . . . . . . . . 11 (∃𝑚 ∈ ( L ‘𝐵)∃( = (𝑚 +s 𝐶) ∧ 𝑧 = (𝐴 +s )) ↔ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶)))
30 r19.41v 3189 . . . . . . . . . . . 12 (∃𝑚 ∈ ( L ‘𝐵)( = (𝑚 +s 𝐶) ∧ 𝑧 = (𝐴 +s )) ↔ (∃𝑚 ∈ ( L ‘𝐵) = (𝑚 +s 𝐶) ∧ 𝑧 = (𝐴 +s )))
3130exbii 1848 . . . . . . . . . . 11 (∃𝑚 ∈ ( L ‘𝐵)( = (𝑚 +s 𝐶) ∧ 𝑧 = (𝐴 +s )) ↔ ∃(∃𝑚 ∈ ( L ‘𝐵) = (𝑚 +s 𝐶) ∧ 𝑧 = (𝐴 +s )))
3224, 29, 313bitr3ri 302 . . . . . . . . . 10 (∃(∃𝑚 ∈ ( L ‘𝐵) = (𝑚 +s 𝐶) ∧ 𝑧 = (𝐴 +s )) ↔ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶)))
3323, 32bitri 275 . . . . . . . . 9 (∃ ∈ {𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)}𝑧 = (𝐴 +s ) ↔ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶)))
34 eqeq1 2741 . . . . . . . . . . . 12 (𝑒 = → (𝑒 = (𝐵 +s 𝑛) ↔ = (𝐵 +s 𝑛)))
3534rexbidv 3179 . . . . . . . . . . 11 (𝑒 = → (∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛) ↔ ∃𝑛 ∈ ( L ‘𝐶) = (𝐵 +s 𝑛)))
3635rexab 3700 . . . . . . . . . 10 (∃ ∈ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)}𝑧 = (𝐴 +s ) ↔ ∃(∃𝑛 ∈ ( L ‘𝐶) = (𝐵 +s 𝑛) ∧ 𝑧 = (𝐴 +s )))
37 rexcom4 3288 . . . . . . . . . . 11 (∃𝑛 ∈ ( L ‘𝐶)∃( = (𝐵 +s 𝑛) ∧ 𝑧 = (𝐴 +s )) ↔ ∃𝑛 ∈ ( L ‘𝐶)( = (𝐵 +s 𝑛) ∧ 𝑧 = (𝐴 +s )))
38 ovex 7464 . . . . . . . . . . . . 13 (𝐵 +s 𝑛) ∈ V
39 oveq2 7439 . . . . . . . . . . . . . 14 ( = (𝐵 +s 𝑛) → (𝐴 +s ) = (𝐴 +s (𝐵 +s 𝑛)))
4039eqeq2d 2748 . . . . . . . . . . . . 13 ( = (𝐵 +s 𝑛) → (𝑧 = (𝐴 +s ) ↔ 𝑧 = (𝐴 +s (𝐵 +s 𝑛))))
4138, 40ceqsexv 3532 . . . . . . . . . . . 12 (∃( = (𝐵 +s 𝑛) ∧ 𝑧 = (𝐴 +s )) ↔ 𝑧 = (𝐴 +s (𝐵 +s 𝑛)))
4241rexbii 3094 . . . . . . . . . . 11 (∃𝑛 ∈ ( L ‘𝐶)∃( = (𝐵 +s 𝑛) ∧ 𝑧 = (𝐴 +s )) ↔ ∃𝑛 ∈ ( L ‘𝐶)𝑧 = (𝐴 +s (𝐵 +s 𝑛)))
43 r19.41v 3189 . . . . . . . . . . . 12 (∃𝑛 ∈ ( L ‘𝐶)( = (𝐵 +s 𝑛) ∧ 𝑧 = (𝐴 +s )) ↔ (∃𝑛 ∈ ( L ‘𝐶) = (𝐵 +s 𝑛) ∧ 𝑧 = (𝐴 +s )))
4443exbii 1848 . . . . . . . . . . 11 (∃𝑛 ∈ ( L ‘𝐶)( = (𝐵 +s 𝑛) ∧ 𝑧 = (𝐴 +s )) ↔ ∃(∃𝑛 ∈ ( L ‘𝐶) = (𝐵 +s 𝑛) ∧ 𝑧 = (𝐴 +s )))
4537, 42, 443bitr3ri 302 . . . . . . . . . 10 (∃(∃𝑛 ∈ ( L ‘𝐶) = (𝐵 +s 𝑛) ∧ 𝑧 = (𝐴 +s )) ↔ ∃𝑛 ∈ ( L ‘𝐶)𝑧 = (𝐴 +s (𝐵 +s 𝑛)))
4636, 45bitri 275 . . . . . . . . 9 (∃ ∈ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)}𝑧 = (𝐴 +s ) ↔ ∃𝑛 ∈ ( L ‘𝐶)𝑧 = (𝐴 +s (𝐵 +s 𝑛)))
4733, 46orbi12i 915 . . . . . . . 8 ((∃ ∈ {𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)}𝑧 = (𝐴 +s ) ∨ ∃ ∈ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)}𝑧 = (𝐴 +s )) ↔ (∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶)) ∨ ∃𝑛 ∈ ( L ‘𝐶)𝑧 = (𝐴 +s (𝐵 +s 𝑛))))
4820, 47bitri 275 . . . . . . 7 (∃ ∈ ({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)})𝑧 = (𝐴 +s ) ↔ (∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶)) ∨ ∃𝑛 ∈ ( L ‘𝐶)𝑧 = (𝐴 +s (𝐵 +s 𝑛))))
4948abbii 2809 . . . . . 6 {𝑧 ∣ ∃ ∈ ({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)})𝑧 = (𝐴 +s )} = {𝑧 ∣ (∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶)) ∨ ∃𝑛 ∈ ( L ‘𝐶)𝑧 = (𝐴 +s (𝐵 +s 𝑛)))}
50 unab 4308 . . . . . 6 ({𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶))} ∪ {𝑧 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑧 = (𝐴 +s (𝐵 +s 𝑛))}) = {𝑧 ∣ (∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶)) ∨ ∃𝑛 ∈ ( L ‘𝐶)𝑧 = (𝐴 +s (𝐵 +s 𝑛)))}
51 eqeq1 2741 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧 = (𝐴 +s (𝐵 +s 𝑛)) ↔ 𝑤 = (𝐴 +s (𝐵 +s 𝑛))))
5251rexbidv 3179 . . . . . . . 8 (𝑧 = 𝑤 → (∃𝑛 ∈ ( L ‘𝐶)𝑧 = (𝐴 +s (𝐵 +s 𝑛)) ↔ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = (𝐴 +s (𝐵 +s 𝑛))))
5352cbvabv 2812 . . . . . . 7 {𝑧 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑧 = (𝐴 +s (𝐵 +s 𝑛))} = {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = (𝐴 +s (𝐵 +s 𝑛))}
5453uneq2i 4165 . . . . . 6 ({𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶))} ∪ {𝑧 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑧 = (𝐴 +s (𝐵 +s 𝑛))}) = ({𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶))} ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = (𝐴 +s (𝐵 +s 𝑛))})
5549, 50, 543eqtr2i 2771 . . . . 5 {𝑧 ∣ ∃ ∈ ({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)})𝑧 = (𝐴 +s )} = ({𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶))} ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = (𝐴 +s (𝐵 +s 𝑛))})
5655uneq2i 4165 . . . 4 ({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s (𝐵 +s 𝐶))} ∪ {𝑧 ∣ ∃ ∈ ({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)})𝑧 = (𝐴 +s )}) = ({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s (𝐵 +s 𝐶))} ∪ ({𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶))} ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = (𝐴 +s (𝐵 +s 𝑛))}))
57 unass 4172 . . . 4 (({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s (𝐵 +s 𝐶))} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶))}) ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = (𝐴 +s (𝐵 +s 𝑛))}) = ({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s (𝐵 +s 𝐶))} ∪ ({𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶))} ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = (𝐴 +s (𝐵 +s 𝑛))}))
5856, 57eqtr4i 2768 . . 3 ({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s (𝐵 +s 𝐶))} ∪ {𝑧 ∣ ∃ ∈ ({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)})𝑧 = (𝐴 +s )}) = (({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s (𝐵 +s 𝐶))} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶))}) ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = (𝐴 +s (𝐵 +s 𝑛))})
59 rexun 4196 . . . . . . . 8 (∃𝑖 ∈ ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)})𝑏 = (𝐴 +s 𝑖) ↔ (∃𝑖 ∈ {𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)}𝑏 = (𝐴 +s 𝑖) ∨ ∃𝑖 ∈ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)}𝑏 = (𝐴 +s 𝑖)))
60 eqeq1 2741 . . . . . . . . . . . 12 (𝑓 = 𝑖 → (𝑓 = (𝑞 +s 𝐶) ↔ 𝑖 = (𝑞 +s 𝐶)))
6160rexbidv 3179 . . . . . . . . . . 11 (𝑓 = 𝑖 → (∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶) ↔ ∃𝑞 ∈ ( R ‘𝐵)𝑖 = (𝑞 +s 𝐶)))
6261rexab 3700 . . . . . . . . . 10 (∃𝑖 ∈ {𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)}𝑏 = (𝐴 +s 𝑖) ↔ ∃𝑖(∃𝑞 ∈ ( R ‘𝐵)𝑖 = (𝑞 +s 𝐶) ∧ 𝑏 = (𝐴 +s 𝑖)))
63 rexcom4 3288 . . . . . . . . . . 11 (∃𝑞 ∈ ( R ‘𝐵)∃𝑖(𝑖 = (𝑞 +s 𝐶) ∧ 𝑏 = (𝐴 +s 𝑖)) ↔ ∃𝑖𝑞 ∈ ( R ‘𝐵)(𝑖 = (𝑞 +s 𝐶) ∧ 𝑏 = (𝐴 +s 𝑖)))
64 ovex 7464 . . . . . . . . . . . . 13 (𝑞 +s 𝐶) ∈ V
65 oveq2 7439 . . . . . . . . . . . . . 14 (𝑖 = (𝑞 +s 𝐶) → (𝐴 +s 𝑖) = (𝐴 +s (𝑞 +s 𝐶)))
6665eqeq2d 2748 . . . . . . . . . . . . 13 (𝑖 = (𝑞 +s 𝐶) → (𝑏 = (𝐴 +s 𝑖) ↔ 𝑏 = (𝐴 +s (𝑞 +s 𝐶))))
6764, 66ceqsexv 3532 . . . . . . . . . . . 12 (∃𝑖(𝑖 = (𝑞 +s 𝐶) ∧ 𝑏 = (𝐴 +s 𝑖)) ↔ 𝑏 = (𝐴 +s (𝑞 +s 𝐶)))
6867rexbii 3094 . . . . . . . . . . 11 (∃𝑞 ∈ ( R ‘𝐵)∃𝑖(𝑖 = (𝑞 +s 𝐶) ∧ 𝑏 = (𝐴 +s 𝑖)) ↔ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶)))
69 r19.41v 3189 . . . . . . . . . . . 12 (∃𝑞 ∈ ( R ‘𝐵)(𝑖 = (𝑞 +s 𝐶) ∧ 𝑏 = (𝐴 +s 𝑖)) ↔ (∃𝑞 ∈ ( R ‘𝐵)𝑖 = (𝑞 +s 𝐶) ∧ 𝑏 = (𝐴 +s 𝑖)))
7069exbii 1848 . . . . . . . . . . 11 (∃𝑖𝑞 ∈ ( R ‘𝐵)(𝑖 = (𝑞 +s 𝐶) ∧ 𝑏 = (𝐴 +s 𝑖)) ↔ ∃𝑖(∃𝑞 ∈ ( R ‘𝐵)𝑖 = (𝑞 +s 𝐶) ∧ 𝑏 = (𝐴 +s 𝑖)))
7163, 68, 703bitr3ri 302 . . . . . . . . . 10 (∃𝑖(∃𝑞 ∈ ( R ‘𝐵)𝑖 = (𝑞 +s 𝐶) ∧ 𝑏 = (𝐴 +s 𝑖)) ↔ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶)))
7262, 71bitri 275 . . . . . . . . 9 (∃𝑖 ∈ {𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)}𝑏 = (𝐴 +s 𝑖) ↔ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶)))
73 eqeq1 2741 . . . . . . . . . . . 12 (𝑔 = 𝑖 → (𝑔 = (𝐵 +s 𝑟) ↔ 𝑖 = (𝐵 +s 𝑟)))
7473rexbidv 3179 . . . . . . . . . . 11 (𝑔 = 𝑖 → (∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟) ↔ ∃𝑟 ∈ ( R ‘𝐶)𝑖 = (𝐵 +s 𝑟)))
7574rexab 3700 . . . . . . . . . 10 (∃𝑖 ∈ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)}𝑏 = (𝐴 +s 𝑖) ↔ ∃𝑖(∃𝑟 ∈ ( R ‘𝐶)𝑖 = (𝐵 +s 𝑟) ∧ 𝑏 = (𝐴 +s 𝑖)))
76 rexcom4 3288 . . . . . . . . . . 11 (∃𝑟 ∈ ( R ‘𝐶)∃𝑖(𝑖 = (𝐵 +s 𝑟) ∧ 𝑏 = (𝐴 +s 𝑖)) ↔ ∃𝑖𝑟 ∈ ( R ‘𝐶)(𝑖 = (𝐵 +s 𝑟) ∧ 𝑏 = (𝐴 +s 𝑖)))
77 ovex 7464 . . . . . . . . . . . . 13 (𝐵 +s 𝑟) ∈ V
78 oveq2 7439 . . . . . . . . . . . . . 14 (𝑖 = (𝐵 +s 𝑟) → (𝐴 +s 𝑖) = (𝐴 +s (𝐵 +s 𝑟)))
7978eqeq2d 2748 . . . . . . . . . . . . 13 (𝑖 = (𝐵 +s 𝑟) → (𝑏 = (𝐴 +s 𝑖) ↔ 𝑏 = (𝐴 +s (𝐵 +s 𝑟))))
8077, 79ceqsexv 3532 . . . . . . . . . . . 12 (∃𝑖(𝑖 = (𝐵 +s 𝑟) ∧ 𝑏 = (𝐴 +s 𝑖)) ↔ 𝑏 = (𝐴 +s (𝐵 +s 𝑟)))
8180rexbii 3094 . . . . . . . . . . 11 (∃𝑟 ∈ ( R ‘𝐶)∃𝑖(𝑖 = (𝐵 +s 𝑟) ∧ 𝑏 = (𝐴 +s 𝑖)) ↔ ∃𝑟 ∈ ( R ‘𝐶)𝑏 = (𝐴 +s (𝐵 +s 𝑟)))
82 r19.41v 3189 . . . . . . . . . . . 12 (∃𝑟 ∈ ( R ‘𝐶)(𝑖 = (𝐵 +s 𝑟) ∧ 𝑏 = (𝐴 +s 𝑖)) ↔ (∃𝑟 ∈ ( R ‘𝐶)𝑖 = (𝐵 +s 𝑟) ∧ 𝑏 = (𝐴 +s 𝑖)))
8382exbii 1848 . . . . . . . . . . 11 (∃𝑖𝑟 ∈ ( R ‘𝐶)(𝑖 = (𝐵 +s 𝑟) ∧ 𝑏 = (𝐴 +s 𝑖)) ↔ ∃𝑖(∃𝑟 ∈ ( R ‘𝐶)𝑖 = (𝐵 +s 𝑟) ∧ 𝑏 = (𝐴 +s 𝑖)))
8476, 81, 833bitr3ri 302 . . . . . . . . . 10 (∃𝑖(∃𝑟 ∈ ( R ‘𝐶)𝑖 = (𝐵 +s 𝑟) ∧ 𝑏 = (𝐴 +s 𝑖)) ↔ ∃𝑟 ∈ ( R ‘𝐶)𝑏 = (𝐴 +s (𝐵 +s 𝑟)))
8575, 84bitri 275 . . . . . . . . 9 (∃𝑖 ∈ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)}𝑏 = (𝐴 +s 𝑖) ↔ ∃𝑟 ∈ ( R ‘𝐶)𝑏 = (𝐴 +s (𝐵 +s 𝑟)))
8672, 85orbi12i 915 . . . . . . . 8 ((∃𝑖 ∈ {𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)}𝑏 = (𝐴 +s 𝑖) ∨ ∃𝑖 ∈ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)}𝑏 = (𝐴 +s 𝑖)) ↔ (∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶)) ∨ ∃𝑟 ∈ ( R ‘𝐶)𝑏 = (𝐴 +s (𝐵 +s 𝑟))))
8759, 86bitri 275 . . . . . . 7 (∃𝑖 ∈ ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)})𝑏 = (𝐴 +s 𝑖) ↔ (∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶)) ∨ ∃𝑟 ∈ ( R ‘𝐶)𝑏 = (𝐴 +s (𝐵 +s 𝑟))))
8887abbii 2809 . . . . . 6 {𝑏 ∣ ∃𝑖 ∈ ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)})𝑏 = (𝐴 +s 𝑖)} = {𝑏 ∣ (∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶)) ∨ ∃𝑟 ∈ ( R ‘𝐶)𝑏 = (𝐴 +s (𝐵 +s 𝑟)))}
89 unab 4308 . . . . . 6 ({𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑏 = (𝐴 +s (𝐵 +s 𝑟))}) = {𝑏 ∣ (∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶)) ∨ ∃𝑟 ∈ ( R ‘𝐶)𝑏 = (𝐴 +s (𝐵 +s 𝑟)))}
90 eqeq1 2741 . . . . . . . . 9 (𝑏 = 𝑐 → (𝑏 = (𝐴 +s (𝐵 +s 𝑟)) ↔ 𝑐 = (𝐴 +s (𝐵 +s 𝑟))))
9190rexbidv 3179 . . . . . . . 8 (𝑏 = 𝑐 → (∃𝑟 ∈ ( R ‘𝐶)𝑏 = (𝐴 +s (𝐵 +s 𝑟)) ↔ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = (𝐴 +s (𝐵 +s 𝑟))))
9291cbvabv 2812 . . . . . . 7 {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑏 = (𝐴 +s (𝐵 +s 𝑟))} = {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = (𝐴 +s (𝐵 +s 𝑟))}
9392uneq2i 4165 . . . . . 6 ({𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑏 = (𝐴 +s (𝐵 +s 𝑟))}) = ({𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶))} ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = (𝐴 +s (𝐵 +s 𝑟))})
9488, 89, 933eqtr2i 2771 . . . . 5 {𝑏 ∣ ∃𝑖 ∈ ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)})𝑏 = (𝐴 +s 𝑖)} = ({𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶))} ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = (𝐴 +s (𝐵 +s 𝑟))})
9594uneq2i 4165 . . . 4 ({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = (𝑝 +s (𝐵 +s 𝐶))} ∪ {𝑏 ∣ ∃𝑖 ∈ ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)})𝑏 = (𝐴 +s 𝑖)}) = ({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = (𝑝 +s (𝐵 +s 𝐶))} ∪ ({𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶))} ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = (𝐴 +s (𝐵 +s 𝑟))}))
96 unass 4172 . . . 4 (({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = (𝑝 +s (𝐵 +s 𝐶))} ∪ {𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶))}) ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = (𝐴 +s (𝐵 +s 𝑟))}) = ({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = (𝑝 +s (𝐵 +s 𝐶))} ∪ ({𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶))} ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = (𝐴 +s (𝐵 +s 𝑟))}))
9795, 96eqtr4i 2768 . . 3 ({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = (𝑝 +s (𝐵 +s 𝐶))} ∪ {𝑏 ∣ ∃𝑖 ∈ ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)})𝑏 = (𝐴 +s 𝑖)}) = (({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = (𝑝 +s (𝐵 +s 𝐶))} ∪ {𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶))}) ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = (𝐴 +s (𝐵 +s 𝑟))})
9858, 97oveq12i 7443 . 2 (({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s (𝐵 +s 𝐶))} ∪ {𝑧 ∣ ∃ ∈ ({𝑑 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑑 = (𝑚 +s 𝐶)} ∪ {𝑒 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑒 = (𝐵 +s 𝑛)})𝑧 = (𝐴 +s )}) |s ({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = (𝑝 +s (𝐵 +s 𝐶))} ∪ {𝑏 ∣ ∃𝑖 ∈ ({𝑓 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑓 = (𝑞 +s 𝐶)} ∪ {𝑔 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑔 = (𝐵 +s 𝑟)})𝑏 = (𝐴 +s 𝑖)})) = ((({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s (𝐵 +s 𝐶))} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶))}) ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = (𝐴 +s (𝐵 +s 𝑛))}) |s (({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = (𝑝 +s (𝐵 +s 𝐶))} ∪ {𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶))}) ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = (𝐴 +s (𝐵 +s 𝑟))}))
9919, 98eqtrdi 2793 1 (𝜑 → (𝐴 +s (𝐵 +s 𝐶)) = ((({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s (𝐵 +s 𝐶))} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶))}) ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = (𝐴 +s (𝐵 +s 𝑛))}) |s (({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = (𝑝 +s (𝐵 +s 𝐶))} ∪ {𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶))}) ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = (𝐴 +s (𝐵 +s 𝑟))})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 848   = wceq 1540  wex 1779  wcel 2108  {cab 2714  wne 2940  wrex 3070  cun 3949  c0 4333  {csn 4626   class class class wbr 5143  cfv 6561  (class class class)co 7431   No csur 27684   <<s csslt 27825   |s cscut 27827   L cleft 27884   R cright 27885   +s cadds 27992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-ot 4635  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-1o 8506  df-2o 8507  df-nadd 8704  df-no 27687  df-slt 27688  df-bday 27689  df-sle 27790  df-sslt 27826  df-scut 27828  df-0s 27869  df-made 27886  df-old 27887  df-left 27889  df-right 27890  df-norec2 27982  df-adds 27993
This theorem is referenced by:  addsass  28038
  Copyright terms: Public domain W3C validator