MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsasslem1 Structured version   Visualization version   GIF version

Theorem addsasslem1 27475
Description: Lemma for addition associativity. Expand one form of the triple sum. (Contributed by Scott Fenton, 21-Jan-2025.)
Hypotheses
Ref Expression
addsasslem.1 (𝜑𝐴 No )
addsasslem.2 (𝜑𝐵 No )
addsasslem.3 (𝜑𝐶 No )
Assertion
Ref Expression
addsasslem1 (𝜑 → ((𝐴 +s 𝐵) +s 𝐶) = ((({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = ((𝑙 +s 𝐵) +s 𝐶)} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = ((𝐴 +s 𝑚) +s 𝐶)}) ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = ((𝐴 +s 𝐵) +s 𝑛)}) |s (({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = ((𝑝 +s 𝐵) +s 𝐶)} ∪ {𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = ((𝐴 +s 𝑞) +s 𝐶)}) ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = ((𝐴 +s 𝐵) +s 𝑟)})))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑐,𝑙,𝑚,𝑛,𝑝,𝑞,𝑟,𝑤,𝑦,𝑧   𝐵,𝑎,𝑏,𝑐,𝑙,𝑚,𝑛,𝑝,𝑞,𝑟,𝑤,𝑦,𝑧   𝐶,𝑎,𝑏,𝑐,𝑙,𝑚,𝑛,𝑝,𝑞,𝑟,𝑤,𝑦,𝑧   𝜑,𝑎,𝑏,𝑐,𝑙,𝑚,𝑛,𝑝,𝑞,𝑟,𝑤,𝑦,𝑧

Proof of Theorem addsasslem1
Dummy variables 𝑑 𝑒 𝑓 𝑔 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addsasslem.1 . . . . . 6 (𝜑𝐴 No )
2 addsasslem.2 . . . . . 6 (𝜑𝐵 No )
31, 2addscut 27451 . . . . 5 (𝜑 → ((𝐴 +s 𝐵) ∈ No ∧ ({𝑑 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑑 = (𝑙 +s 𝐵)} ∪ {𝑒 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑒 = (𝐴 +s 𝑚)}) <<s {(𝐴 +s 𝐵)} ∧ {(𝐴 +s 𝐵)} <<s ({𝑓 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑓 = (𝑝 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑔 = (𝐴 +s 𝑞)})))
43simp2d 1143 . . . 4 (𝜑 → ({𝑑 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑑 = (𝑙 +s 𝐵)} ∪ {𝑒 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑒 = (𝐴 +s 𝑚)}) <<s {(𝐴 +s 𝐵)})
53simp3d 1144 . . . 4 (𝜑 → {(𝐴 +s 𝐵)} <<s ({𝑓 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑓 = (𝑝 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑔 = (𝐴 +s 𝑞)}))
6 ovex 7438 . . . . . 6 (𝐴 +s 𝐵) ∈ V
76snnz 4779 . . . . 5 {(𝐴 +s 𝐵)} ≠ ∅
8 sslttr 27297 . . . . 5 ((({𝑑 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑑 = (𝑙 +s 𝐵)} ∪ {𝑒 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑒 = (𝐴 +s 𝑚)}) <<s {(𝐴 +s 𝐵)} ∧ {(𝐴 +s 𝐵)} <<s ({𝑓 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑓 = (𝑝 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑔 = (𝐴 +s 𝑞)}) ∧ {(𝐴 +s 𝐵)} ≠ ∅) → ({𝑑 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑑 = (𝑙 +s 𝐵)} ∪ {𝑒 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑒 = (𝐴 +s 𝑚)}) <<s ({𝑓 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑓 = (𝑝 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑔 = (𝐴 +s 𝑞)}))
97, 8mp3an3 1450 . . . 4 ((({𝑑 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑑 = (𝑙 +s 𝐵)} ∪ {𝑒 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑒 = (𝐴 +s 𝑚)}) <<s {(𝐴 +s 𝐵)} ∧ {(𝐴 +s 𝐵)} <<s ({𝑓 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑓 = (𝑝 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑔 = (𝐴 +s 𝑞)})) → ({𝑑 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑑 = (𝑙 +s 𝐵)} ∪ {𝑒 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑒 = (𝐴 +s 𝑚)}) <<s ({𝑓 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑓 = (𝑝 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑔 = (𝐴 +s 𝑞)}))
104, 5, 9syl2anc 584 . . 3 (𝜑 → ({𝑑 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑑 = (𝑙 +s 𝐵)} ∪ {𝑒 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑒 = (𝐴 +s 𝑚)}) <<s ({𝑓 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑓 = (𝑝 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑔 = (𝐴 +s 𝑞)}))
11 lltropt 27356 . . . 4 ( L ‘𝐶) <<s ( R ‘𝐶)
1211a1i 11 . . 3 (𝜑 → ( L ‘𝐶) <<s ( R ‘𝐶))
13 addsval2 27436 . . . 4 ((𝐴 No 𝐵 No ) → (𝐴 +s 𝐵) = (({𝑑 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑑 = (𝑙 +s 𝐵)} ∪ {𝑒 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑒 = (𝐴 +s 𝑚)}) |s ({𝑓 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑓 = (𝑝 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑔 = (𝐴 +s 𝑞)})))
141, 2, 13syl2anc 584 . . 3 (𝜑 → (𝐴 +s 𝐵) = (({𝑑 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑑 = (𝑙 +s 𝐵)} ∪ {𝑒 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑒 = (𝐴 +s 𝑚)}) |s ({𝑓 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑓 = (𝑝 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑔 = (𝐴 +s 𝑞)})))
15 addsasslem.3 . . . . 5 (𝜑𝐶 No )
16 lrcut 27386 . . . . 5 (𝐶 No → (( L ‘𝐶) |s ( R ‘𝐶)) = 𝐶)
1715, 16syl 17 . . . 4 (𝜑 → (( L ‘𝐶) |s ( R ‘𝐶)) = 𝐶)
1817eqcomd 2738 . . 3 (𝜑𝐶 = (( L ‘𝐶) |s ( R ‘𝐶)))
1910, 12, 14, 18addsunif 27474 . 2 (𝜑 → ((𝐴 +s 𝐵) +s 𝐶) = (({𝑦 ∣ ∃ ∈ ({𝑑 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑑 = (𝑙 +s 𝐵)} ∪ {𝑒 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑒 = (𝐴 +s 𝑚)})𝑦 = ( +s 𝐶)} ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = ((𝐴 +s 𝐵) +s 𝑛)}) |s ({𝑎 ∣ ∃𝑖 ∈ ({𝑓 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑓 = (𝑝 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑔 = (𝐴 +s 𝑞)})𝑎 = (𝑖 +s 𝐶)} ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = ((𝐴 +s 𝐵) +s 𝑟)})))
20 unab 4297 . . . . 5 ({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = ((𝑙 +s 𝐵) +s 𝐶)} ∪ {𝑦 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑦 = ((𝐴 +s 𝑚) +s 𝐶)}) = {𝑦 ∣ (∃𝑙 ∈ ( L ‘𝐴)𝑦 = ((𝑙 +s 𝐵) +s 𝐶) ∨ ∃𝑚 ∈ ( L ‘𝐵)𝑦 = ((𝐴 +s 𝑚) +s 𝐶))}
21 eqeq1 2736 . . . . . . . 8 (𝑧 = 𝑦 → (𝑧 = ((𝐴 +s 𝑚) +s 𝐶) ↔ 𝑦 = ((𝐴 +s 𝑚) +s 𝐶)))
2221rexbidv 3178 . . . . . . 7 (𝑧 = 𝑦 → (∃𝑚 ∈ ( L ‘𝐵)𝑧 = ((𝐴 +s 𝑚) +s 𝐶) ↔ ∃𝑚 ∈ ( L ‘𝐵)𝑦 = ((𝐴 +s 𝑚) +s 𝐶)))
2322cbvabv 2805 . . . . . 6 {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = ((𝐴 +s 𝑚) +s 𝐶)} = {𝑦 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑦 = ((𝐴 +s 𝑚) +s 𝐶)}
2423uneq2i 4159 . . . . 5 ({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = ((𝑙 +s 𝐵) +s 𝐶)} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = ((𝐴 +s 𝑚) +s 𝐶)}) = ({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = ((𝑙 +s 𝐵) +s 𝐶)} ∪ {𝑦 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑦 = ((𝐴 +s 𝑚) +s 𝐶)})
25 rexun 4189 . . . . . . 7 (∃ ∈ ({𝑑 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑑 = (𝑙 +s 𝐵)} ∪ {𝑒 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑒 = (𝐴 +s 𝑚)})𝑦 = ( +s 𝐶) ↔ (∃ ∈ {𝑑 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑑 = (𝑙 +s 𝐵)}𝑦 = ( +s 𝐶) ∨ ∃ ∈ {𝑒 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑒 = (𝐴 +s 𝑚)}𝑦 = ( +s 𝐶)))
26 eqeq1 2736 . . . . . . . . . . 11 (𝑑 = → (𝑑 = (𝑙 +s 𝐵) ↔ = (𝑙 +s 𝐵)))
2726rexbidv 3178 . . . . . . . . . 10 (𝑑 = → (∃𝑙 ∈ ( L ‘𝐴)𝑑 = (𝑙 +s 𝐵) ↔ ∃𝑙 ∈ ( L ‘𝐴) = (𝑙 +s 𝐵)))
2827rexab 3689 . . . . . . . . 9 (∃ ∈ {𝑑 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑑 = (𝑙 +s 𝐵)}𝑦 = ( +s 𝐶) ↔ ∃(∃𝑙 ∈ ( L ‘𝐴) = (𝑙 +s 𝐵) ∧ 𝑦 = ( +s 𝐶)))
29 rexcom4 3285 . . . . . . . . . 10 (∃𝑙 ∈ ( L ‘𝐴)∃( = (𝑙 +s 𝐵) ∧ 𝑦 = ( +s 𝐶)) ↔ ∃𝑙 ∈ ( L ‘𝐴)( = (𝑙 +s 𝐵) ∧ 𝑦 = ( +s 𝐶)))
30 ovex 7438 . . . . . . . . . . . 12 (𝑙 +s 𝐵) ∈ V
31 oveq1 7412 . . . . . . . . . . . . 13 ( = (𝑙 +s 𝐵) → ( +s 𝐶) = ((𝑙 +s 𝐵) +s 𝐶))
3231eqeq2d 2743 . . . . . . . . . . . 12 ( = (𝑙 +s 𝐵) → (𝑦 = ( +s 𝐶) ↔ 𝑦 = ((𝑙 +s 𝐵) +s 𝐶)))
3330, 32ceqsexv 3525 . . . . . . . . . . 11 (∃( = (𝑙 +s 𝐵) ∧ 𝑦 = ( +s 𝐶)) ↔ 𝑦 = ((𝑙 +s 𝐵) +s 𝐶))
3433rexbii 3094 . . . . . . . . . 10 (∃𝑙 ∈ ( L ‘𝐴)∃( = (𝑙 +s 𝐵) ∧ 𝑦 = ( +s 𝐶)) ↔ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = ((𝑙 +s 𝐵) +s 𝐶))
35 r19.41v 3188 . . . . . . . . . . 11 (∃𝑙 ∈ ( L ‘𝐴)( = (𝑙 +s 𝐵) ∧ 𝑦 = ( +s 𝐶)) ↔ (∃𝑙 ∈ ( L ‘𝐴) = (𝑙 +s 𝐵) ∧ 𝑦 = ( +s 𝐶)))
3635exbii 1850 . . . . . . . . . 10 (∃𝑙 ∈ ( L ‘𝐴)( = (𝑙 +s 𝐵) ∧ 𝑦 = ( +s 𝐶)) ↔ ∃(∃𝑙 ∈ ( L ‘𝐴) = (𝑙 +s 𝐵) ∧ 𝑦 = ( +s 𝐶)))
3729, 34, 363bitr3ri 301 . . . . . . . . 9 (∃(∃𝑙 ∈ ( L ‘𝐴) = (𝑙 +s 𝐵) ∧ 𝑦 = ( +s 𝐶)) ↔ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = ((𝑙 +s 𝐵) +s 𝐶))
3828, 37bitri 274 . . . . . . . 8 (∃ ∈ {𝑑 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑑 = (𝑙 +s 𝐵)}𝑦 = ( +s 𝐶) ↔ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = ((𝑙 +s 𝐵) +s 𝐶))
39 eqeq1 2736 . . . . . . . . . . 11 (𝑒 = → (𝑒 = (𝐴 +s 𝑚) ↔ = (𝐴 +s 𝑚)))
4039rexbidv 3178 . . . . . . . . . 10 (𝑒 = → (∃𝑚 ∈ ( L ‘𝐵)𝑒 = (𝐴 +s 𝑚) ↔ ∃𝑚 ∈ ( L ‘𝐵) = (𝐴 +s 𝑚)))
4140rexab 3689 . . . . . . . . 9 (∃ ∈ {𝑒 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑒 = (𝐴 +s 𝑚)}𝑦 = ( +s 𝐶) ↔ ∃(∃𝑚 ∈ ( L ‘𝐵) = (𝐴 +s 𝑚) ∧ 𝑦 = ( +s 𝐶)))
42 rexcom4 3285 . . . . . . . . . 10 (∃𝑚 ∈ ( L ‘𝐵)∃( = (𝐴 +s 𝑚) ∧ 𝑦 = ( +s 𝐶)) ↔ ∃𝑚 ∈ ( L ‘𝐵)( = (𝐴 +s 𝑚) ∧ 𝑦 = ( +s 𝐶)))
43 ovex 7438 . . . . . . . . . . . 12 (𝐴 +s 𝑚) ∈ V
44 oveq1 7412 . . . . . . . . . . . . 13 ( = (𝐴 +s 𝑚) → ( +s 𝐶) = ((𝐴 +s 𝑚) +s 𝐶))
4544eqeq2d 2743 . . . . . . . . . . . 12 ( = (𝐴 +s 𝑚) → (𝑦 = ( +s 𝐶) ↔ 𝑦 = ((𝐴 +s 𝑚) +s 𝐶)))
4643, 45ceqsexv 3525 . . . . . . . . . . 11 (∃( = (𝐴 +s 𝑚) ∧ 𝑦 = ( +s 𝐶)) ↔ 𝑦 = ((𝐴 +s 𝑚) +s 𝐶))
4746rexbii 3094 . . . . . . . . . 10 (∃𝑚 ∈ ( L ‘𝐵)∃( = (𝐴 +s 𝑚) ∧ 𝑦 = ( +s 𝐶)) ↔ ∃𝑚 ∈ ( L ‘𝐵)𝑦 = ((𝐴 +s 𝑚) +s 𝐶))
48 r19.41v 3188 . . . . . . . . . . 11 (∃𝑚 ∈ ( L ‘𝐵)( = (𝐴 +s 𝑚) ∧ 𝑦 = ( +s 𝐶)) ↔ (∃𝑚 ∈ ( L ‘𝐵) = (𝐴 +s 𝑚) ∧ 𝑦 = ( +s 𝐶)))
4948exbii 1850 . . . . . . . . . 10 (∃𝑚 ∈ ( L ‘𝐵)( = (𝐴 +s 𝑚) ∧ 𝑦 = ( +s 𝐶)) ↔ ∃(∃𝑚 ∈ ( L ‘𝐵) = (𝐴 +s 𝑚) ∧ 𝑦 = ( +s 𝐶)))
5042, 47, 493bitr3ri 301 . . . . . . . . 9 (∃(∃𝑚 ∈ ( L ‘𝐵) = (𝐴 +s 𝑚) ∧ 𝑦 = ( +s 𝐶)) ↔ ∃𝑚 ∈ ( L ‘𝐵)𝑦 = ((𝐴 +s 𝑚) +s 𝐶))
5141, 50bitri 274 . . . . . . . 8 (∃ ∈ {𝑒 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑒 = (𝐴 +s 𝑚)}𝑦 = ( +s 𝐶) ↔ ∃𝑚 ∈ ( L ‘𝐵)𝑦 = ((𝐴 +s 𝑚) +s 𝐶))
5238, 51orbi12i 913 . . . . . . 7 ((∃ ∈ {𝑑 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑑 = (𝑙 +s 𝐵)}𝑦 = ( +s 𝐶) ∨ ∃ ∈ {𝑒 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑒 = (𝐴 +s 𝑚)}𝑦 = ( +s 𝐶)) ↔ (∃𝑙 ∈ ( L ‘𝐴)𝑦 = ((𝑙 +s 𝐵) +s 𝐶) ∨ ∃𝑚 ∈ ( L ‘𝐵)𝑦 = ((𝐴 +s 𝑚) +s 𝐶)))
5325, 52bitri 274 . . . . . 6 (∃ ∈ ({𝑑 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑑 = (𝑙 +s 𝐵)} ∪ {𝑒 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑒 = (𝐴 +s 𝑚)})𝑦 = ( +s 𝐶) ↔ (∃𝑙 ∈ ( L ‘𝐴)𝑦 = ((𝑙 +s 𝐵) +s 𝐶) ∨ ∃𝑚 ∈ ( L ‘𝐵)𝑦 = ((𝐴 +s 𝑚) +s 𝐶)))
5453abbii 2802 . . . . 5 {𝑦 ∣ ∃ ∈ ({𝑑 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑑 = (𝑙 +s 𝐵)} ∪ {𝑒 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑒 = (𝐴 +s 𝑚)})𝑦 = ( +s 𝐶)} = {𝑦 ∣ (∃𝑙 ∈ ( L ‘𝐴)𝑦 = ((𝑙 +s 𝐵) +s 𝐶) ∨ ∃𝑚 ∈ ( L ‘𝐵)𝑦 = ((𝐴 +s 𝑚) +s 𝐶))}
5520, 24, 543eqtr4ri 2771 . . . 4 {𝑦 ∣ ∃ ∈ ({𝑑 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑑 = (𝑙 +s 𝐵)} ∪ {𝑒 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑒 = (𝐴 +s 𝑚)})𝑦 = ( +s 𝐶)} = ({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = ((𝑙 +s 𝐵) +s 𝐶)} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = ((𝐴 +s 𝑚) +s 𝐶)})
5655uneq1i 4158 . . 3 ({𝑦 ∣ ∃ ∈ ({𝑑 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑑 = (𝑙 +s 𝐵)} ∪ {𝑒 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑒 = (𝐴 +s 𝑚)})𝑦 = ( +s 𝐶)} ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = ((𝐴 +s 𝐵) +s 𝑛)}) = (({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = ((𝑙 +s 𝐵) +s 𝐶)} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = ((𝐴 +s 𝑚) +s 𝐶)}) ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = ((𝐴 +s 𝐵) +s 𝑛)})
57 unab 4297 . . . . 5 ({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = ((𝑝 +s 𝐵) +s 𝐶)} ∪ {𝑎 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑎 = ((𝐴 +s 𝑞) +s 𝐶)}) = {𝑎 ∣ (∃𝑝 ∈ ( R ‘𝐴)𝑎 = ((𝑝 +s 𝐵) +s 𝐶) ∨ ∃𝑞 ∈ ( R ‘𝐵)𝑎 = ((𝐴 +s 𝑞) +s 𝐶))}
58 eqeq1 2736 . . . . . . . 8 (𝑏 = 𝑎 → (𝑏 = ((𝐴 +s 𝑞) +s 𝐶) ↔ 𝑎 = ((𝐴 +s 𝑞) +s 𝐶)))
5958rexbidv 3178 . . . . . . 7 (𝑏 = 𝑎 → (∃𝑞 ∈ ( R ‘𝐵)𝑏 = ((𝐴 +s 𝑞) +s 𝐶) ↔ ∃𝑞 ∈ ( R ‘𝐵)𝑎 = ((𝐴 +s 𝑞) +s 𝐶)))
6059cbvabv 2805 . . . . . 6 {𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = ((𝐴 +s 𝑞) +s 𝐶)} = {𝑎 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑎 = ((𝐴 +s 𝑞) +s 𝐶)}
6160uneq2i 4159 . . . . 5 ({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = ((𝑝 +s 𝐵) +s 𝐶)} ∪ {𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = ((𝐴 +s 𝑞) +s 𝐶)}) = ({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = ((𝑝 +s 𝐵) +s 𝐶)} ∪ {𝑎 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑎 = ((𝐴 +s 𝑞) +s 𝐶)})
62 rexun 4189 . . . . . . 7 (∃𝑖 ∈ ({𝑓 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑓 = (𝑝 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑔 = (𝐴 +s 𝑞)})𝑎 = (𝑖 +s 𝐶) ↔ (∃𝑖 ∈ {𝑓 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑓 = (𝑝 +s 𝐵)}𝑎 = (𝑖 +s 𝐶) ∨ ∃𝑖 ∈ {𝑔 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑔 = (𝐴 +s 𝑞)}𝑎 = (𝑖 +s 𝐶)))
63 eqeq1 2736 . . . . . . . . . . 11 (𝑓 = 𝑖 → (𝑓 = (𝑝 +s 𝐵) ↔ 𝑖 = (𝑝 +s 𝐵)))
6463rexbidv 3178 . . . . . . . . . 10 (𝑓 = 𝑖 → (∃𝑝 ∈ ( R ‘𝐴)𝑓 = (𝑝 +s 𝐵) ↔ ∃𝑝 ∈ ( R ‘𝐴)𝑖 = (𝑝 +s 𝐵)))
6564rexab 3689 . . . . . . . . 9 (∃𝑖 ∈ {𝑓 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑓 = (𝑝 +s 𝐵)}𝑎 = (𝑖 +s 𝐶) ↔ ∃𝑖(∃𝑝 ∈ ( R ‘𝐴)𝑖 = (𝑝 +s 𝐵) ∧ 𝑎 = (𝑖 +s 𝐶)))
66 rexcom4 3285 . . . . . . . . . 10 (∃𝑝 ∈ ( R ‘𝐴)∃𝑖(𝑖 = (𝑝 +s 𝐵) ∧ 𝑎 = (𝑖 +s 𝐶)) ↔ ∃𝑖𝑝 ∈ ( R ‘𝐴)(𝑖 = (𝑝 +s 𝐵) ∧ 𝑎 = (𝑖 +s 𝐶)))
67 ovex 7438 . . . . . . . . . . . 12 (𝑝 +s 𝐵) ∈ V
68 oveq1 7412 . . . . . . . . . . . . 13 (𝑖 = (𝑝 +s 𝐵) → (𝑖 +s 𝐶) = ((𝑝 +s 𝐵) +s 𝐶))
6968eqeq2d 2743 . . . . . . . . . . . 12 (𝑖 = (𝑝 +s 𝐵) → (𝑎 = (𝑖 +s 𝐶) ↔ 𝑎 = ((𝑝 +s 𝐵) +s 𝐶)))
7067, 69ceqsexv 3525 . . . . . . . . . . 11 (∃𝑖(𝑖 = (𝑝 +s 𝐵) ∧ 𝑎 = (𝑖 +s 𝐶)) ↔ 𝑎 = ((𝑝 +s 𝐵) +s 𝐶))
7170rexbii 3094 . . . . . . . . . 10 (∃𝑝 ∈ ( R ‘𝐴)∃𝑖(𝑖 = (𝑝 +s 𝐵) ∧ 𝑎 = (𝑖 +s 𝐶)) ↔ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = ((𝑝 +s 𝐵) +s 𝐶))
72 r19.41v 3188 . . . . . . . . . . 11 (∃𝑝 ∈ ( R ‘𝐴)(𝑖 = (𝑝 +s 𝐵) ∧ 𝑎 = (𝑖 +s 𝐶)) ↔ (∃𝑝 ∈ ( R ‘𝐴)𝑖 = (𝑝 +s 𝐵) ∧ 𝑎 = (𝑖 +s 𝐶)))
7372exbii 1850 . . . . . . . . . 10 (∃𝑖𝑝 ∈ ( R ‘𝐴)(𝑖 = (𝑝 +s 𝐵) ∧ 𝑎 = (𝑖 +s 𝐶)) ↔ ∃𝑖(∃𝑝 ∈ ( R ‘𝐴)𝑖 = (𝑝 +s 𝐵) ∧ 𝑎 = (𝑖 +s 𝐶)))
7466, 71, 733bitr3ri 301 . . . . . . . . 9 (∃𝑖(∃𝑝 ∈ ( R ‘𝐴)𝑖 = (𝑝 +s 𝐵) ∧ 𝑎 = (𝑖 +s 𝐶)) ↔ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = ((𝑝 +s 𝐵) +s 𝐶))
7565, 74bitri 274 . . . . . . . 8 (∃𝑖 ∈ {𝑓 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑓 = (𝑝 +s 𝐵)}𝑎 = (𝑖 +s 𝐶) ↔ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = ((𝑝 +s 𝐵) +s 𝐶))
76 eqeq1 2736 . . . . . . . . . . 11 (𝑔 = 𝑖 → (𝑔 = (𝐴 +s 𝑞) ↔ 𝑖 = (𝐴 +s 𝑞)))
7776rexbidv 3178 . . . . . . . . . 10 (𝑔 = 𝑖 → (∃𝑞 ∈ ( R ‘𝐵)𝑔 = (𝐴 +s 𝑞) ↔ ∃𝑞 ∈ ( R ‘𝐵)𝑖 = (𝐴 +s 𝑞)))
7877rexab 3689 . . . . . . . . 9 (∃𝑖 ∈ {𝑔 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑔 = (𝐴 +s 𝑞)}𝑎 = (𝑖 +s 𝐶) ↔ ∃𝑖(∃𝑞 ∈ ( R ‘𝐵)𝑖 = (𝐴 +s 𝑞) ∧ 𝑎 = (𝑖 +s 𝐶)))
79 rexcom4 3285 . . . . . . . . . 10 (∃𝑞 ∈ ( R ‘𝐵)∃𝑖(𝑖 = (𝐴 +s 𝑞) ∧ 𝑎 = (𝑖 +s 𝐶)) ↔ ∃𝑖𝑞 ∈ ( R ‘𝐵)(𝑖 = (𝐴 +s 𝑞) ∧ 𝑎 = (𝑖 +s 𝐶)))
80 ovex 7438 . . . . . . . . . . . 12 (𝐴 +s 𝑞) ∈ V
81 oveq1 7412 . . . . . . . . . . . . 13 (𝑖 = (𝐴 +s 𝑞) → (𝑖 +s 𝐶) = ((𝐴 +s 𝑞) +s 𝐶))
8281eqeq2d 2743 . . . . . . . . . . . 12 (𝑖 = (𝐴 +s 𝑞) → (𝑎 = (𝑖 +s 𝐶) ↔ 𝑎 = ((𝐴 +s 𝑞) +s 𝐶)))
8380, 82ceqsexv 3525 . . . . . . . . . . 11 (∃𝑖(𝑖 = (𝐴 +s 𝑞) ∧ 𝑎 = (𝑖 +s 𝐶)) ↔ 𝑎 = ((𝐴 +s 𝑞) +s 𝐶))
8483rexbii 3094 . . . . . . . . . 10 (∃𝑞 ∈ ( R ‘𝐵)∃𝑖(𝑖 = (𝐴 +s 𝑞) ∧ 𝑎 = (𝑖 +s 𝐶)) ↔ ∃𝑞 ∈ ( R ‘𝐵)𝑎 = ((𝐴 +s 𝑞) +s 𝐶))
85 r19.41v 3188 . . . . . . . . . . 11 (∃𝑞 ∈ ( R ‘𝐵)(𝑖 = (𝐴 +s 𝑞) ∧ 𝑎 = (𝑖 +s 𝐶)) ↔ (∃𝑞 ∈ ( R ‘𝐵)𝑖 = (𝐴 +s 𝑞) ∧ 𝑎 = (𝑖 +s 𝐶)))
8685exbii 1850 . . . . . . . . . 10 (∃𝑖𝑞 ∈ ( R ‘𝐵)(𝑖 = (𝐴 +s 𝑞) ∧ 𝑎 = (𝑖 +s 𝐶)) ↔ ∃𝑖(∃𝑞 ∈ ( R ‘𝐵)𝑖 = (𝐴 +s 𝑞) ∧ 𝑎 = (𝑖 +s 𝐶)))
8779, 84, 863bitr3ri 301 . . . . . . . . 9 (∃𝑖(∃𝑞 ∈ ( R ‘𝐵)𝑖 = (𝐴 +s 𝑞) ∧ 𝑎 = (𝑖 +s 𝐶)) ↔ ∃𝑞 ∈ ( R ‘𝐵)𝑎 = ((𝐴 +s 𝑞) +s 𝐶))
8878, 87bitri 274 . . . . . . . 8 (∃𝑖 ∈ {𝑔 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑔 = (𝐴 +s 𝑞)}𝑎 = (𝑖 +s 𝐶) ↔ ∃𝑞 ∈ ( R ‘𝐵)𝑎 = ((𝐴 +s 𝑞) +s 𝐶))
8975, 88orbi12i 913 . . . . . . 7 ((∃𝑖 ∈ {𝑓 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑓 = (𝑝 +s 𝐵)}𝑎 = (𝑖 +s 𝐶) ∨ ∃𝑖 ∈ {𝑔 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑔 = (𝐴 +s 𝑞)}𝑎 = (𝑖 +s 𝐶)) ↔ (∃𝑝 ∈ ( R ‘𝐴)𝑎 = ((𝑝 +s 𝐵) +s 𝐶) ∨ ∃𝑞 ∈ ( R ‘𝐵)𝑎 = ((𝐴 +s 𝑞) +s 𝐶)))
9062, 89bitri 274 . . . . . 6 (∃𝑖 ∈ ({𝑓 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑓 = (𝑝 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑔 = (𝐴 +s 𝑞)})𝑎 = (𝑖 +s 𝐶) ↔ (∃𝑝 ∈ ( R ‘𝐴)𝑎 = ((𝑝 +s 𝐵) +s 𝐶) ∨ ∃𝑞 ∈ ( R ‘𝐵)𝑎 = ((𝐴 +s 𝑞) +s 𝐶)))
9190abbii 2802 . . . . 5 {𝑎 ∣ ∃𝑖 ∈ ({𝑓 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑓 = (𝑝 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑔 = (𝐴 +s 𝑞)})𝑎 = (𝑖 +s 𝐶)} = {𝑎 ∣ (∃𝑝 ∈ ( R ‘𝐴)𝑎 = ((𝑝 +s 𝐵) +s 𝐶) ∨ ∃𝑞 ∈ ( R ‘𝐵)𝑎 = ((𝐴 +s 𝑞) +s 𝐶))}
9257, 61, 913eqtr4ri 2771 . . . 4 {𝑎 ∣ ∃𝑖 ∈ ({𝑓 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑓 = (𝑝 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑔 = (𝐴 +s 𝑞)})𝑎 = (𝑖 +s 𝐶)} = ({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = ((𝑝 +s 𝐵) +s 𝐶)} ∪ {𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = ((𝐴 +s 𝑞) +s 𝐶)})
9392uneq1i 4158 . . 3 ({𝑎 ∣ ∃𝑖 ∈ ({𝑓 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑓 = (𝑝 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑔 = (𝐴 +s 𝑞)})𝑎 = (𝑖 +s 𝐶)} ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = ((𝐴 +s 𝐵) +s 𝑟)}) = (({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = ((𝑝 +s 𝐵) +s 𝐶)} ∪ {𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = ((𝐴 +s 𝑞) +s 𝐶)}) ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = ((𝐴 +s 𝐵) +s 𝑟)})
9456, 93oveq12i 7417 . 2 (({𝑦 ∣ ∃ ∈ ({𝑑 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑑 = (𝑙 +s 𝐵)} ∪ {𝑒 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑒 = (𝐴 +s 𝑚)})𝑦 = ( +s 𝐶)} ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = ((𝐴 +s 𝐵) +s 𝑛)}) |s ({𝑎 ∣ ∃𝑖 ∈ ({𝑓 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑓 = (𝑝 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑔 = (𝐴 +s 𝑞)})𝑎 = (𝑖 +s 𝐶)} ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = ((𝐴 +s 𝐵) +s 𝑟)})) = ((({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = ((𝑙 +s 𝐵) +s 𝐶)} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = ((𝐴 +s 𝑚) +s 𝐶)}) ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = ((𝐴 +s 𝐵) +s 𝑛)}) |s (({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = ((𝑝 +s 𝐵) +s 𝐶)} ∪ {𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = ((𝐴 +s 𝑞) +s 𝐶)}) ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = ((𝐴 +s 𝐵) +s 𝑟)}))
9519, 94eqtrdi 2788 1 (𝜑 → ((𝐴 +s 𝐵) +s 𝐶) = ((({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = ((𝑙 +s 𝐵) +s 𝐶)} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = ((𝐴 +s 𝑚) +s 𝐶)}) ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = ((𝐴 +s 𝐵) +s 𝑛)}) |s (({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = ((𝑝 +s 𝐵) +s 𝐶)} ∪ {𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = ((𝐴 +s 𝑞) +s 𝐶)}) ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = ((𝐴 +s 𝐵) +s 𝑟)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 845   = wceq 1541  wex 1781  wcel 2106  {cab 2709  wne 2940  wrex 3070  cun 3945  c0 4321  {csn 4627   class class class wbr 5147  cfv 6540  (class class class)co 7405   No csur 27132   <<s csslt 27271   |s cscut 27273   L cleft 27329   R cright 27330   +s cadds 27432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-ot 4636  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-1o 8462  df-2o 8463  df-nadd 8661  df-no 27135  df-slt 27136  df-bday 27137  df-sle 27237  df-sslt 27272  df-scut 27274  df-0s 27314  df-made 27331  df-old 27332  df-left 27334  df-right 27335  df-norec2 27422  df-adds 27433
This theorem is referenced by:  addsass  27477
  Copyright terms: Public domain W3C validator