MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsasslem1 Structured version   Visualization version   GIF version

Theorem addsasslem1 28054
Description: Lemma for addition associativity. Expand one form of the triple sum. (Contributed by Scott Fenton, 21-Jan-2025.)
Hypotheses
Ref Expression
addsasslem.1 (𝜑𝐴 No )
addsasslem.2 (𝜑𝐵 No )
addsasslem.3 (𝜑𝐶 No )
Assertion
Ref Expression
addsasslem1 (𝜑 → ((𝐴 +s 𝐵) +s 𝐶) = ((({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = ((𝑙 +s 𝐵) +s 𝐶)} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = ((𝐴 +s 𝑚) +s 𝐶)}) ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = ((𝐴 +s 𝐵) +s 𝑛)}) |s (({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = ((𝑝 +s 𝐵) +s 𝐶)} ∪ {𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = ((𝐴 +s 𝑞) +s 𝐶)}) ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = ((𝐴 +s 𝐵) +s 𝑟)})))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑐,𝑙,𝑚,𝑛,𝑝,𝑞,𝑟,𝑤,𝑦,𝑧   𝐵,𝑎,𝑏,𝑐,𝑙,𝑚,𝑛,𝑝,𝑞,𝑟,𝑤,𝑦,𝑧   𝐶,𝑎,𝑏,𝑐,𝑙,𝑚,𝑛,𝑝,𝑞,𝑟,𝑤,𝑦,𝑧   𝜑,𝑎,𝑏,𝑐,𝑙,𝑚,𝑛,𝑝,𝑞,𝑟,𝑤,𝑦,𝑧

Proof of Theorem addsasslem1
Dummy variables 𝑑 𝑒 𝑓 𝑔 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addsasslem.1 . . . . . 6 (𝜑𝐴 No )
2 addsasslem.2 . . . . . 6 (𝜑𝐵 No )
31, 2addscut 28029 . . . . 5 (𝜑 → ((𝐴 +s 𝐵) ∈ No ∧ ({𝑑 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑑 = (𝑙 +s 𝐵)} ∪ {𝑒 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑒 = (𝐴 +s 𝑚)}) <<s {(𝐴 +s 𝐵)} ∧ {(𝐴 +s 𝐵)} <<s ({𝑓 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑓 = (𝑝 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑔 = (𝐴 +s 𝑞)})))
43simp2d 1143 . . . 4 (𝜑 → ({𝑑 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑑 = (𝑙 +s 𝐵)} ∪ {𝑒 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑒 = (𝐴 +s 𝑚)}) <<s {(𝐴 +s 𝐵)})
53simp3d 1144 . . . 4 (𝜑 → {(𝐴 +s 𝐵)} <<s ({𝑓 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑓 = (𝑝 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑔 = (𝐴 +s 𝑞)}))
6 ovex 7481 . . . . . 6 (𝐴 +s 𝐵) ∈ V
76snnz 4801 . . . . 5 {(𝐴 +s 𝐵)} ≠ ∅
8 sslttr 27870 . . . . 5 ((({𝑑 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑑 = (𝑙 +s 𝐵)} ∪ {𝑒 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑒 = (𝐴 +s 𝑚)}) <<s {(𝐴 +s 𝐵)} ∧ {(𝐴 +s 𝐵)} <<s ({𝑓 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑓 = (𝑝 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑔 = (𝐴 +s 𝑞)}) ∧ {(𝐴 +s 𝐵)} ≠ ∅) → ({𝑑 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑑 = (𝑙 +s 𝐵)} ∪ {𝑒 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑒 = (𝐴 +s 𝑚)}) <<s ({𝑓 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑓 = (𝑝 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑔 = (𝐴 +s 𝑞)}))
97, 8mp3an3 1450 . . . 4 ((({𝑑 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑑 = (𝑙 +s 𝐵)} ∪ {𝑒 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑒 = (𝐴 +s 𝑚)}) <<s {(𝐴 +s 𝐵)} ∧ {(𝐴 +s 𝐵)} <<s ({𝑓 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑓 = (𝑝 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑔 = (𝐴 +s 𝑞)})) → ({𝑑 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑑 = (𝑙 +s 𝐵)} ∪ {𝑒 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑒 = (𝐴 +s 𝑚)}) <<s ({𝑓 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑓 = (𝑝 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑔 = (𝐴 +s 𝑞)}))
104, 5, 9syl2anc 583 . . 3 (𝜑 → ({𝑑 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑑 = (𝑙 +s 𝐵)} ∪ {𝑒 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑒 = (𝐴 +s 𝑚)}) <<s ({𝑓 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑓 = (𝑝 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑔 = (𝐴 +s 𝑞)}))
11 lltropt 27929 . . . 4 ( L ‘𝐶) <<s ( R ‘𝐶)
1211a1i 11 . . 3 (𝜑 → ( L ‘𝐶) <<s ( R ‘𝐶))
13 addsval2 28014 . . . 4 ((𝐴 No 𝐵 No ) → (𝐴 +s 𝐵) = (({𝑑 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑑 = (𝑙 +s 𝐵)} ∪ {𝑒 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑒 = (𝐴 +s 𝑚)}) |s ({𝑓 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑓 = (𝑝 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑔 = (𝐴 +s 𝑞)})))
141, 2, 13syl2anc 583 . . 3 (𝜑 → (𝐴 +s 𝐵) = (({𝑑 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑑 = (𝑙 +s 𝐵)} ∪ {𝑒 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑒 = (𝐴 +s 𝑚)}) |s ({𝑓 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑓 = (𝑝 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑔 = (𝐴 +s 𝑞)})))
15 addsasslem.3 . . . . 5 (𝜑𝐶 No )
16 lrcut 27959 . . . . 5 (𝐶 No → (( L ‘𝐶) |s ( R ‘𝐶)) = 𝐶)
1715, 16syl 17 . . . 4 (𝜑 → (( L ‘𝐶) |s ( R ‘𝐶)) = 𝐶)
1817eqcomd 2746 . . 3 (𝜑𝐶 = (( L ‘𝐶) |s ( R ‘𝐶)))
1910, 12, 14, 18addsunif 28053 . 2 (𝜑 → ((𝐴 +s 𝐵) +s 𝐶) = (({𝑦 ∣ ∃ ∈ ({𝑑 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑑 = (𝑙 +s 𝐵)} ∪ {𝑒 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑒 = (𝐴 +s 𝑚)})𝑦 = ( +s 𝐶)} ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = ((𝐴 +s 𝐵) +s 𝑛)}) |s ({𝑎 ∣ ∃𝑖 ∈ ({𝑓 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑓 = (𝑝 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑔 = (𝐴 +s 𝑞)})𝑎 = (𝑖 +s 𝐶)} ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = ((𝐴 +s 𝐵) +s 𝑟)})))
20 unab 4327 . . . . 5 ({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = ((𝑙 +s 𝐵) +s 𝐶)} ∪ {𝑦 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑦 = ((𝐴 +s 𝑚) +s 𝐶)}) = {𝑦 ∣ (∃𝑙 ∈ ( L ‘𝐴)𝑦 = ((𝑙 +s 𝐵) +s 𝐶) ∨ ∃𝑚 ∈ ( L ‘𝐵)𝑦 = ((𝐴 +s 𝑚) +s 𝐶))}
21 eqeq1 2744 . . . . . . . 8 (𝑧 = 𝑦 → (𝑧 = ((𝐴 +s 𝑚) +s 𝐶) ↔ 𝑦 = ((𝐴 +s 𝑚) +s 𝐶)))
2221rexbidv 3185 . . . . . . 7 (𝑧 = 𝑦 → (∃𝑚 ∈ ( L ‘𝐵)𝑧 = ((𝐴 +s 𝑚) +s 𝐶) ↔ ∃𝑚 ∈ ( L ‘𝐵)𝑦 = ((𝐴 +s 𝑚) +s 𝐶)))
2322cbvabv 2815 . . . . . 6 {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = ((𝐴 +s 𝑚) +s 𝐶)} = {𝑦 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑦 = ((𝐴 +s 𝑚) +s 𝐶)}
2423uneq2i 4188 . . . . 5 ({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = ((𝑙 +s 𝐵) +s 𝐶)} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = ((𝐴 +s 𝑚) +s 𝐶)}) = ({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = ((𝑙 +s 𝐵) +s 𝐶)} ∪ {𝑦 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑦 = ((𝐴 +s 𝑚) +s 𝐶)})
25 rexun 4219 . . . . . . 7 (∃ ∈ ({𝑑 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑑 = (𝑙 +s 𝐵)} ∪ {𝑒 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑒 = (𝐴 +s 𝑚)})𝑦 = ( +s 𝐶) ↔ (∃ ∈ {𝑑 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑑 = (𝑙 +s 𝐵)}𝑦 = ( +s 𝐶) ∨ ∃ ∈ {𝑒 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑒 = (𝐴 +s 𝑚)}𝑦 = ( +s 𝐶)))
26 eqeq1 2744 . . . . . . . . . . 11 (𝑑 = → (𝑑 = (𝑙 +s 𝐵) ↔ = (𝑙 +s 𝐵)))
2726rexbidv 3185 . . . . . . . . . 10 (𝑑 = → (∃𝑙 ∈ ( L ‘𝐴)𝑑 = (𝑙 +s 𝐵) ↔ ∃𝑙 ∈ ( L ‘𝐴) = (𝑙 +s 𝐵)))
2827rexab 3716 . . . . . . . . 9 (∃ ∈ {𝑑 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑑 = (𝑙 +s 𝐵)}𝑦 = ( +s 𝐶) ↔ ∃(∃𝑙 ∈ ( L ‘𝐴) = (𝑙 +s 𝐵) ∧ 𝑦 = ( +s 𝐶)))
29 rexcom4 3294 . . . . . . . . . 10 (∃𝑙 ∈ ( L ‘𝐴)∃( = (𝑙 +s 𝐵) ∧ 𝑦 = ( +s 𝐶)) ↔ ∃𝑙 ∈ ( L ‘𝐴)( = (𝑙 +s 𝐵) ∧ 𝑦 = ( +s 𝐶)))
30 ovex 7481 . . . . . . . . . . . 12 (𝑙 +s 𝐵) ∈ V
31 oveq1 7455 . . . . . . . . . . . . 13 ( = (𝑙 +s 𝐵) → ( +s 𝐶) = ((𝑙 +s 𝐵) +s 𝐶))
3231eqeq2d 2751 . . . . . . . . . . . 12 ( = (𝑙 +s 𝐵) → (𝑦 = ( +s 𝐶) ↔ 𝑦 = ((𝑙 +s 𝐵) +s 𝐶)))
3330, 32ceqsexv 3542 . . . . . . . . . . 11 (∃( = (𝑙 +s 𝐵) ∧ 𝑦 = ( +s 𝐶)) ↔ 𝑦 = ((𝑙 +s 𝐵) +s 𝐶))
3433rexbii 3100 . . . . . . . . . 10 (∃𝑙 ∈ ( L ‘𝐴)∃( = (𝑙 +s 𝐵) ∧ 𝑦 = ( +s 𝐶)) ↔ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = ((𝑙 +s 𝐵) +s 𝐶))
35 r19.41v 3195 . . . . . . . . . . 11 (∃𝑙 ∈ ( L ‘𝐴)( = (𝑙 +s 𝐵) ∧ 𝑦 = ( +s 𝐶)) ↔ (∃𝑙 ∈ ( L ‘𝐴) = (𝑙 +s 𝐵) ∧ 𝑦 = ( +s 𝐶)))
3635exbii 1846 . . . . . . . . . 10 (∃𝑙 ∈ ( L ‘𝐴)( = (𝑙 +s 𝐵) ∧ 𝑦 = ( +s 𝐶)) ↔ ∃(∃𝑙 ∈ ( L ‘𝐴) = (𝑙 +s 𝐵) ∧ 𝑦 = ( +s 𝐶)))
3729, 34, 363bitr3ri 302 . . . . . . . . 9 (∃(∃𝑙 ∈ ( L ‘𝐴) = (𝑙 +s 𝐵) ∧ 𝑦 = ( +s 𝐶)) ↔ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = ((𝑙 +s 𝐵) +s 𝐶))
3828, 37bitri 275 . . . . . . . 8 (∃ ∈ {𝑑 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑑 = (𝑙 +s 𝐵)}𝑦 = ( +s 𝐶) ↔ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = ((𝑙 +s 𝐵) +s 𝐶))
39 eqeq1 2744 . . . . . . . . . . 11 (𝑒 = → (𝑒 = (𝐴 +s 𝑚) ↔ = (𝐴 +s 𝑚)))
4039rexbidv 3185 . . . . . . . . . 10 (𝑒 = → (∃𝑚 ∈ ( L ‘𝐵)𝑒 = (𝐴 +s 𝑚) ↔ ∃𝑚 ∈ ( L ‘𝐵) = (𝐴 +s 𝑚)))
4140rexab 3716 . . . . . . . . 9 (∃ ∈ {𝑒 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑒 = (𝐴 +s 𝑚)}𝑦 = ( +s 𝐶) ↔ ∃(∃𝑚 ∈ ( L ‘𝐵) = (𝐴 +s 𝑚) ∧ 𝑦 = ( +s 𝐶)))
42 rexcom4 3294 . . . . . . . . . 10 (∃𝑚 ∈ ( L ‘𝐵)∃( = (𝐴 +s 𝑚) ∧ 𝑦 = ( +s 𝐶)) ↔ ∃𝑚 ∈ ( L ‘𝐵)( = (𝐴 +s 𝑚) ∧ 𝑦 = ( +s 𝐶)))
43 ovex 7481 . . . . . . . . . . . 12 (𝐴 +s 𝑚) ∈ V
44 oveq1 7455 . . . . . . . . . . . . 13 ( = (𝐴 +s 𝑚) → ( +s 𝐶) = ((𝐴 +s 𝑚) +s 𝐶))
4544eqeq2d 2751 . . . . . . . . . . . 12 ( = (𝐴 +s 𝑚) → (𝑦 = ( +s 𝐶) ↔ 𝑦 = ((𝐴 +s 𝑚) +s 𝐶)))
4643, 45ceqsexv 3542 . . . . . . . . . . 11 (∃( = (𝐴 +s 𝑚) ∧ 𝑦 = ( +s 𝐶)) ↔ 𝑦 = ((𝐴 +s 𝑚) +s 𝐶))
4746rexbii 3100 . . . . . . . . . 10 (∃𝑚 ∈ ( L ‘𝐵)∃( = (𝐴 +s 𝑚) ∧ 𝑦 = ( +s 𝐶)) ↔ ∃𝑚 ∈ ( L ‘𝐵)𝑦 = ((𝐴 +s 𝑚) +s 𝐶))
48 r19.41v 3195 . . . . . . . . . . 11 (∃𝑚 ∈ ( L ‘𝐵)( = (𝐴 +s 𝑚) ∧ 𝑦 = ( +s 𝐶)) ↔ (∃𝑚 ∈ ( L ‘𝐵) = (𝐴 +s 𝑚) ∧ 𝑦 = ( +s 𝐶)))
4948exbii 1846 . . . . . . . . . 10 (∃𝑚 ∈ ( L ‘𝐵)( = (𝐴 +s 𝑚) ∧ 𝑦 = ( +s 𝐶)) ↔ ∃(∃𝑚 ∈ ( L ‘𝐵) = (𝐴 +s 𝑚) ∧ 𝑦 = ( +s 𝐶)))
5042, 47, 493bitr3ri 302 . . . . . . . . 9 (∃(∃𝑚 ∈ ( L ‘𝐵) = (𝐴 +s 𝑚) ∧ 𝑦 = ( +s 𝐶)) ↔ ∃𝑚 ∈ ( L ‘𝐵)𝑦 = ((𝐴 +s 𝑚) +s 𝐶))
5141, 50bitri 275 . . . . . . . 8 (∃ ∈ {𝑒 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑒 = (𝐴 +s 𝑚)}𝑦 = ( +s 𝐶) ↔ ∃𝑚 ∈ ( L ‘𝐵)𝑦 = ((𝐴 +s 𝑚) +s 𝐶))
5238, 51orbi12i 913 . . . . . . 7 ((∃ ∈ {𝑑 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑑 = (𝑙 +s 𝐵)}𝑦 = ( +s 𝐶) ∨ ∃ ∈ {𝑒 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑒 = (𝐴 +s 𝑚)}𝑦 = ( +s 𝐶)) ↔ (∃𝑙 ∈ ( L ‘𝐴)𝑦 = ((𝑙 +s 𝐵) +s 𝐶) ∨ ∃𝑚 ∈ ( L ‘𝐵)𝑦 = ((𝐴 +s 𝑚) +s 𝐶)))
5325, 52bitri 275 . . . . . 6 (∃ ∈ ({𝑑 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑑 = (𝑙 +s 𝐵)} ∪ {𝑒 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑒 = (𝐴 +s 𝑚)})𝑦 = ( +s 𝐶) ↔ (∃𝑙 ∈ ( L ‘𝐴)𝑦 = ((𝑙 +s 𝐵) +s 𝐶) ∨ ∃𝑚 ∈ ( L ‘𝐵)𝑦 = ((𝐴 +s 𝑚) +s 𝐶)))
5453abbii 2812 . . . . 5 {𝑦 ∣ ∃ ∈ ({𝑑 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑑 = (𝑙 +s 𝐵)} ∪ {𝑒 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑒 = (𝐴 +s 𝑚)})𝑦 = ( +s 𝐶)} = {𝑦 ∣ (∃𝑙 ∈ ( L ‘𝐴)𝑦 = ((𝑙 +s 𝐵) +s 𝐶) ∨ ∃𝑚 ∈ ( L ‘𝐵)𝑦 = ((𝐴 +s 𝑚) +s 𝐶))}
5520, 24, 543eqtr4ri 2779 . . . 4 {𝑦 ∣ ∃ ∈ ({𝑑 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑑 = (𝑙 +s 𝐵)} ∪ {𝑒 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑒 = (𝐴 +s 𝑚)})𝑦 = ( +s 𝐶)} = ({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = ((𝑙 +s 𝐵) +s 𝐶)} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = ((𝐴 +s 𝑚) +s 𝐶)})
5655uneq1i 4187 . . 3 ({𝑦 ∣ ∃ ∈ ({𝑑 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑑 = (𝑙 +s 𝐵)} ∪ {𝑒 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑒 = (𝐴 +s 𝑚)})𝑦 = ( +s 𝐶)} ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = ((𝐴 +s 𝐵) +s 𝑛)}) = (({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = ((𝑙 +s 𝐵) +s 𝐶)} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = ((𝐴 +s 𝑚) +s 𝐶)}) ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = ((𝐴 +s 𝐵) +s 𝑛)})
57 unab 4327 . . . . 5 ({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = ((𝑝 +s 𝐵) +s 𝐶)} ∪ {𝑎 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑎 = ((𝐴 +s 𝑞) +s 𝐶)}) = {𝑎 ∣ (∃𝑝 ∈ ( R ‘𝐴)𝑎 = ((𝑝 +s 𝐵) +s 𝐶) ∨ ∃𝑞 ∈ ( R ‘𝐵)𝑎 = ((𝐴 +s 𝑞) +s 𝐶))}
58 eqeq1 2744 . . . . . . . 8 (𝑏 = 𝑎 → (𝑏 = ((𝐴 +s 𝑞) +s 𝐶) ↔ 𝑎 = ((𝐴 +s 𝑞) +s 𝐶)))
5958rexbidv 3185 . . . . . . 7 (𝑏 = 𝑎 → (∃𝑞 ∈ ( R ‘𝐵)𝑏 = ((𝐴 +s 𝑞) +s 𝐶) ↔ ∃𝑞 ∈ ( R ‘𝐵)𝑎 = ((𝐴 +s 𝑞) +s 𝐶)))
6059cbvabv 2815 . . . . . 6 {𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = ((𝐴 +s 𝑞) +s 𝐶)} = {𝑎 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑎 = ((𝐴 +s 𝑞) +s 𝐶)}
6160uneq2i 4188 . . . . 5 ({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = ((𝑝 +s 𝐵) +s 𝐶)} ∪ {𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = ((𝐴 +s 𝑞) +s 𝐶)}) = ({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = ((𝑝 +s 𝐵) +s 𝐶)} ∪ {𝑎 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑎 = ((𝐴 +s 𝑞) +s 𝐶)})
62 rexun 4219 . . . . . . 7 (∃𝑖 ∈ ({𝑓 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑓 = (𝑝 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑔 = (𝐴 +s 𝑞)})𝑎 = (𝑖 +s 𝐶) ↔ (∃𝑖 ∈ {𝑓 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑓 = (𝑝 +s 𝐵)}𝑎 = (𝑖 +s 𝐶) ∨ ∃𝑖 ∈ {𝑔 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑔 = (𝐴 +s 𝑞)}𝑎 = (𝑖 +s 𝐶)))
63 eqeq1 2744 . . . . . . . . . . 11 (𝑓 = 𝑖 → (𝑓 = (𝑝 +s 𝐵) ↔ 𝑖 = (𝑝 +s 𝐵)))
6463rexbidv 3185 . . . . . . . . . 10 (𝑓 = 𝑖 → (∃𝑝 ∈ ( R ‘𝐴)𝑓 = (𝑝 +s 𝐵) ↔ ∃𝑝 ∈ ( R ‘𝐴)𝑖 = (𝑝 +s 𝐵)))
6564rexab 3716 . . . . . . . . 9 (∃𝑖 ∈ {𝑓 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑓 = (𝑝 +s 𝐵)}𝑎 = (𝑖 +s 𝐶) ↔ ∃𝑖(∃𝑝 ∈ ( R ‘𝐴)𝑖 = (𝑝 +s 𝐵) ∧ 𝑎 = (𝑖 +s 𝐶)))
66 rexcom4 3294 . . . . . . . . . 10 (∃𝑝 ∈ ( R ‘𝐴)∃𝑖(𝑖 = (𝑝 +s 𝐵) ∧ 𝑎 = (𝑖 +s 𝐶)) ↔ ∃𝑖𝑝 ∈ ( R ‘𝐴)(𝑖 = (𝑝 +s 𝐵) ∧ 𝑎 = (𝑖 +s 𝐶)))
67 ovex 7481 . . . . . . . . . . . 12 (𝑝 +s 𝐵) ∈ V
68 oveq1 7455 . . . . . . . . . . . . 13 (𝑖 = (𝑝 +s 𝐵) → (𝑖 +s 𝐶) = ((𝑝 +s 𝐵) +s 𝐶))
6968eqeq2d 2751 . . . . . . . . . . . 12 (𝑖 = (𝑝 +s 𝐵) → (𝑎 = (𝑖 +s 𝐶) ↔ 𝑎 = ((𝑝 +s 𝐵) +s 𝐶)))
7067, 69ceqsexv 3542 . . . . . . . . . . 11 (∃𝑖(𝑖 = (𝑝 +s 𝐵) ∧ 𝑎 = (𝑖 +s 𝐶)) ↔ 𝑎 = ((𝑝 +s 𝐵) +s 𝐶))
7170rexbii 3100 . . . . . . . . . 10 (∃𝑝 ∈ ( R ‘𝐴)∃𝑖(𝑖 = (𝑝 +s 𝐵) ∧ 𝑎 = (𝑖 +s 𝐶)) ↔ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = ((𝑝 +s 𝐵) +s 𝐶))
72 r19.41v 3195 . . . . . . . . . . 11 (∃𝑝 ∈ ( R ‘𝐴)(𝑖 = (𝑝 +s 𝐵) ∧ 𝑎 = (𝑖 +s 𝐶)) ↔ (∃𝑝 ∈ ( R ‘𝐴)𝑖 = (𝑝 +s 𝐵) ∧ 𝑎 = (𝑖 +s 𝐶)))
7372exbii 1846 . . . . . . . . . 10 (∃𝑖𝑝 ∈ ( R ‘𝐴)(𝑖 = (𝑝 +s 𝐵) ∧ 𝑎 = (𝑖 +s 𝐶)) ↔ ∃𝑖(∃𝑝 ∈ ( R ‘𝐴)𝑖 = (𝑝 +s 𝐵) ∧ 𝑎 = (𝑖 +s 𝐶)))
7466, 71, 733bitr3ri 302 . . . . . . . . 9 (∃𝑖(∃𝑝 ∈ ( R ‘𝐴)𝑖 = (𝑝 +s 𝐵) ∧ 𝑎 = (𝑖 +s 𝐶)) ↔ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = ((𝑝 +s 𝐵) +s 𝐶))
7565, 74bitri 275 . . . . . . . 8 (∃𝑖 ∈ {𝑓 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑓 = (𝑝 +s 𝐵)}𝑎 = (𝑖 +s 𝐶) ↔ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = ((𝑝 +s 𝐵) +s 𝐶))
76 eqeq1 2744 . . . . . . . . . . 11 (𝑔 = 𝑖 → (𝑔 = (𝐴 +s 𝑞) ↔ 𝑖 = (𝐴 +s 𝑞)))
7776rexbidv 3185 . . . . . . . . . 10 (𝑔 = 𝑖 → (∃𝑞 ∈ ( R ‘𝐵)𝑔 = (𝐴 +s 𝑞) ↔ ∃𝑞 ∈ ( R ‘𝐵)𝑖 = (𝐴 +s 𝑞)))
7877rexab 3716 . . . . . . . . 9 (∃𝑖 ∈ {𝑔 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑔 = (𝐴 +s 𝑞)}𝑎 = (𝑖 +s 𝐶) ↔ ∃𝑖(∃𝑞 ∈ ( R ‘𝐵)𝑖 = (𝐴 +s 𝑞) ∧ 𝑎 = (𝑖 +s 𝐶)))
79 rexcom4 3294 . . . . . . . . . 10 (∃𝑞 ∈ ( R ‘𝐵)∃𝑖(𝑖 = (𝐴 +s 𝑞) ∧ 𝑎 = (𝑖 +s 𝐶)) ↔ ∃𝑖𝑞 ∈ ( R ‘𝐵)(𝑖 = (𝐴 +s 𝑞) ∧ 𝑎 = (𝑖 +s 𝐶)))
80 ovex 7481 . . . . . . . . . . . 12 (𝐴 +s 𝑞) ∈ V
81 oveq1 7455 . . . . . . . . . . . . 13 (𝑖 = (𝐴 +s 𝑞) → (𝑖 +s 𝐶) = ((𝐴 +s 𝑞) +s 𝐶))
8281eqeq2d 2751 . . . . . . . . . . . 12 (𝑖 = (𝐴 +s 𝑞) → (𝑎 = (𝑖 +s 𝐶) ↔ 𝑎 = ((𝐴 +s 𝑞) +s 𝐶)))
8380, 82ceqsexv 3542 . . . . . . . . . . 11 (∃𝑖(𝑖 = (𝐴 +s 𝑞) ∧ 𝑎 = (𝑖 +s 𝐶)) ↔ 𝑎 = ((𝐴 +s 𝑞) +s 𝐶))
8483rexbii 3100 . . . . . . . . . 10 (∃𝑞 ∈ ( R ‘𝐵)∃𝑖(𝑖 = (𝐴 +s 𝑞) ∧ 𝑎 = (𝑖 +s 𝐶)) ↔ ∃𝑞 ∈ ( R ‘𝐵)𝑎 = ((𝐴 +s 𝑞) +s 𝐶))
85 r19.41v 3195 . . . . . . . . . . 11 (∃𝑞 ∈ ( R ‘𝐵)(𝑖 = (𝐴 +s 𝑞) ∧ 𝑎 = (𝑖 +s 𝐶)) ↔ (∃𝑞 ∈ ( R ‘𝐵)𝑖 = (𝐴 +s 𝑞) ∧ 𝑎 = (𝑖 +s 𝐶)))
8685exbii 1846 . . . . . . . . . 10 (∃𝑖𝑞 ∈ ( R ‘𝐵)(𝑖 = (𝐴 +s 𝑞) ∧ 𝑎 = (𝑖 +s 𝐶)) ↔ ∃𝑖(∃𝑞 ∈ ( R ‘𝐵)𝑖 = (𝐴 +s 𝑞) ∧ 𝑎 = (𝑖 +s 𝐶)))
8779, 84, 863bitr3ri 302 . . . . . . . . 9 (∃𝑖(∃𝑞 ∈ ( R ‘𝐵)𝑖 = (𝐴 +s 𝑞) ∧ 𝑎 = (𝑖 +s 𝐶)) ↔ ∃𝑞 ∈ ( R ‘𝐵)𝑎 = ((𝐴 +s 𝑞) +s 𝐶))
8878, 87bitri 275 . . . . . . . 8 (∃𝑖 ∈ {𝑔 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑔 = (𝐴 +s 𝑞)}𝑎 = (𝑖 +s 𝐶) ↔ ∃𝑞 ∈ ( R ‘𝐵)𝑎 = ((𝐴 +s 𝑞) +s 𝐶))
8975, 88orbi12i 913 . . . . . . 7 ((∃𝑖 ∈ {𝑓 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑓 = (𝑝 +s 𝐵)}𝑎 = (𝑖 +s 𝐶) ∨ ∃𝑖 ∈ {𝑔 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑔 = (𝐴 +s 𝑞)}𝑎 = (𝑖 +s 𝐶)) ↔ (∃𝑝 ∈ ( R ‘𝐴)𝑎 = ((𝑝 +s 𝐵) +s 𝐶) ∨ ∃𝑞 ∈ ( R ‘𝐵)𝑎 = ((𝐴 +s 𝑞) +s 𝐶)))
9062, 89bitri 275 . . . . . 6 (∃𝑖 ∈ ({𝑓 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑓 = (𝑝 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑔 = (𝐴 +s 𝑞)})𝑎 = (𝑖 +s 𝐶) ↔ (∃𝑝 ∈ ( R ‘𝐴)𝑎 = ((𝑝 +s 𝐵) +s 𝐶) ∨ ∃𝑞 ∈ ( R ‘𝐵)𝑎 = ((𝐴 +s 𝑞) +s 𝐶)))
9190abbii 2812 . . . . 5 {𝑎 ∣ ∃𝑖 ∈ ({𝑓 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑓 = (𝑝 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑔 = (𝐴 +s 𝑞)})𝑎 = (𝑖 +s 𝐶)} = {𝑎 ∣ (∃𝑝 ∈ ( R ‘𝐴)𝑎 = ((𝑝 +s 𝐵) +s 𝐶) ∨ ∃𝑞 ∈ ( R ‘𝐵)𝑎 = ((𝐴 +s 𝑞) +s 𝐶))}
9257, 61, 913eqtr4ri 2779 . . . 4 {𝑎 ∣ ∃𝑖 ∈ ({𝑓 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑓 = (𝑝 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑔 = (𝐴 +s 𝑞)})𝑎 = (𝑖 +s 𝐶)} = ({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = ((𝑝 +s 𝐵) +s 𝐶)} ∪ {𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = ((𝐴 +s 𝑞) +s 𝐶)})
9392uneq1i 4187 . . 3 ({𝑎 ∣ ∃𝑖 ∈ ({𝑓 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑓 = (𝑝 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑔 = (𝐴 +s 𝑞)})𝑎 = (𝑖 +s 𝐶)} ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = ((𝐴 +s 𝐵) +s 𝑟)}) = (({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = ((𝑝 +s 𝐵) +s 𝐶)} ∪ {𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = ((𝐴 +s 𝑞) +s 𝐶)}) ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = ((𝐴 +s 𝐵) +s 𝑟)})
9456, 93oveq12i 7460 . 2 (({𝑦 ∣ ∃ ∈ ({𝑑 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑑 = (𝑙 +s 𝐵)} ∪ {𝑒 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑒 = (𝐴 +s 𝑚)})𝑦 = ( +s 𝐶)} ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = ((𝐴 +s 𝐵) +s 𝑛)}) |s ({𝑎 ∣ ∃𝑖 ∈ ({𝑓 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑓 = (𝑝 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑔 = (𝐴 +s 𝑞)})𝑎 = (𝑖 +s 𝐶)} ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = ((𝐴 +s 𝐵) +s 𝑟)})) = ((({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = ((𝑙 +s 𝐵) +s 𝐶)} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = ((𝐴 +s 𝑚) +s 𝐶)}) ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = ((𝐴 +s 𝐵) +s 𝑛)}) |s (({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = ((𝑝 +s 𝐵) +s 𝐶)} ∪ {𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = ((𝐴 +s 𝑞) +s 𝐶)}) ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = ((𝐴 +s 𝐵) +s 𝑟)}))
9519, 94eqtrdi 2796 1 (𝜑 → ((𝐴 +s 𝐵) +s 𝐶) = ((({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = ((𝑙 +s 𝐵) +s 𝐶)} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = ((𝐴 +s 𝑚) +s 𝐶)}) ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = ((𝐴 +s 𝐵) +s 𝑛)}) |s (({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = ((𝑝 +s 𝐵) +s 𝐶)} ∪ {𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = ((𝐴 +s 𝑞) +s 𝐶)}) ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = ((𝐴 +s 𝐵) +s 𝑟)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wne 2946  wrex 3076  cun 3974  c0 4352  {csn 4648   class class class wbr 5166  cfv 6573  (class class class)co 7448   No csur 27702   <<s csslt 27843   |s cscut 27845   L cleft 27902   R cright 27903   +s cadds 28010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-1o 8522  df-2o 8523  df-nadd 8722  df-no 27705  df-slt 27706  df-bday 27707  df-sle 27808  df-sslt 27844  df-scut 27846  df-0s 27887  df-made 27904  df-old 27905  df-left 27907  df-right 27908  df-norec2 28000  df-adds 28011
This theorem is referenced by:  addsass  28056
  Copyright terms: Public domain W3C validator