MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noinfno Structured version   Visualization version   GIF version

Theorem noinfno 27566
Description: The next several theorems deal with a surreal "infimum". This surreal will ultimately be shown to bound 𝐵 above and bound the restriction of any surreal below. We begin by showing that the given expression actually defines a surreal number. (Contributed by Scott Fenton, 8-Aug-2024.)
Hypothesis
Ref Expression
noinfno.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfno ((𝐵 No 𝐵𝑉) → 𝑇 No )
Distinct variable groups:   𝑥,𝐵,𝑦,𝑔,𝑣,𝑢   𝑔,𝑉
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑉(𝑥,𝑦,𝑣,𝑢)

Proof of Theorem noinfno
Dummy variables 𝑎 𝑏 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noinfno.1 . 2 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
2 iftrue 4534 . . . . 5 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}))
32adantr 480 . . . 4 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉)) → if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}))
4 simprl 768 . . . . . 6 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉)) → 𝐵 No )
5 simpl 482 . . . . . . . 8 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
6 nominmo 27547 . . . . . . . . 9 (𝐵 No → ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
76ad2antrl 725 . . . . . . . 8 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉)) → ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
8 reu5 3377 . . . . . . . 8 (∃!𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ↔ (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
95, 7, 8sylanbrc 582 . . . . . . 7 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉)) → ∃!𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
10 riotacl 7386 . . . . . . 7 (∃!𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ 𝐵)
119, 10syl 17 . . . . . 6 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉)) → (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ 𝐵)
124, 11sseldd 3983 . . . . 5 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉)) → (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ No )
13 1oex 8482 . . . . . . 7 1o ∈ V
1413prid1 4766 . . . . . 6 1o ∈ {1o, 2o}
1514noextend 27514 . . . . 5 ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ No → ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) ∈ No )
1612, 15syl 17 . . . 4 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉)) → ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) ∈ No )
173, 16eqeltrd 2832 . . 3 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉)) → if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) ∈ No )
18 iffalse 4537 . . . . 5 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
1918adantr 480 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉)) → if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
20 funmpt 6586 . . . . . 6 Fun (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))
2120a1i 11 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉)) → Fun (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
22 iotaex 6516 . . . . . . 7 (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) ∈ V
23 eqid 2731 . . . . . . 7 (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))
2422, 23dmmpti 6694 . . . . . 6 dom (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) = {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}
25 simpl 482 . . . . . . . . . . . . . 14 ((𝐵 No ∧ (𝑢𝐵 ∧ (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))))) → 𝐵 No )
26 simprl 768 . . . . . . . . . . . . . 14 ((𝐵 No ∧ (𝑢𝐵 ∧ (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))))) → 𝑢𝐵)
2725, 26sseldd 3983 . . . . . . . . . . . . 13 ((𝐵 No ∧ (𝑢𝐵 ∧ (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))))) → 𝑢 No )
28 nodmon 27498 . . . . . . . . . . . . 13 (𝑢 No → dom 𝑢 ∈ On)
2927, 28syl 17 . . . . . . . . . . . 12 ((𝐵 No ∧ (𝑢𝐵 ∧ (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))))) → dom 𝑢 ∈ On)
30 simprrl 778 . . . . . . . . . . . 12 ((𝐵 No ∧ (𝑢𝐵 ∧ (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))))) → 𝑦 ∈ dom 𝑢)
31 onelon 6389 . . . . . . . . . . . 12 ((dom 𝑢 ∈ On ∧ 𝑦 ∈ dom 𝑢) → 𝑦 ∈ On)
3229, 30, 31syl2anc 583 . . . . . . . . . . 11 ((𝐵 No ∧ (𝑢𝐵 ∧ (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))))) → 𝑦 ∈ On)
3332rexlimdvaa 3155 . . . . . . . . . 10 (𝐵 No → (∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) → 𝑦 ∈ On))
3433abssdv 4065 . . . . . . . . 9 (𝐵 No → {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ⊆ On)
35 simplr 766 . . . . . . . . . . . . . . . . 17 (((𝐵 No 𝑎𝑏) ∧ 𝑢𝐵) → 𝑎𝑏)
36 ssel2 3977 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 No 𝑢𝐵) → 𝑢 No )
3736adantlr 712 . . . . . . . . . . . . . . . . . . 19 (((𝐵 No 𝑎𝑏) ∧ 𝑢𝐵) → 𝑢 No )
3837, 28syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐵 No 𝑎𝑏) ∧ 𝑢𝐵) → dom 𝑢 ∈ On)
39 ontr1 6410 . . . . . . . . . . . . . . . . . 18 (dom 𝑢 ∈ On → ((𝑎𝑏𝑏 ∈ dom 𝑢) → 𝑎 ∈ dom 𝑢))
4038, 39syl 17 . . . . . . . . . . . . . . . . 17 (((𝐵 No 𝑎𝑏) ∧ 𝑢𝐵) → ((𝑎𝑏𝑏 ∈ dom 𝑢) → 𝑎 ∈ dom 𝑢))
4135, 40mpand 692 . . . . . . . . . . . . . . . 16 (((𝐵 No 𝑎𝑏) ∧ 𝑢𝐵) → (𝑏 ∈ dom 𝑢𝑎 ∈ dom 𝑢))
4241adantrd 491 . . . . . . . . . . . . . . 15 (((𝐵 No 𝑎𝑏) ∧ 𝑢𝐵) → ((𝑏 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))) → 𝑎 ∈ dom 𝑢))
43 reseq1 5975 . . . . . . . . . . . . . . . . . . 19 ((𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏) → ((𝑢 ↾ suc 𝑏) ↾ suc 𝑎) = ((𝑣 ↾ suc 𝑏) ↾ suc 𝑎))
44 onelon 6389 . . . . . . . . . . . . . . . . . . . . . . . 24 ((dom 𝑢 ∈ On ∧ 𝑏 ∈ dom 𝑢) → 𝑏 ∈ On)
4538, 44sylan 579 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐵 No 𝑎𝑏) ∧ 𝑢𝐵) ∧ 𝑏 ∈ dom 𝑢) → 𝑏 ∈ On)
46 onsucb 7809 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 ∈ On ↔ suc 𝑏 ∈ On)
4745, 46sylib 217 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐵 No 𝑎𝑏) ∧ 𝑢𝐵) ∧ 𝑏 ∈ dom 𝑢) → suc 𝑏 ∈ On)
48 simpllr 773 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐵 No 𝑎𝑏) ∧ 𝑢𝐵) ∧ 𝑏 ∈ dom 𝑢) → 𝑎𝑏)
49 eloni 6374 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏 ∈ On → Ord 𝑏)
5045, 49syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐵 No 𝑎𝑏) ∧ 𝑢𝐵) ∧ 𝑏 ∈ dom 𝑢) → Ord 𝑏)
51 ordsucelsuc 7814 . . . . . . . . . . . . . . . . . . . . . . . 24 (Ord 𝑏 → (𝑎𝑏 ↔ suc 𝑎 ∈ suc 𝑏))
5250, 51syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐵 No 𝑎𝑏) ∧ 𝑢𝐵) ∧ 𝑏 ∈ dom 𝑢) → (𝑎𝑏 ↔ suc 𝑎 ∈ suc 𝑏))
5348, 52mpbid 231 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐵 No 𝑎𝑏) ∧ 𝑢𝐵) ∧ 𝑏 ∈ dom 𝑢) → suc 𝑎 ∈ suc 𝑏)
54 onelss 6406 . . . . . . . . . . . . . . . . . . . . . 22 (suc 𝑏 ∈ On → (suc 𝑎 ∈ suc 𝑏 → suc 𝑎 ⊆ suc 𝑏))
5547, 53, 54sylc 65 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐵 No 𝑎𝑏) ∧ 𝑢𝐵) ∧ 𝑏 ∈ dom 𝑢) → suc 𝑎 ⊆ suc 𝑏)
5655resabs1d 6012 . . . . . . . . . . . . . . . . . . . 20 ((((𝐵 No 𝑎𝑏) ∧ 𝑢𝐵) ∧ 𝑏 ∈ dom 𝑢) → ((𝑢 ↾ suc 𝑏) ↾ suc 𝑎) = (𝑢 ↾ suc 𝑎))
5755resabs1d 6012 . . . . . . . . . . . . . . . . . . . 20 ((((𝐵 No 𝑎𝑏) ∧ 𝑢𝐵) ∧ 𝑏 ∈ dom 𝑢) → ((𝑣 ↾ suc 𝑏) ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))
5856, 57eqeq12d 2747 . . . . . . . . . . . . . . . . . . 19 ((((𝐵 No 𝑎𝑏) ∧ 𝑢𝐵) ∧ 𝑏 ∈ dom 𝑢) → (((𝑢 ↾ suc 𝑏) ↾ suc 𝑎) = ((𝑣 ↾ suc 𝑏) ↾ suc 𝑎) ↔ (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))
5943, 58imbitrid 243 . . . . . . . . . . . . . . . . . 18 ((((𝐵 No 𝑎𝑏) ∧ 𝑢𝐵) ∧ 𝑏 ∈ dom 𝑢) → ((𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏) → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))
6059imim2d 57 . . . . . . . . . . . . . . . . 17 ((((𝐵 No 𝑎𝑏) ∧ 𝑢𝐵) ∧ 𝑏 ∈ dom 𝑢) → ((¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)) → (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))
6160ralimdv 3168 . . . . . . . . . . . . . . . 16 ((((𝐵 No 𝑎𝑏) ∧ 𝑢𝐵) ∧ 𝑏 ∈ dom 𝑢) → (∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)) → ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))
6261expimpd 453 . . . . . . . . . . . . . . 15 (((𝐵 No 𝑎𝑏) ∧ 𝑢𝐵) → ((𝑏 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))) → ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))
6342, 62jcad 512 . . . . . . . . . . . . . 14 (((𝐵 No 𝑎𝑏) ∧ 𝑢𝐵) → ((𝑏 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))) → (𝑎 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))))
6463reximdva 3167 . . . . . . . . . . . . 13 ((𝐵 No 𝑎𝑏) → (∃𝑢𝐵 (𝑏 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))) → ∃𝑢𝐵 (𝑎 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))))
6564expimpd 453 . . . . . . . . . . . 12 (𝐵 No → ((𝑎𝑏 ∧ ∃𝑢𝐵 (𝑏 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)))) → ∃𝑢𝐵 (𝑎 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))))
66 vex 3477 . . . . . . . . . . . . . 14 𝑏 ∈ V
67 eleq1w 2815 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑏 → (𝑦 ∈ dom 𝑢𝑏 ∈ dom 𝑢))
68 suceq 6430 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑏 → suc 𝑦 = suc 𝑏)
6968reseq2d 5981 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑏 → (𝑢 ↾ suc 𝑦) = (𝑢 ↾ suc 𝑏))
7068reseq2d 5981 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑏 → (𝑣 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑏))
7169, 70eqeq12d 2747 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑏 → ((𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦) ↔ (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)))
7271imbi2d 340 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑏 → ((¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))))
7372ralbidv 3176 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑏 → (∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))))
7467, 73anbi12d 630 . . . . . . . . . . . . . . 15 (𝑦 = 𝑏 → ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ (𝑏 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)))))
7574rexbidv 3177 . . . . . . . . . . . . . 14 (𝑦 = 𝑏 → (∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑢𝐵 (𝑏 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)))))
7666, 75elab 3668 . . . . . . . . . . . . 13 (𝑏 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↔ ∃𝑢𝐵 (𝑏 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))))
7776anbi2i 622 . . . . . . . . . . . 12 ((𝑎𝑏𝑏 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) ↔ (𝑎𝑏 ∧ ∃𝑢𝐵 (𝑏 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)))))
78 vex 3477 . . . . . . . . . . . . 13 𝑎 ∈ V
79 eleq1w 2815 . . . . . . . . . . . . . . 15 (𝑦 = 𝑎 → (𝑦 ∈ dom 𝑢𝑎 ∈ dom 𝑢))
80 suceq 6430 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑎 → suc 𝑦 = suc 𝑎)
8180reseq2d 5981 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑎 → (𝑢 ↾ suc 𝑦) = (𝑢 ↾ suc 𝑎))
8280reseq2d 5981 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑎 → (𝑣 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑎))
8381, 82eqeq12d 2747 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑎 → ((𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦) ↔ (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))
8483imbi2d 340 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑎 → ((¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))
8584ralbidv 3176 . . . . . . . . . . . . . . 15 (𝑦 = 𝑎 → (∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))
8679, 85anbi12d 630 . . . . . . . . . . . . . 14 (𝑦 = 𝑎 → ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ (𝑎 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))))
8786rexbidv 3177 . . . . . . . . . . . . 13 (𝑦 = 𝑎 → (∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑢𝐵 (𝑎 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))))
8878, 87elab 3668 . . . . . . . . . . . 12 (𝑎 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↔ ∃𝑢𝐵 (𝑎 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))
8965, 77, 883imtr4g 296 . . . . . . . . . . 11 (𝐵 No → ((𝑎𝑏𝑏 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) → 𝑎 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}))
9089alrimivv 1930 . . . . . . . . . 10 (𝐵 No → ∀𝑎𝑏((𝑎𝑏𝑏 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) → 𝑎 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}))
91 dftr2 5267 . . . . . . . . . 10 (Tr {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↔ ∀𝑎𝑏((𝑎𝑏𝑏 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) → 𝑎 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}))
9290, 91sylibr 233 . . . . . . . . 9 (𝐵 No → Tr {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))})
93 dford5 7775 . . . . . . . . 9 (Ord {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↔ ({𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ⊆ On ∧ Tr {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}))
9434, 92, 93sylanbrc 582 . . . . . . . 8 (𝐵 No → Ord {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))})
9594ad2antrl 725 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉)) → Ord {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))})
96 bdayfo 27525 . . . . . . . . . . . . . 14 bday : No onto→On
97 fofun 6806 . . . . . . . . . . . . . 14 ( bday : No onto→On → Fun bday )
9896, 97ax-mp 5 . . . . . . . . . . . . 13 Fun bday
99 funimaexg 6634 . . . . . . . . . . . . 13 ((Fun bday 𝐵𝑉) → ( bday 𝐵) ∈ V)
10098, 99mpan 687 . . . . . . . . . . . 12 (𝐵𝑉 → ( bday 𝐵) ∈ V)
101100uniexd 7736 . . . . . . . . . . 11 (𝐵𝑉 ( bday 𝐵) ∈ V)
102101adantl 481 . . . . . . . . . 10 ((𝐵 No 𝐵𝑉) → ( bday 𝐵) ∈ V)
103102adantl 481 . . . . . . . . 9 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉)) → ( bday 𝐵) ∈ V)
104 bdayval 27496 . . . . . . . . . . . . . . . 16 (𝑢 No → ( bday 𝑢) = dom 𝑢)
10527, 104syl 17 . . . . . . . . . . . . . . 15 ((𝐵 No ∧ (𝑢𝐵 ∧ (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))))) → ( bday 𝑢) = dom 𝑢)
106 fofn 6807 . . . . . . . . . . . . . . . . . 18 ( bday : No onto→On → bday Fn No )
10796, 106ax-mp 5 . . . . . . . . . . . . . . . . 17 bday Fn No
108 fnfvima 7237 . . . . . . . . . . . . . . . . 17 (( bday Fn No 𝐵 No 𝑢𝐵) → ( bday 𝑢) ∈ ( bday 𝐵))
109107, 108mp3an1 1447 . . . . . . . . . . . . . . . 16 ((𝐵 No 𝑢𝐵) → ( bday 𝑢) ∈ ( bday 𝐵))
110109adantrr 714 . . . . . . . . . . . . . . 15 ((𝐵 No ∧ (𝑢𝐵 ∧ (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))))) → ( bday 𝑢) ∈ ( bday 𝐵))
111105, 110eqeltrrd 2833 . . . . . . . . . . . . . 14 ((𝐵 No ∧ (𝑢𝐵 ∧ (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))))) → dom 𝑢 ∈ ( bday 𝐵))
112 elssuni 4941 . . . . . . . . . . . . . 14 (dom 𝑢 ∈ ( bday 𝐵) → dom 𝑢 ( bday 𝐵))
113111, 112syl 17 . . . . . . . . . . . . 13 ((𝐵 No ∧ (𝑢𝐵 ∧ (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))))) → dom 𝑢 ( bday 𝐵))
114113, 30sseldd 3983 . . . . . . . . . . . 12 ((𝐵 No ∧ (𝑢𝐵 ∧ (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))))) → 𝑦 ( bday 𝐵))
115114rexlimdvaa 3155 . . . . . . . . . . 11 (𝐵 No → (∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) → 𝑦 ( bday 𝐵)))
116115abssdv 4065 . . . . . . . . . 10 (𝐵 No → {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ⊆ ( bday 𝐵))
117116ad2antrl 725 . . . . . . . . 9 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉)) → {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ⊆ ( bday 𝐵))
118103, 117ssexd 5324 . . . . . . . 8 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉)) → {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ∈ V)
119 elong 6372 . . . . . . . 8 ({𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ∈ V → ({𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ∈ On ↔ Ord {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}))
120118, 119syl 17 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉)) → ({𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ∈ On ↔ Ord {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}))
12195, 120mpbird 257 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉)) → {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ∈ On)
12224, 121eqeltrid 2836 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉)) → dom (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) ∈ On)
12323rnmpt 5954 . . . . . 6 ran (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) = {𝑧 ∣ ∃𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}𝑧 = (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))}
124 eleq1w 2815 . . . . . . . . . . 11 (𝑦 = 𝑔 → (𝑦 ∈ dom 𝑢𝑔 ∈ dom 𝑢))
125 suceq 6430 . . . . . . . . . . . . . . 15 (𝑦 = 𝑔 → suc 𝑦 = suc 𝑔)
126125reseq2d 5981 . . . . . . . . . . . . . 14 (𝑦 = 𝑔 → (𝑢 ↾ suc 𝑦) = (𝑢 ↾ suc 𝑔))
127125reseq2d 5981 . . . . . . . . . . . . . 14 (𝑦 = 𝑔 → (𝑣 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑔))
128126, 127eqeq12d 2747 . . . . . . . . . . . . 13 (𝑦 = 𝑔 → ((𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦) ↔ (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))
129128imbi2d 340 . . . . . . . . . . . 12 (𝑦 = 𝑔 → ((¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))))
130129ralbidv 3176 . . . . . . . . . . 11 (𝑦 = 𝑔 → (∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))))
131124, 130anbi12d 630 . . . . . . . . . 10 (𝑦 = 𝑔 → ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))))
132131rexbidv 3177 . . . . . . . . 9 (𝑦 = 𝑔 → (∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))))
133132rexab 3690 . . . . . . . 8 (∃𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}𝑧 = (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) ↔ ∃𝑔(∃𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))) ∧ 𝑧 = (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
134 eqid 2731 . . . . . . . . . . . . . . . . . 18 (𝑢𝑔) = (𝑢𝑔)
135 fvex 6904 . . . . . . . . . . . . . . . . . . 19 (𝑢𝑔) ∈ V
136 eqeq2 2743 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑢𝑔) → ((𝑢𝑔) = 𝑥 ↔ (𝑢𝑔) = (𝑢𝑔)))
1371363anbi3d 1441 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑢𝑔) → ((𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥) ↔ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = (𝑢𝑔))))
138135, 137spcev 3596 . . . . . . . . . . . . . . . . . 18 ((𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = (𝑢𝑔)) → ∃𝑥(𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
139134, 138mp3an3 1449 . . . . . . . . . . . . . . . . 17 ((𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))) → ∃𝑥(𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
140139reximi 3083 . . . . . . . . . . . . . . . 16 (∃𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))) → ∃𝑢𝐵𝑥(𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
141 rexcom4 3284 . . . . . . . . . . . . . . . 16 (∃𝑢𝐵𝑥(𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥) ↔ ∃𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
142140, 141sylib 217 . . . . . . . . . . . . . . 15 (∃𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))) → ∃𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
143142adantl 481 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉)) ∧ ∃𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → ∃𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
144 noinfprefixmo 27549 . . . . . . . . . . . . . . . 16 (𝐵 No → ∃*𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
145144ad2antrl 725 . . . . . . . . . . . . . . 15 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉)) → ∃*𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
146145adantr 480 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉)) ∧ ∃𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → ∃*𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
147 df-eu 2562 . . . . . . . . . . . . . 14 (∃!𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥) ↔ (∃𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥) ∧ ∃*𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))
148143, 146, 147sylanbrc 582 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉)) ∧ ∃𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → ∃!𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
149 vex 3477 . . . . . . . . . . . . . 14 𝑧 ∈ V
150 eqeq2 2743 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → ((𝑢𝑔) = 𝑥 ↔ (𝑢𝑔) = 𝑧))
1511503anbi3d 1441 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → ((𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥) ↔ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧)))
152151rexbidv 3177 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (∃𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥) ↔ ∃𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧)))
153152iota2 6532 . . . . . . . . . . . . . 14 ((𝑧 ∈ V ∧ ∃!𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) → (∃𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧) ↔ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) = 𝑧))
154149, 153mpan 687 . . . . . . . . . . . . 13 (∃!𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥) → (∃𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧) ↔ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) = 𝑧))
155148, 154syl 17 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉)) ∧ ∃𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → (∃𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧) ↔ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) = 𝑧))
156 eqcom 2738 . . . . . . . . . . . 12 ((℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) = 𝑧𝑧 = (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))
157155, 156bitrdi 287 . . . . . . . . . . 11 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉)) ∧ ∃𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → (∃𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧) ↔ 𝑧 = (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
158 simprr3 1222 . . . . . . . . . . . . . . 15 ((𝐵 No ∧ (𝑢𝐵 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧))) → (𝑢𝑔) = 𝑧)
159 simpl 482 . . . . . . . . . . . . . . . . . 18 ((𝐵 No ∧ (𝑢𝐵 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧))) → 𝐵 No )
160 simprl 768 . . . . . . . . . . . . . . . . . 18 ((𝐵 No ∧ (𝑢𝐵 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧))) → 𝑢𝐵)
161159, 160sseldd 3983 . . . . . . . . . . . . . . . . 17 ((𝐵 No ∧ (𝑢𝐵 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧))) → 𝑢 No )
162 norn 27499 . . . . . . . . . . . . . . . . 17 (𝑢 No → ran 𝑢 ⊆ {1o, 2o})
163161, 162syl 17 . . . . . . . . . . . . . . . 16 ((𝐵 No ∧ (𝑢𝐵 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧))) → ran 𝑢 ⊆ {1o, 2o})
164 nofun 27497 . . . . . . . . . . . . . . . . . 18 (𝑢 No → Fun 𝑢)
165161, 164syl 17 . . . . . . . . . . . . . . . . 17 ((𝐵 No ∧ (𝑢𝐵 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧))) → Fun 𝑢)
166 simprr1 1220 . . . . . . . . . . . . . . . . 17 ((𝐵 No ∧ (𝑢𝐵 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧))) → 𝑔 ∈ dom 𝑢)
167 fvelrn 7078 . . . . . . . . . . . . . . . . 17 ((Fun 𝑢𝑔 ∈ dom 𝑢) → (𝑢𝑔) ∈ ran 𝑢)
168165, 166, 167syl2anc 583 . . . . . . . . . . . . . . . 16 ((𝐵 No ∧ (𝑢𝐵 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧))) → (𝑢𝑔) ∈ ran 𝑢)
169163, 168sseldd 3983 . . . . . . . . . . . . . . 15 ((𝐵 No ∧ (𝑢𝐵 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧))) → (𝑢𝑔) ∈ {1o, 2o})
170158, 169eqeltrrd 2833 . . . . . . . . . . . . . 14 ((𝐵 No ∧ (𝑢𝐵 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧))) → 𝑧 ∈ {1o, 2o})
171170rexlimdvaa 3155 . . . . . . . . . . . . 13 (𝐵 No → (∃𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧) → 𝑧 ∈ {1o, 2o}))
172171ad2antrl 725 . . . . . . . . . . . 12 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉)) → (∃𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧) → 𝑧 ∈ {1o, 2o}))
173172adantr 480 . . . . . . . . . . 11 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉)) ∧ ∃𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → (∃𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧) → 𝑧 ∈ {1o, 2o}))
174157, 173sylbird 260 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉)) ∧ ∃𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → (𝑧 = (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) → 𝑧 ∈ {1o, 2o}))
175174expimpd 453 . . . . . . . . 9 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉)) → ((∃𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))) ∧ 𝑧 = (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) → 𝑧 ∈ {1o, 2o}))
176175exlimdv 1935 . . . . . . . 8 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉)) → (∃𝑔(∃𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))) ∧ 𝑧 = (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) → 𝑧 ∈ {1o, 2o}))
177133, 176biimtrid 241 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉)) → (∃𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}𝑧 = (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) → 𝑧 ∈ {1o, 2o}))
178177abssdv 4065 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉)) → {𝑧 ∣ ∃𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}𝑧 = (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))} ⊆ {1o, 2o})
179123, 178eqsstrid 4030 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉)) → ran (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) ⊆ {1o, 2o})
180 elno2 27502 . . . . 5 ((𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) ∈ No ↔ (Fun (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) ∧ dom (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) ∈ On ∧ ran (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) ⊆ {1o, 2o}))
18121, 122, 179, 180syl3anbrc 1342 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉)) → (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) ∈ No )
18219, 181eqeltrd 2832 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉)) → if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) ∈ No )
18317, 182pm2.61ian 809 . 2 ((𝐵 No 𝐵𝑉) → if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) ∈ No )
1841, 183eqeltrid 2836 1 ((𝐵 No 𝐵𝑉) → 𝑇 No )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1086  wal 1538   = wceq 1540  wex 1780  wcel 2105  ∃*wmo 2531  ∃!weu 2561  {cab 2708  wral 3060  wrex 3069  ∃!wreu 3373  ∃*wrmo 3374  Vcvv 3473  cun 3946  wss 3948  ifcif 4528  {csn 4628  {cpr 4630  cop 4634   cuni 4908   class class class wbr 5148  cmpt 5231  Tr wtr 5265  dom cdm 5676  ran crn 5677  cres 5678  cima 5679  Ord word 6363  Oncon0 6364  suc csuc 6366  cio 6493  Fun wfun 6537   Fn wfn 6538  ontowfo 6541  cfv 6543  crio 7367  1oc1o 8465  2oc2o 8466   No csur 27488   <s cslt 27489   bday cbday 27490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-1o 8472  df-2o 8473  df-no 27491  df-slt 27492  df-bday 27493
This theorem is referenced by:  noinfbday  27568  noinfres  27570  noinfbnd1lem1  27571  noinfbnd1lem2  27572  noinfbnd1lem3  27573  noinfbnd1lem4  27574  noinfbnd1lem5  27575  noinfbnd1lem6  27576  noinfbnd2  27579  nosupinfsep  27580  noetainflem1  27585  noetainflem2  27586  noetainflem3  27587  noetainflem4  27588  noetalem1  27589
  Copyright terms: Public domain W3C validator