Step | Hyp | Ref
| Expression |
1 | | noinfno.1 |
. 2
⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
2 | | iftrue 4426 |
. . . . 5
⊢
(∃𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 → if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) = ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉})) |
3 | 2 | adantr 484 |
. . . 4
⊢
((∃𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉)) → if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) = ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉})) |
4 | | simprl 770 |
. . . . . 6
⊢
((∃𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉)) → 𝐵 ⊆ No
) |
5 | | simpl 486 |
. . . . . . . 8
⊢
((∃𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) |
6 | | nominmo 33467 |
. . . . . . . . 9
⊢ (𝐵 ⊆
No → ∃*𝑥
∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) |
7 | 6 | ad2antrl 727 |
. . . . . . . 8
⊢
((∃𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉)) → ∃*𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) |
8 | | reu5 3340 |
. . . . . . . 8
⊢
(∃!𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ↔ (∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ∃*𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥)) |
9 | 5, 7, 8 | sylanbrc 586 |
. . . . . . 7
⊢
((∃𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉)) → ∃!𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) |
10 | | riotacl 7125 |
. . . . . . 7
⊢
(∃!𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 → (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∈ 𝐵) |
11 | 9, 10 | syl 17 |
. . . . . 6
⊢
((∃𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉)) → (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∈ 𝐵) |
12 | 4, 11 | sseldd 3893 |
. . . . 5
⊢
((∃𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉)) → (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∈ No
) |
13 | | 1oex 8120 |
. . . . . . 7
⊢
1o ∈ V |
14 | 13 | prid1 4655 |
. . . . . 6
⊢
1o ∈ {1o, 2o} |
15 | 14 | noextend 33434 |
. . . . 5
⊢
((℩𝑥
∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∈ No
→ ((℩𝑥
∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}) ∈ No ) |
16 | 12, 15 | syl 17 |
. . . 4
⊢
((∃𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉)) → ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}) ∈ No ) |
17 | 3, 16 | eqeltrd 2852 |
. . 3
⊢
((∃𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉)) → if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) ∈ No
) |
18 | | iffalse 4429 |
. . . . 5
⊢ (¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 → if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
19 | 18 | adantr 484 |
. . . 4
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉)) → if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
20 | | funmpt 6373 |
. . . . . 6
⊢ Fun
(𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) |
21 | 20 | a1i 11 |
. . . . 5
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉)) → Fun (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
22 | | iotaex 6315 |
. . . . . . 7
⊢
(℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) ∈ V |
23 | | eqid 2758 |
. . . . . . 7
⊢ (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) |
24 | 22, 23 | dmmpti 6475 |
. . . . . 6
⊢ dom
(𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) = {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} |
25 | | simpl 486 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ⊆
No ∧ (𝑢 ∈
𝐵 ∧ (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))))) → 𝐵 ⊆ No
) |
26 | | simprl 770 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ⊆
No ∧ (𝑢 ∈
𝐵 ∧ (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))))) → 𝑢 ∈ 𝐵) |
27 | 25, 26 | sseldd 3893 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ⊆
No ∧ (𝑢 ∈
𝐵 ∧ (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))))) → 𝑢 ∈ No
) |
28 | | nodmon 33418 |
. . . . . . . . . . . . 13
⊢ (𝑢 ∈
No → dom 𝑢
∈ On) |
29 | 27, 28 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐵 ⊆
No ∧ (𝑢 ∈
𝐵 ∧ (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))))) → dom 𝑢 ∈ On) |
30 | | simprrl 780 |
. . . . . . . . . . . 12
⊢ ((𝐵 ⊆
No ∧ (𝑢 ∈
𝐵 ∧ (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))))) → 𝑦 ∈ dom 𝑢) |
31 | | onelon 6194 |
. . . . . . . . . . . 12
⊢ ((dom
𝑢 ∈ On ∧ 𝑦 ∈ dom 𝑢) → 𝑦 ∈ On) |
32 | 29, 30, 31 | syl2anc 587 |
. . . . . . . . . . 11
⊢ ((𝐵 ⊆
No ∧ (𝑢 ∈
𝐵 ∧ (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))))) → 𝑦 ∈ On) |
33 | 32 | rexlimdvaa 3209 |
. . . . . . . . . 10
⊢ (𝐵 ⊆
No → (∃𝑢
∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) → 𝑦 ∈ On)) |
34 | 33 | abssdv 3973 |
. . . . . . . . 9
⊢ (𝐵 ⊆
No → {𝑦
∣ ∃𝑢 ∈
𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ⊆ On) |
35 | | simplr 768 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐵 ⊆
No ∧ 𝑎 ∈
𝑏) ∧ 𝑢 ∈ 𝐵) → 𝑎 ∈ 𝑏) |
36 | | ssel2 3887 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐵 ⊆
No ∧ 𝑢 ∈
𝐵) → 𝑢 ∈
No ) |
37 | 36 | adantlr 714 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐵 ⊆
No ∧ 𝑎 ∈
𝑏) ∧ 𝑢 ∈ 𝐵) → 𝑢 ∈ No
) |
38 | 37, 28 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐵 ⊆
No ∧ 𝑎 ∈
𝑏) ∧ 𝑢 ∈ 𝐵) → dom 𝑢 ∈ On) |
39 | | ontr1 6215 |
. . . . . . . . . . . . . . . . . 18
⊢ (dom
𝑢 ∈ On → ((𝑎 ∈ 𝑏 ∧ 𝑏 ∈ dom 𝑢) → 𝑎 ∈ dom 𝑢)) |
40 | 38, 39 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐵 ⊆
No ∧ 𝑎 ∈
𝑏) ∧ 𝑢 ∈ 𝐵) → ((𝑎 ∈ 𝑏 ∧ 𝑏 ∈ dom 𝑢) → 𝑎 ∈ dom 𝑢)) |
41 | 35, 40 | mpand 694 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐵 ⊆
No ∧ 𝑎 ∈
𝑏) ∧ 𝑢 ∈ 𝐵) → (𝑏 ∈ dom 𝑢 → 𝑎 ∈ dom 𝑢)) |
42 | 41 | adantrd 495 |
. . . . . . . . . . . . . . 15
⊢ (((𝐵 ⊆
No ∧ 𝑎 ∈
𝑏) ∧ 𝑢 ∈ 𝐵) → ((𝑏 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))) → 𝑎 ∈ dom 𝑢)) |
43 | | reseq1 5817 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏) → ((𝑢 ↾ suc 𝑏) ↾ suc 𝑎) = ((𝑣 ↾ suc 𝑏) ↾ suc 𝑎)) |
44 | | onelon 6194 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((dom
𝑢 ∈ On ∧ 𝑏 ∈ dom 𝑢) → 𝑏 ∈ On) |
45 | 38, 44 | sylan 583 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐵 ⊆
No ∧ 𝑎 ∈
𝑏) ∧ 𝑢 ∈ 𝐵) ∧ 𝑏 ∈ dom 𝑢) → 𝑏 ∈ On) |
46 | | sucelon 7531 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑏 ∈ On ↔ suc 𝑏 ∈ On) |
47 | 45, 46 | sylib 221 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐵 ⊆
No ∧ 𝑎 ∈
𝑏) ∧ 𝑢 ∈ 𝐵) ∧ 𝑏 ∈ dom 𝑢) → suc 𝑏 ∈ On) |
48 | | simpllr 775 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐵 ⊆
No ∧ 𝑎 ∈
𝑏) ∧ 𝑢 ∈ 𝐵) ∧ 𝑏 ∈ dom 𝑢) → 𝑎 ∈ 𝑏) |
49 | | eloni 6179 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑏 ∈ On → Ord 𝑏) |
50 | 45, 49 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐵 ⊆
No ∧ 𝑎 ∈
𝑏) ∧ 𝑢 ∈ 𝐵) ∧ 𝑏 ∈ dom 𝑢) → Ord 𝑏) |
51 | | ordsucelsuc 7536 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (Ord
𝑏 → (𝑎 ∈ 𝑏 ↔ suc 𝑎 ∈ suc 𝑏)) |
52 | 50, 51 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐵 ⊆
No ∧ 𝑎 ∈
𝑏) ∧ 𝑢 ∈ 𝐵) ∧ 𝑏 ∈ dom 𝑢) → (𝑎 ∈ 𝑏 ↔ suc 𝑎 ∈ suc 𝑏)) |
53 | 48, 52 | mpbid 235 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐵 ⊆
No ∧ 𝑎 ∈
𝑏) ∧ 𝑢 ∈ 𝐵) ∧ 𝑏 ∈ dom 𝑢) → suc 𝑎 ∈ suc 𝑏) |
54 | | onelss 6211 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (suc
𝑏 ∈ On → (suc
𝑎 ∈ suc 𝑏 → suc 𝑎 ⊆ suc 𝑏)) |
55 | 47, 53, 54 | sylc 65 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐵 ⊆
No ∧ 𝑎 ∈
𝑏) ∧ 𝑢 ∈ 𝐵) ∧ 𝑏 ∈ dom 𝑢) → suc 𝑎 ⊆ suc 𝑏) |
56 | 55 | resabs1d 5854 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐵 ⊆
No ∧ 𝑎 ∈
𝑏) ∧ 𝑢 ∈ 𝐵) ∧ 𝑏 ∈ dom 𝑢) → ((𝑢 ↾ suc 𝑏) ↾ suc 𝑎) = (𝑢 ↾ suc 𝑎)) |
57 | 55 | resabs1d 5854 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐵 ⊆
No ∧ 𝑎 ∈
𝑏) ∧ 𝑢 ∈ 𝐵) ∧ 𝑏 ∈ dom 𝑢) → ((𝑣 ↾ suc 𝑏) ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)) |
58 | 56, 57 | eqeq12d 2774 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐵 ⊆
No ∧ 𝑎 ∈
𝑏) ∧ 𝑢 ∈ 𝐵) ∧ 𝑏 ∈ dom 𝑢) → (((𝑢 ↾ suc 𝑏) ↾ suc 𝑎) = ((𝑣 ↾ suc 𝑏) ↾ suc 𝑎) ↔ (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))) |
59 | 43, 58 | syl5ib 247 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐵 ⊆
No ∧ 𝑎 ∈
𝑏) ∧ 𝑢 ∈ 𝐵) ∧ 𝑏 ∈ dom 𝑢) → ((𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏) → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))) |
60 | 59 | imim2d 57 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐵 ⊆
No ∧ 𝑎 ∈
𝑏) ∧ 𝑢 ∈ 𝐵) ∧ 𝑏 ∈ dom 𝑢) → ((¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)) → (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))) |
61 | 60 | ralimdv 3109 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐵 ⊆
No ∧ 𝑎 ∈
𝑏) ∧ 𝑢 ∈ 𝐵) ∧ 𝑏 ∈ dom 𝑢) → (∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)) → ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))) |
62 | 61 | expimpd 457 |
. . . . . . . . . . . . . . 15
⊢ (((𝐵 ⊆
No ∧ 𝑎 ∈
𝑏) ∧ 𝑢 ∈ 𝐵) → ((𝑏 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))) → ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))) |
63 | 42, 62 | jcad 516 |
. . . . . . . . . . . . . 14
⊢ (((𝐵 ⊆
No ∧ 𝑎 ∈
𝑏) ∧ 𝑢 ∈ 𝐵) → ((𝑏 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))) → (𝑎 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))) |
64 | 63 | reximdva 3198 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ⊆
No ∧ 𝑎 ∈
𝑏) → (∃𝑢 ∈ 𝐵 (𝑏 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))) → ∃𝑢 ∈ 𝐵 (𝑎 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))) |
65 | 64 | expimpd 457 |
. . . . . . . . . . . 12
⊢ (𝐵 ⊆
No → ((𝑎
∈ 𝑏 ∧ ∃𝑢 ∈ 𝐵 (𝑏 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)))) → ∃𝑢 ∈ 𝐵 (𝑎 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))) |
66 | | vex 3413 |
. . . . . . . . . . . . . 14
⊢ 𝑏 ∈ V |
67 | | eleq1w 2834 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑏 → (𝑦 ∈ dom 𝑢 ↔ 𝑏 ∈ dom 𝑢)) |
68 | | suceq 6234 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑏 → suc 𝑦 = suc 𝑏) |
69 | 68 | reseq2d 5823 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑏 → (𝑢 ↾ suc 𝑦) = (𝑢 ↾ suc 𝑏)) |
70 | 68 | reseq2d 5823 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑏 → (𝑣 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑏)) |
71 | 69, 70 | eqeq12d 2774 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑏 → ((𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦) ↔ (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))) |
72 | 71 | imbi2d 344 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑏 → ((¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)))) |
73 | 72 | ralbidv 3126 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑏 → (∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)))) |
74 | 67, 73 | anbi12d 633 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑏 → ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ (𝑏 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))))) |
75 | 74 | rexbidv 3221 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑏 → (∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑢 ∈ 𝐵 (𝑏 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))))) |
76 | 66, 75 | elab 3588 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↔ ∃𝑢 ∈ 𝐵 (𝑏 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)))) |
77 | 76 | anbi2i 625 |
. . . . . . . . . . . 12
⊢ ((𝑎 ∈ 𝑏 ∧ 𝑏 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) ↔ (𝑎 ∈ 𝑏 ∧ ∃𝑢 ∈ 𝐵 (𝑏 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))))) |
78 | | vex 3413 |
. . . . . . . . . . . . 13
⊢ 𝑎 ∈ V |
79 | | eleq1w 2834 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑎 → (𝑦 ∈ dom 𝑢 ↔ 𝑎 ∈ dom 𝑢)) |
80 | | suceq 6234 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑎 → suc 𝑦 = suc 𝑎) |
81 | 80 | reseq2d 5823 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑎 → (𝑢 ↾ suc 𝑦) = (𝑢 ↾ suc 𝑎)) |
82 | 80 | reseq2d 5823 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑎 → (𝑣 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑎)) |
83 | 81, 82 | eqeq12d 2774 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑎 → ((𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦) ↔ (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))) |
84 | 83 | imbi2d 344 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑎 → ((¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))) |
85 | 84 | ralbidv 3126 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑎 → (∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))) |
86 | 79, 85 | anbi12d 633 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑎 → ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ (𝑎 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))) |
87 | 86 | rexbidv 3221 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑎 → (∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑢 ∈ 𝐵 (𝑎 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))) |
88 | 78, 87 | elab 3588 |
. . . . . . . . . . . 12
⊢ (𝑎 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↔ ∃𝑢 ∈ 𝐵 (𝑎 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))) |
89 | 65, 77, 88 | 3imtr4g 299 |
. . . . . . . . . . 11
⊢ (𝐵 ⊆
No → ((𝑎
∈ 𝑏 ∧ 𝑏 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) → 𝑎 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))})) |
90 | 89 | alrimivv 1929 |
. . . . . . . . . 10
⊢ (𝐵 ⊆
No → ∀𝑎∀𝑏((𝑎 ∈ 𝑏 ∧ 𝑏 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) → 𝑎 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))})) |
91 | | dftr2 5140 |
. . . . . . . . . 10
⊢ (Tr
{𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↔ ∀𝑎∀𝑏((𝑎 ∈ 𝑏 ∧ 𝑏 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) → 𝑎 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))})) |
92 | 90, 91 | sylibr 237 |
. . . . . . . . 9
⊢ (𝐵 ⊆
No → Tr {𝑦
∣ ∃𝑢 ∈
𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) |
93 | | dford5 33189 |
. . . . . . . . 9
⊢ (Ord
{𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↔ ({𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ⊆ On ∧ Tr {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))})) |
94 | 34, 92, 93 | sylanbrc 586 |
. . . . . . . 8
⊢ (𝐵 ⊆
No → Ord {𝑦
∣ ∃𝑢 ∈
𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) |
95 | 94 | ad2antrl 727 |
. . . . . . 7
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉)) → Ord {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) |
96 | | bdayfo 33445 |
. . . . . . . . . . . . . 14
⊢ bday : No –onto→On |
97 | | fofun 6577 |
. . . . . . . . . . . . . 14
⊢ ( bday : No –onto→On → Fun
bday ) |
98 | 96, 97 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ Fun bday |
99 | | funimaexg 6421 |
. . . . . . . . . . . . 13
⊢ ((Fun
bday ∧ 𝐵 ∈ 𝑉) → ( bday
“ 𝐵) ∈
V) |
100 | 98, 99 | mpan 689 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ 𝑉 → ( bday
“ 𝐵) ∈
V) |
101 | 100 | uniexd 7466 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ 𝑉 → ∪ ( bday “ 𝐵) ∈ V) |
102 | 101 | adantl 485 |
. . . . . . . . . 10
⊢ ((𝐵 ⊆
No ∧ 𝐵 ∈
𝑉) → ∪ ( bday “ 𝐵) ∈ V) |
103 | 102 | adantl 485 |
. . . . . . . . 9
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉)) → ∪ ( bday “ 𝐵) ∈ V) |
104 | | bdayval 33416 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ∈
No → ( bday ‘𝑢) = dom 𝑢) |
105 | 27, 104 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝐵 ⊆
No ∧ (𝑢 ∈
𝐵 ∧ (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))))) → ( bday
‘𝑢) = dom
𝑢) |
106 | | fofn 6578 |
. . . . . . . . . . . . . . . . . 18
⊢ ( bday : No –onto→On → bday
Fn No ) |
107 | 96, 106 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ bday Fn No
|
108 | | fnfvima 6987 |
. . . . . . . . . . . . . . . . 17
⊢ (( bday Fn No ∧ 𝐵 ⊆
No ∧ 𝑢 ∈
𝐵) → ( bday ‘𝑢) ∈ ( bday
“ 𝐵)) |
109 | 107, 108 | mp3an1 1445 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐵 ⊆
No ∧ 𝑢 ∈
𝐵) → ( bday ‘𝑢) ∈ ( bday
“ 𝐵)) |
110 | 109 | adantrr 716 |
. . . . . . . . . . . . . . 15
⊢ ((𝐵 ⊆
No ∧ (𝑢 ∈
𝐵 ∧ (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))))) → ( bday
‘𝑢) ∈
( bday “ 𝐵)) |
111 | 105, 110 | eqeltrrd 2853 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ⊆
No ∧ (𝑢 ∈
𝐵 ∧ (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))))) → dom 𝑢 ∈ ( bday
“ 𝐵)) |
112 | | elssuni 4830 |
. . . . . . . . . . . . . 14
⊢ (dom
𝑢 ∈ ( bday “ 𝐵) → dom 𝑢 ⊆ ∪ ( bday “ 𝐵)) |
113 | 111, 112 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ⊆
No ∧ (𝑢 ∈
𝐵 ∧ (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))))) → dom 𝑢 ⊆ ∪ ( bday “ 𝐵)) |
114 | 113, 30 | sseldd 3893 |
. . . . . . . . . . . 12
⊢ ((𝐵 ⊆
No ∧ (𝑢 ∈
𝐵 ∧ (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))))) → 𝑦 ∈ ∪ ( bday “ 𝐵)) |
115 | 114 | rexlimdvaa 3209 |
. . . . . . . . . . 11
⊢ (𝐵 ⊆
No → (∃𝑢
∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) → 𝑦 ∈ ∪ ( bday “ 𝐵))) |
116 | 115 | abssdv 3973 |
. . . . . . . . . 10
⊢ (𝐵 ⊆
No → {𝑦
∣ ∃𝑢 ∈
𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ⊆ ∪
( bday “ 𝐵)) |
117 | 116 | ad2antrl 727 |
. . . . . . . . 9
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉)) → {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ⊆ ∪
( bday “ 𝐵)) |
118 | 103, 117 | ssexd 5194 |
. . . . . . . 8
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉)) → {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ∈ V) |
119 | | elong 6177 |
. . . . . . . 8
⊢ ({𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ∈ V → ({𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ∈ On ↔ Ord {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))})) |
120 | 118, 119 | syl 17 |
. . . . . . 7
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉)) → ({𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ∈ On ↔ Ord {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))})) |
121 | 95, 120 | mpbird 260 |
. . . . . 6
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉)) → {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ∈ On) |
122 | 24, 121 | eqeltrid 2856 |
. . . . 5
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉)) → dom (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) ∈ On) |
123 | 23 | rnmpt 5796 |
. . . . . 6
⊢ ran
(𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) = {𝑧 ∣ ∃𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}𝑧 = (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))} |
124 | | eleq1w 2834 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑔 → (𝑦 ∈ dom 𝑢 ↔ 𝑔 ∈ dom 𝑢)) |
125 | | suceq 6234 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑔 → suc 𝑦 = suc 𝑔) |
126 | 125 | reseq2d 5823 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑔 → (𝑢 ↾ suc 𝑦) = (𝑢 ↾ suc 𝑔)) |
127 | 125 | reseq2d 5823 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑔 → (𝑣 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑔)) |
128 | 126, 127 | eqeq12d 2774 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑔 → ((𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦) ↔ (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))) |
129 | 128 | imbi2d 344 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑔 → ((¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) |
130 | 129 | ralbidv 3126 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑔 → (∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) |
131 | 124, 130 | anbi12d 633 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑔 → ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))))) |
132 | 131 | rexbidv 3221 |
. . . . . . . . 9
⊢ (𝑦 = 𝑔 → (∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))))) |
133 | 132 | rexab 3609 |
. . . . . . . 8
⊢
(∃𝑔 ∈
{𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}𝑧 = (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) ↔ ∃𝑔(∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))) ∧ 𝑧 = (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
134 | | eqid 2758 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑢‘𝑔) = (𝑢‘𝑔) |
135 | | fvex 6671 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑢‘𝑔) ∈ V |
136 | | eqeq2 2770 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = (𝑢‘𝑔) → ((𝑢‘𝑔) = 𝑥 ↔ (𝑢‘𝑔) = (𝑢‘𝑔))) |
137 | 136 | 3anbi3d 1439 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = (𝑢‘𝑔) → ((𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥) ↔ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = (𝑢‘𝑔)))) |
138 | 135, 137 | spcev 3525 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = (𝑢‘𝑔)) → ∃𝑥(𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) |
139 | 134, 138 | mp3an3 1447 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))) → ∃𝑥(𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) |
140 | 139 | reximi 3171 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑢 ∈
𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))) → ∃𝑢 ∈ 𝐵 ∃𝑥(𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) |
141 | | rexcom4 3177 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑢 ∈
𝐵 ∃𝑥(𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥) ↔ ∃𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) |
142 | 140, 141 | sylib 221 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑢 ∈
𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))) → ∃𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) |
143 | 142 | adantl 485 |
. . . . . . . . . . . . . 14
⊢ (((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉)) ∧ ∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → ∃𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) |
144 | | noinfprefixmo 33469 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵 ⊆
No → ∃*𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) |
145 | 144 | ad2antrl 727 |
. . . . . . . . . . . . . . 15
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉)) → ∃*𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) |
146 | 145 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ (((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉)) ∧ ∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → ∃*𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) |
147 | | df-eu 2588 |
. . . . . . . . . . . . . 14
⊢
(∃!𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥) ↔ (∃𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥) ∧ ∃*𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) |
148 | 143, 146,
147 | sylanbrc 586 |
. . . . . . . . . . . . 13
⊢ (((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉)) ∧ ∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → ∃!𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) |
149 | | vex 3413 |
. . . . . . . . . . . . . 14
⊢ 𝑧 ∈ V |
150 | | eqeq2 2770 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑧 → ((𝑢‘𝑔) = 𝑥 ↔ (𝑢‘𝑔) = 𝑧)) |
151 | 150 | 3anbi3d 1439 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑧 → ((𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥) ↔ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑧))) |
152 | 151 | rexbidv 3221 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑧 → (∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥) ↔ ∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑧))) |
153 | 152 | iota2 6324 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ V ∧ ∃!𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) → (∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑧) ↔ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) = 𝑧)) |
154 | 149, 153 | mpan 689 |
. . . . . . . . . . . . 13
⊢
(∃!𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥) → (∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑧) ↔ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) = 𝑧)) |
155 | 148, 154 | syl 17 |
. . . . . . . . . . . 12
⊢ (((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉)) ∧ ∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → (∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑧) ↔ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) = 𝑧)) |
156 | | eqcom 2765 |
. . . . . . . . . . . 12
⊢
((℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) = 𝑧 ↔ 𝑧 = (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) |
157 | 155, 156 | bitrdi 290 |
. . . . . . . . . . 11
⊢ (((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉)) ∧ ∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → (∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑧) ↔ 𝑧 = (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
158 | | simprr3 1220 |
. . . . . . . . . . . . . . 15
⊢ ((𝐵 ⊆
No ∧ (𝑢 ∈
𝐵 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑧))) → (𝑢‘𝑔) = 𝑧) |
159 | | simpl 486 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐵 ⊆
No ∧ (𝑢 ∈
𝐵 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑧))) → 𝐵 ⊆ No
) |
160 | | simprl 770 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐵 ⊆
No ∧ (𝑢 ∈
𝐵 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑧))) → 𝑢 ∈ 𝐵) |
161 | 159, 160 | sseldd 3893 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐵 ⊆
No ∧ (𝑢 ∈
𝐵 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑧))) → 𝑢 ∈ No
) |
162 | | norn 33419 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈
No → ran 𝑢
⊆ {1o, 2o}) |
163 | 161, 162 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐵 ⊆
No ∧ (𝑢 ∈
𝐵 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑧))) → ran 𝑢 ⊆ {1o,
2o}) |
164 | | nofun 33417 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑢 ∈
No → Fun 𝑢) |
165 | 161, 164 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐵 ⊆
No ∧ (𝑢 ∈
𝐵 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑧))) → Fun 𝑢) |
166 | | simprr1 1218 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐵 ⊆
No ∧ (𝑢 ∈
𝐵 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑧))) → 𝑔 ∈ dom 𝑢) |
167 | | fvelrn 6835 |
. . . . . . . . . . . . . . . . 17
⊢ ((Fun
𝑢 ∧ 𝑔 ∈ dom 𝑢) → (𝑢‘𝑔) ∈ ran 𝑢) |
168 | 165, 166,
167 | syl2anc 587 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐵 ⊆
No ∧ (𝑢 ∈
𝐵 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑧))) → (𝑢‘𝑔) ∈ ran 𝑢) |
169 | 163, 168 | sseldd 3893 |
. . . . . . . . . . . . . . 15
⊢ ((𝐵 ⊆
No ∧ (𝑢 ∈
𝐵 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑧))) → (𝑢‘𝑔) ∈ {1o,
2o}) |
170 | 158, 169 | eqeltrrd 2853 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ⊆
No ∧ (𝑢 ∈
𝐵 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑧))) → 𝑧 ∈ {1o,
2o}) |
171 | 170 | rexlimdvaa 3209 |
. . . . . . . . . . . . 13
⊢ (𝐵 ⊆
No → (∃𝑢
∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑧) → 𝑧 ∈ {1o,
2o})) |
172 | 171 | ad2antrl 727 |
. . . . . . . . . . . 12
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉)) → (∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑧) → 𝑧 ∈ {1o,
2o})) |
173 | 172 | adantr 484 |
. . . . . . . . . . 11
⊢ (((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉)) ∧ ∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → (∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑧) → 𝑧 ∈ {1o,
2o})) |
174 | 157, 173 | sylbird 263 |
. . . . . . . . . 10
⊢ (((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉)) ∧ ∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → (𝑧 = (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) → 𝑧 ∈ {1o,
2o})) |
175 | 174 | expimpd 457 |
. . . . . . . . 9
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉)) → ((∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))) ∧ 𝑧 = (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) → 𝑧 ∈ {1o,
2o})) |
176 | 175 | exlimdv 1934 |
. . . . . . . 8
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉)) → (∃𝑔(∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))) ∧ 𝑧 = (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) → 𝑧 ∈ {1o,
2o})) |
177 | 133, 176 | syl5bi 245 |
. . . . . . 7
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉)) → (∃𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}𝑧 = (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) → 𝑧 ∈ {1o,
2o})) |
178 | 177 | abssdv 3973 |
. . . . . 6
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉)) → {𝑧 ∣ ∃𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}𝑧 = (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))} ⊆ {1o,
2o}) |
179 | 123, 178 | eqsstrid 3940 |
. . . . 5
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉)) → ran (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) ⊆ {1o,
2o}) |
180 | | elno2 33422 |
. . . . 5
⊢ ((𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) ∈ No
↔ (Fun (𝑔 ∈
{𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) ∧ dom (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) ∈ On ∧ ran (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) ⊆ {1o,
2o})) |
181 | 21, 122, 179, 180 | syl3anbrc 1340 |
. . . 4
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉)) → (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) ∈ No
) |
182 | 19, 181 | eqeltrd 2852 |
. . 3
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉)) → if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) ∈ No
) |
183 | 17, 182 | pm2.61ian 811 |
. 2
⊢ ((𝐵 ⊆
No ∧ 𝐵 ∈
𝑉) → if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) ∈ No
) |
184 | 1, 183 | eqeltrid 2856 |
1
⊢ ((𝐵 ⊆
No ∧ 𝐵 ∈
𝑉) → 𝑇 ∈ No
) |