| Step | Hyp | Ref
| Expression |
| 1 | | oveq1 7417 |
. . . . . . 7
⊢ (𝑥 = 𝑥𝑂 → (𝑥 +s 𝑧) = (𝑥𝑂 +s 𝑧)) |
| 2 | 1 | breq2d 5136 |
. . . . . 6
⊢ (𝑥 = 𝑥𝑂 → ((𝑦 +s 𝑧) <s (𝑥 +s 𝑧) ↔ (𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧))) |
| 3 | | breq2 5128 |
. . . . . 6
⊢ (𝑥 = 𝑥𝑂 → (𝑦 <s 𝑥 ↔ 𝑦 <s 𝑥𝑂)) |
| 4 | 2, 3 | imbi12d 344 |
. . . . 5
⊢ (𝑥 = 𝑥𝑂 → (((𝑦 +s 𝑧) <s (𝑥 +s 𝑧) → 𝑦 <s 𝑥) ↔ ((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂))) |
| 5 | | oveq1 7417 |
. . . . . . 7
⊢ (𝑦 = 𝑦𝑂 → (𝑦 +s 𝑧) = (𝑦𝑂 +s 𝑧)) |
| 6 | 5 | breq1d 5134 |
. . . . . 6
⊢ (𝑦 = 𝑦𝑂 → ((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) ↔ (𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧))) |
| 7 | | breq1 5127 |
. . . . . 6
⊢ (𝑦 = 𝑦𝑂 → (𝑦 <s 𝑥𝑂 ↔ 𝑦𝑂 <s 𝑥𝑂)) |
| 8 | 6, 7 | imbi12d 344 |
. . . . 5
⊢ (𝑦 = 𝑦𝑂 → (((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ↔ ((𝑦𝑂
+s 𝑧) <s
(𝑥𝑂
+s 𝑧) →
𝑦𝑂 <s
𝑥𝑂))) |
| 9 | | oveq2 7418 |
. . . . . . 7
⊢ (𝑧 = 𝑧𝑂 → (𝑦𝑂
+s 𝑧) = (𝑦𝑂
+s 𝑧𝑂)) |
| 10 | | oveq2 7418 |
. . . . . . 7
⊢ (𝑧 = 𝑧𝑂 → (𝑥𝑂
+s 𝑧) = (𝑥𝑂
+s 𝑧𝑂)) |
| 11 | 9, 10 | breq12d 5137 |
. . . . . 6
⊢ (𝑧 = 𝑧𝑂 → ((𝑦𝑂
+s 𝑧) <s
(𝑥𝑂
+s 𝑧) ↔
(𝑦𝑂
+s 𝑧𝑂) <s (𝑥𝑂
+s 𝑧𝑂))) |
| 12 | 11 | imbi1d 341 |
. . . . 5
⊢ (𝑧 = 𝑧𝑂 → (((𝑦𝑂
+s 𝑧) <s
(𝑥𝑂
+s 𝑧) →
𝑦𝑂 <s
𝑥𝑂)
↔ ((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂))) |
| 13 | | oveq1 7417 |
. . . . . . 7
⊢ (𝑥 = 𝑥𝑂 → (𝑥 +s 𝑧𝑂) = (𝑥𝑂
+s 𝑧𝑂)) |
| 14 | 13 | breq2d 5136 |
. . . . . 6
⊢ (𝑥 = 𝑥𝑂 → ((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) ↔
(𝑦𝑂
+s 𝑧𝑂) <s (𝑥𝑂
+s 𝑧𝑂))) |
| 15 | | breq2 5128 |
. . . . . 6
⊢ (𝑥 = 𝑥𝑂 → (𝑦𝑂 <s 𝑥 ↔ 𝑦𝑂 <s 𝑥𝑂)) |
| 16 | 14, 15 | imbi12d 344 |
. . . . 5
⊢ (𝑥 = 𝑥𝑂 → (((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ↔ ((𝑦𝑂
+s 𝑧𝑂) <s (𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂))) |
| 17 | | oveq1 7417 |
. . . . . . 7
⊢ (𝑦 = 𝑦𝑂 → (𝑦 +s 𝑧𝑂) = (𝑦𝑂
+s 𝑧𝑂)) |
| 18 | 17 | breq1d 5134 |
. . . . . 6
⊢ (𝑦 = 𝑦𝑂 → ((𝑦 +s 𝑧𝑂) <s
(𝑥 +s 𝑧𝑂) ↔
(𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂))) |
| 19 | | breq1 5127 |
. . . . . 6
⊢ (𝑦 = 𝑦𝑂 → (𝑦 <s 𝑥 ↔ 𝑦𝑂 <s 𝑥)) |
| 20 | 18, 19 | imbi12d 344 |
. . . . 5
⊢ (𝑦 = 𝑦𝑂 → (((𝑦 +s 𝑧𝑂) <s
(𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥) ↔ ((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥))) |
| 21 | 17 | breq1d 5134 |
. . . . . 6
⊢ (𝑦 = 𝑦𝑂 → ((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) ↔ (𝑦𝑂
+s 𝑧𝑂) <s (𝑥𝑂
+s 𝑧𝑂))) |
| 22 | 21, 7 | imbi12d 344 |
. . . . 5
⊢ (𝑦 = 𝑦𝑂 → (((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂) ↔ ((𝑦𝑂
+s 𝑧𝑂) <s (𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂))) |
| 23 | | oveq2 7418 |
. . . . . . 7
⊢ (𝑧 = 𝑧𝑂 → (𝑥 +s 𝑧) = (𝑥 +s 𝑧𝑂)) |
| 24 | 9, 23 | breq12d 5137 |
. . . . . 6
⊢ (𝑧 = 𝑧𝑂 → ((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) ↔ (𝑦𝑂 +s 𝑧𝑂) <s
(𝑥 +s 𝑧𝑂))) |
| 25 | 24 | imbi1d 341 |
. . . . 5
⊢ (𝑧 = 𝑧𝑂 → (((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥) ↔ ((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥))) |
| 26 | | oveq1 7417 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑥 +s 𝑧) = (𝐴 +s 𝑧)) |
| 27 | 26 | breq2d 5136 |
. . . . . 6
⊢ (𝑥 = 𝐴 → ((𝑦 +s 𝑧) <s (𝑥 +s 𝑧) ↔ (𝑦 +s 𝑧) <s (𝐴 +s 𝑧))) |
| 28 | | breq2 5128 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝑦 <s 𝑥 ↔ 𝑦 <s 𝐴)) |
| 29 | 27, 28 | imbi12d 344 |
. . . . 5
⊢ (𝑥 = 𝐴 → (((𝑦 +s 𝑧) <s (𝑥 +s 𝑧) → 𝑦 <s 𝑥) ↔ ((𝑦 +s 𝑧) <s (𝐴 +s 𝑧) → 𝑦 <s 𝐴))) |
| 30 | | oveq1 7417 |
. . . . . . 7
⊢ (𝑦 = 𝐵 → (𝑦 +s 𝑧) = (𝐵 +s 𝑧)) |
| 31 | 30 | breq1d 5134 |
. . . . . 6
⊢ (𝑦 = 𝐵 → ((𝑦 +s 𝑧) <s (𝐴 +s 𝑧) ↔ (𝐵 +s 𝑧) <s (𝐴 +s 𝑧))) |
| 32 | | breq1 5127 |
. . . . . 6
⊢ (𝑦 = 𝐵 → (𝑦 <s 𝐴 ↔ 𝐵 <s 𝐴)) |
| 33 | 31, 32 | imbi12d 344 |
. . . . 5
⊢ (𝑦 = 𝐵 → (((𝑦 +s 𝑧) <s (𝐴 +s 𝑧) → 𝑦 <s 𝐴) ↔ ((𝐵 +s 𝑧) <s (𝐴 +s 𝑧) → 𝐵 <s 𝐴))) |
| 34 | | oveq2 7418 |
. . . . . . 7
⊢ (𝑧 = 𝐶 → (𝐵 +s 𝑧) = (𝐵 +s 𝐶)) |
| 35 | | oveq2 7418 |
. . . . . . 7
⊢ (𝑧 = 𝐶 → (𝐴 +s 𝑧) = (𝐴 +s 𝐶)) |
| 36 | 34, 35 | breq12d 5137 |
. . . . . 6
⊢ (𝑧 = 𝐶 → ((𝐵 +s 𝑧) <s (𝐴 +s 𝑧) ↔ (𝐵 +s 𝐶) <s (𝐴 +s 𝐶))) |
| 37 | 36 | imbi1d 341 |
. . . . 5
⊢ (𝑧 = 𝐶 → (((𝐵 +s 𝑧) <s (𝐴 +s 𝑧) → 𝐵 <s 𝐴) ↔ ((𝐵 +s 𝐶) <s (𝐴 +s 𝐶) → 𝐵 <s 𝐴))) |
| 38 | | simp2 1137 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
→ 𝑦 ∈ No ) |
| 39 | | simp3 1138 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
→ 𝑧 ∈ No ) |
| 40 | 38, 39 | addscut 27942 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
→ ((𝑦 +s
𝑧) ∈ No ∧ ({𝑎 ∣ ∃𝑦𝐿 ∈ ( L ‘𝑦)𝑎 = (𝑦𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑦 +s 𝑧𝐿)}) <<s {(𝑦 +s 𝑧)} ∧ {(𝑦 +s 𝑧)} <<s ({𝑐 ∣ ∃𝑦𝑅 ∈ ( R ‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)}))) |
| 41 | | simp2 1137 |
. . . . . . . . . . 11
⊢ (((𝑦 +s 𝑧) ∈
No ∧ ({𝑎
∣ ∃𝑦𝐿 ∈ ( L ‘𝑦)𝑎 = (𝑦𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑦 +s 𝑧𝐿)}) <<s {(𝑦 +s 𝑧)} ∧ {(𝑦 +s 𝑧)} <<s ({𝑐 ∣ ∃𝑦𝑅 ∈ ( R ‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)})) → ({𝑎 ∣ ∃𝑦𝐿 ∈ ( L
‘𝑦)𝑎 = (𝑦𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑦 +s 𝑧𝐿)}) <<s {(𝑦 +s 𝑧)}) |
| 42 | 40, 41 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
→ ({𝑎 ∣
∃𝑦𝐿
∈ ( L ‘𝑦)𝑎 = (𝑦𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑦 +s 𝑧𝐿)}) <<s {(𝑦 +s 𝑧)}) |
| 43 | 40 | simp3d 1144 |
. . . . . . . . . 10
⊢ ((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
→ {(𝑦 +s
𝑧)} <<s ({𝑐 ∣ ∃𝑦𝑅 ∈ ( R
‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)})) |
| 44 | | ovex 7443 |
. . . . . . . . . . . 12
⊢ (𝑦 +s 𝑧) ∈ V |
| 45 | 44 | snnz 4757 |
. . . . . . . . . . 11
⊢ {(𝑦 +s 𝑧)} ≠ ∅ |
| 46 | | sslttr 27776 |
. . . . . . . . . . 11
⊢ ((({𝑎 ∣ ∃𝑦𝐿 ∈ ( L
‘𝑦)𝑎 = (𝑦𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑦 +s 𝑧𝐿)}) <<s {(𝑦 +s 𝑧)} ∧ {(𝑦 +s 𝑧)} <<s ({𝑐 ∣ ∃𝑦𝑅 ∈ ( R ‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)}) ∧ {(𝑦 +s 𝑧)} ≠ ∅) → ({𝑎 ∣ ∃𝑦𝐿 ∈ ( L
‘𝑦)𝑎 = (𝑦𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑦 +s 𝑧𝐿)}) <<s ({𝑐 ∣ ∃𝑦𝑅 ∈ ( R
‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)})) |
| 47 | 45, 46 | mp3an3 1452 |
. . . . . . . . . 10
⊢ ((({𝑎 ∣ ∃𝑦𝐿 ∈ ( L
‘𝑦)𝑎 = (𝑦𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑦 +s 𝑧𝐿)}) <<s {(𝑦 +s 𝑧)} ∧ {(𝑦 +s 𝑧)} <<s ({𝑐 ∣ ∃𝑦𝑅 ∈ ( R ‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)})) → ({𝑎 ∣ ∃𝑦𝐿 ∈ ( L
‘𝑦)𝑎 = (𝑦𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑦 +s 𝑧𝐿)}) <<s ({𝑐 ∣ ∃𝑦𝑅 ∈ ( R
‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)})) |
| 48 | 42, 43, 47 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
→ ({𝑎 ∣
∃𝑦𝐿
∈ ( L ‘𝑦)𝑎 = (𝑦𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑦 +s 𝑧𝐿)}) <<s ({𝑐 ∣ ∃𝑦𝑅 ∈ ( R
‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)})) |
| 49 | | simp1 1136 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
→ 𝑥 ∈ No ) |
| 50 | 49, 39 | addscut 27942 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
→ ((𝑥 +s
𝑧) ∈ No ∧ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)}) <<s {(𝑥 +s 𝑧)} ∧ {(𝑥 +s 𝑧)} <<s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑥 +s 𝑧𝑅)}))) |
| 51 | | simp2 1137 |
. . . . . . . . . . 11
⊢ (((𝑥 +s 𝑧) ∈
No ∧ ({𝑎
∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)}) <<s {(𝑥 +s 𝑧)} ∧ {(𝑥 +s 𝑧)} <<s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑥 +s 𝑧𝑅)})) → ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)}) <<s {(𝑥 +s 𝑧)}) |
| 52 | 50, 51 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
→ ({𝑎 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)}) <<s {(𝑥 +s 𝑧)}) |
| 53 | 50 | simp3d 1144 |
. . . . . . . . . 10
⊢ ((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
→ {(𝑥 +s
𝑧)} <<s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑐 = (𝑥𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑥 +s 𝑧𝑅)})) |
| 54 | | ovex 7443 |
. . . . . . . . . . . 12
⊢ (𝑥 +s 𝑧) ∈ V |
| 55 | 54 | snnz 4757 |
. . . . . . . . . . 11
⊢ {(𝑥 +s 𝑧)} ≠ ∅ |
| 56 | | sslttr 27776 |
. . . . . . . . . . 11
⊢ ((({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)}) <<s {(𝑥 +s 𝑧)} ∧ {(𝑥 +s 𝑧)} <<s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑥 +s 𝑧𝑅)}) ∧ {(𝑥 +s 𝑧)} ≠ ∅) → ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)}) <<s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑐 = (𝑥𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑥 +s 𝑧𝑅)})) |
| 57 | 55, 56 | mp3an3 1452 |
. . . . . . . . . 10
⊢ ((({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)}) <<s {(𝑥 +s 𝑧)} ∧ {(𝑥 +s 𝑧)} <<s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑥 +s 𝑧𝑅)})) → ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)}) <<s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑐 = (𝑥𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑥 +s 𝑧𝑅)})) |
| 58 | 52, 53, 57 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
→ ({𝑎 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)}) <<s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑐 = (𝑥𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑥 +s 𝑧𝑅)})) |
| 59 | | addsval2 27927 |
. . . . . . . . . 10
⊢ ((𝑦 ∈
No ∧ 𝑧 ∈
No ) → (𝑦 +s 𝑧) = (({𝑎 ∣ ∃𝑦𝐿 ∈ ( L ‘𝑦)𝑎 = (𝑦𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑦 +s 𝑧𝐿)}) |s ({𝑐 ∣ ∃𝑦𝑅 ∈ ( R
‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)}))) |
| 60 | 59 | 3adant1 1130 |
. . . . . . . . 9
⊢ ((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
→ (𝑦 +s
𝑧) = (({𝑎 ∣ ∃𝑦𝐿 ∈ ( L ‘𝑦)𝑎 = (𝑦𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑦 +s 𝑧𝐿)}) |s ({𝑐 ∣ ∃𝑦𝑅 ∈ ( R
‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)}))) |
| 61 | | addsval2 27927 |
. . . . . . . . . 10
⊢ ((𝑥 ∈
No ∧ 𝑧 ∈
No ) → (𝑥 +s 𝑧) = (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)}) |s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑐 = (𝑥𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑥 +s 𝑧𝑅)}))) |
| 62 | 61 | 3adant2 1131 |
. . . . . . . . 9
⊢ ((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
→ (𝑥 +s
𝑧) = (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)}) |s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑐 = (𝑥𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑥 +s 𝑧𝑅)}))) |
| 63 | | sltrec 27789 |
. . . . . . . . 9
⊢
(((({𝑎 ∣
∃𝑦𝐿
∈ ( L ‘𝑦)𝑎 = (𝑦𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑦 +s 𝑧𝐿)}) <<s ({𝑐 ∣ ∃𝑦𝑅 ∈ ( R
‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)}) ∧ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)}) <<s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑐 = (𝑥𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑥 +s 𝑧𝑅)})) ∧ ((𝑦 +s 𝑧) = (({𝑎 ∣ ∃𝑦𝐿 ∈ ( L ‘𝑦)𝑎 = (𝑦𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑦 +s 𝑧𝐿)}) |s ({𝑐 ∣ ∃𝑦𝑅 ∈ ( R
‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)})) ∧ (𝑥 +s 𝑧) = (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)}) |s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑐 = (𝑥𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑥 +s 𝑧𝑅)})))) → ((𝑦 +s 𝑧) <s (𝑥 +s 𝑧) ↔ (∃𝑝 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)})(𝑦 +s 𝑧) ≤s 𝑝 ∨ ∃𝑞 ∈ ({𝑐 ∣ ∃𝑦𝑅 ∈ ( R ‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)})𝑞 ≤s (𝑥 +s 𝑧)))) |
| 64 | 48, 58, 60, 62, 63 | syl22anc 838 |
. . . . . . . 8
⊢ ((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
→ ((𝑦 +s
𝑧) <s (𝑥 +s 𝑧) ↔ (∃𝑝 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)})(𝑦 +s 𝑧) ≤s 𝑝 ∨ ∃𝑞 ∈ ({𝑐 ∣ ∃𝑦𝑅 ∈ ( R ‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)})𝑞 ≤s (𝑥 +s 𝑧)))) |
| 65 | 64 | adantr 480 |
. . . . . . 7
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) → ((𝑦 +s 𝑧) <s (𝑥 +s 𝑧) ↔ (∃𝑝 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)})(𝑦 +s 𝑧) ≤s 𝑝 ∨ ∃𝑞 ∈ ({𝑐 ∣ ∃𝑦𝑅 ∈ ( R ‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)})𝑞 ≤s (𝑥 +s 𝑧)))) |
| 66 | | rexun 4176 |
. . . . . . . . . 10
⊢
(∃𝑝 ∈
({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)})(𝑦 +s 𝑧) ≤s 𝑝 ↔ (∃𝑝 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} (𝑦 +s 𝑧) ≤s 𝑝 ∨ ∃𝑝 ∈ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)} (𝑦 +s 𝑧) ≤s 𝑝)) |
| 67 | | eqeq1 2740 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑝 → (𝑎 = (𝑥𝐿 +s 𝑧) ↔ 𝑝 = (𝑥𝐿 +s 𝑧))) |
| 68 | 67 | rexbidv 3165 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑝 → (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧) ↔ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑝 = (𝑥𝐿 +s 𝑧))) |
| 69 | 68 | rexab 3683 |
. . . . . . . . . . . 12
⊢
(∃𝑝 ∈
{𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} (𝑦 +s 𝑧) ≤s 𝑝 ↔ ∃𝑝(∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s 𝑧) ∧ (𝑦 +s 𝑧) ≤s 𝑝)) |
| 70 | | rexcom4 3273 |
. . . . . . . . . . . . . 14
⊢
(∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑝(𝑝 = (𝑥𝐿 +s 𝑧) ∧ (𝑦 +s 𝑧) ≤s 𝑝) ↔ ∃𝑝∃𝑥𝐿 ∈ ( L ‘𝑥)(𝑝 = (𝑥𝐿 +s 𝑧) ∧ (𝑦 +s 𝑧) ≤s 𝑝)) |
| 71 | | r19.41v 3175 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑥𝐿 ∈ ( L ‘𝑥)(𝑝 = (𝑥𝐿 +s 𝑧) ∧ (𝑦 +s 𝑧) ≤s 𝑝) ↔ (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s 𝑧) ∧ (𝑦 +s 𝑧) ≤s 𝑝)) |
| 72 | 71 | exbii 1848 |
. . . . . . . . . . . . . 14
⊢
(∃𝑝∃𝑥𝐿 ∈ ( L ‘𝑥)(𝑝 = (𝑥𝐿 +s 𝑧) ∧ (𝑦 +s 𝑧) ≤s 𝑝) ↔ ∃𝑝(∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s 𝑧) ∧ (𝑦 +s 𝑧) ≤s 𝑝)) |
| 73 | 70, 72 | bitri 275 |
. . . . . . . . . . . . 13
⊢
(∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑝(𝑝 = (𝑥𝐿 +s 𝑧) ∧ (𝑦 +s 𝑧) ≤s 𝑝) ↔ ∃𝑝(∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s 𝑧) ∧ (𝑦 +s 𝑧) ≤s 𝑝)) |
| 74 | | ovex 7443 |
. . . . . . . . . . . . . . 15
⊢ (𝑥𝐿
+s 𝑧) ∈
V |
| 75 | | breq2 5128 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 = (𝑥𝐿 +s 𝑧) → ((𝑦 +s 𝑧) ≤s 𝑝 ↔ (𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧))) |
| 76 | 74, 75 | ceqsexv 3516 |
. . . . . . . . . . . . . 14
⊢
(∃𝑝(𝑝 = (𝑥𝐿 +s 𝑧) ∧ (𝑦 +s 𝑧) ≤s 𝑝) ↔ (𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧)) |
| 77 | 76 | rexbii 3084 |
. . . . . . . . . . . . 13
⊢
(∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑝(𝑝 = (𝑥𝐿 +s 𝑧) ∧ (𝑦 +s 𝑧) ≤s 𝑝) ↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)(𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧)) |
| 78 | 73, 77 | bitr3i 277 |
. . . . . . . . . . . 12
⊢
(∃𝑝(∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s 𝑧) ∧ (𝑦 +s 𝑧) ≤s 𝑝) ↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)(𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧)) |
| 79 | 69, 78 | bitri 275 |
. . . . . . . . . . 11
⊢
(∃𝑝 ∈
{𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} (𝑦 +s 𝑧) ≤s 𝑝 ↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)(𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧)) |
| 80 | | eqeq1 2740 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑝 → (𝑏 = (𝑥 +s 𝑧𝐿) ↔ 𝑝 = (𝑥 +s 𝑧𝐿))) |
| 81 | 80 | rexbidv 3165 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝑝 → (∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿) ↔ ∃𝑧𝐿 ∈ ( L
‘𝑧)𝑝 = (𝑥 +s 𝑧𝐿))) |
| 82 | 81 | rexab 3683 |
. . . . . . . . . . . 12
⊢
(∃𝑝 ∈
{𝑏 ∣ ∃𝑧𝐿 ∈ ( L
‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)} (𝑦 +s 𝑧) ≤s 𝑝 ↔ ∃𝑝(∃𝑧𝐿 ∈ ( L ‘𝑧)𝑝 = (𝑥 +s 𝑧𝐿) ∧ (𝑦 +s 𝑧) ≤s 𝑝)) |
| 83 | | rexcom4 3273 |
. . . . . . . . . . . . . 14
⊢
(∃𝑧𝐿 ∈ ( L ‘𝑧)∃𝑝(𝑝 = (𝑥 +s 𝑧𝐿) ∧ (𝑦 +s 𝑧) ≤s 𝑝) ↔ ∃𝑝∃𝑧𝐿 ∈ ( L ‘𝑧)(𝑝 = (𝑥 +s 𝑧𝐿) ∧ (𝑦 +s 𝑧) ≤s 𝑝)) |
| 84 | | r19.41v 3175 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑧𝐿 ∈ ( L ‘𝑧)(𝑝 = (𝑥 +s 𝑧𝐿) ∧ (𝑦 +s 𝑧) ≤s 𝑝) ↔ (∃𝑧𝐿 ∈ ( L ‘𝑧)𝑝 = (𝑥 +s 𝑧𝐿) ∧ (𝑦 +s 𝑧) ≤s 𝑝)) |
| 85 | 84 | exbii 1848 |
. . . . . . . . . . . . . 14
⊢
(∃𝑝∃𝑧𝐿 ∈ ( L ‘𝑧)(𝑝 = (𝑥 +s 𝑧𝐿) ∧ (𝑦 +s 𝑧) ≤s 𝑝) ↔ ∃𝑝(∃𝑧𝐿 ∈ ( L ‘𝑧)𝑝 = (𝑥 +s 𝑧𝐿) ∧ (𝑦 +s 𝑧) ≤s 𝑝)) |
| 86 | 83, 85 | bitri 275 |
. . . . . . . . . . . . 13
⊢
(∃𝑧𝐿 ∈ ( L ‘𝑧)∃𝑝(𝑝 = (𝑥 +s 𝑧𝐿) ∧ (𝑦 +s 𝑧) ≤s 𝑝) ↔ ∃𝑝(∃𝑧𝐿 ∈ ( L ‘𝑧)𝑝 = (𝑥 +s 𝑧𝐿) ∧ (𝑦 +s 𝑧) ≤s 𝑝)) |
| 87 | | ovex 7443 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 +s 𝑧𝐿) ∈
V |
| 88 | | breq2 5128 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 = (𝑥 +s 𝑧𝐿) → ((𝑦 +s 𝑧) ≤s 𝑝 ↔ (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿))) |
| 89 | 87, 88 | ceqsexv 3516 |
. . . . . . . . . . . . . 14
⊢
(∃𝑝(𝑝 = (𝑥 +s 𝑧𝐿) ∧ (𝑦 +s 𝑧) ≤s 𝑝) ↔ (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿)) |
| 90 | 89 | rexbii 3084 |
. . . . . . . . . . . . 13
⊢
(∃𝑧𝐿 ∈ ( L ‘𝑧)∃𝑝(𝑝 = (𝑥 +s 𝑧𝐿) ∧ (𝑦 +s 𝑧) ≤s 𝑝) ↔ ∃𝑧𝐿 ∈ ( L ‘𝑧)(𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿)) |
| 91 | 86, 90 | bitr3i 277 |
. . . . . . . . . . . 12
⊢
(∃𝑝(∃𝑧𝐿 ∈ ( L ‘𝑧)𝑝 = (𝑥 +s 𝑧𝐿) ∧ (𝑦 +s 𝑧) ≤s 𝑝) ↔ ∃𝑧𝐿 ∈ ( L ‘𝑧)(𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿)) |
| 92 | 82, 91 | bitri 275 |
. . . . . . . . . . 11
⊢
(∃𝑝 ∈
{𝑏 ∣ ∃𝑧𝐿 ∈ ( L
‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)} (𝑦 +s 𝑧) ≤s 𝑝 ↔ ∃𝑧𝐿 ∈ ( L ‘𝑧)(𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿)) |
| 93 | 79, 92 | orbi12i 914 |
. . . . . . . . . 10
⊢
((∃𝑝 ∈
{𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} (𝑦 +s 𝑧) ≤s 𝑝 ∨ ∃𝑝 ∈ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)} (𝑦 +s 𝑧) ≤s 𝑝) ↔ (∃𝑥𝐿 ∈ ( L ‘𝑥)(𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧) ∨ ∃𝑧𝐿 ∈ ( L ‘𝑧)(𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿))) |
| 94 | 66, 93 | bitri 275 |
. . . . . . . . 9
⊢
(∃𝑝 ∈
({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)})(𝑦 +s 𝑧) ≤s 𝑝 ↔ (∃𝑥𝐿 ∈ ( L ‘𝑥)(𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧) ∨ ∃𝑧𝐿 ∈ ( L ‘𝑧)(𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿))) |
| 95 | | simpll2 1214 |
. . . . . . . . . . . 12
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑥𝐿 ∈ ( L ‘𝑥) ∧ (𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧))) → 𝑦 ∈ No
) |
| 96 | | leftssno 27849 |
. . . . . . . . . . . . . . 15
⊢ ( L
‘𝑥) ⊆ No |
| 97 | 96 | sseli 3959 |
. . . . . . . . . . . . . 14
⊢ (𝑥𝐿 ∈ ( L
‘𝑥) → 𝑥𝐿 ∈
No ) |
| 98 | 97 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑥𝐿 ∈ ( L
‘𝑥) ∧ (𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧)) → 𝑥𝐿 ∈ No ) |
| 99 | 98 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑥𝐿 ∈ ( L ‘𝑥) ∧ (𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧))) → 𝑥𝐿 ∈ No ) |
| 100 | | simpll1 1213 |
. . . . . . . . . . . 12
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑥𝐿 ∈ ( L ‘𝑥) ∧ (𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧))) → 𝑥 ∈ No
) |
| 101 | | simprr 772 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑥𝐿 ∈ ( L ‘𝑥) ∧ (𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧))) → (𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧)) |
| 102 | | simpll3 1215 |
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑥𝐿 ∈ ( L ‘𝑥) ∧ (𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧))) → 𝑧 ∈ No
) |
| 103 | | sleadd1im 27951 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈
No ∧ 𝑥𝐿 ∈ No ∧ 𝑧 ∈ No )
→ ((𝑦 +s
𝑧) ≤s (𝑥𝐿
+s 𝑧) →
𝑦 ≤s 𝑥𝐿)) |
| 104 | 95, 99, 102, 103 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑥𝐿 ∈ ( L ‘𝑥) ∧ (𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧))) → ((𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧) → 𝑦 ≤s 𝑥𝐿)) |
| 105 | 101, 104 | mpd 15 |
. . . . . . . . . . . 12
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑥𝐿 ∈ ( L ‘𝑥) ∧ (𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧))) → 𝑦 ≤s 𝑥𝐿) |
| 106 | | leftlt 27832 |
. . . . . . . . . . . . . 14
⊢ (𝑥𝐿 ∈ ( L
‘𝑥) → 𝑥𝐿 <s 𝑥) |
| 107 | 106 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑥𝐿 ∈ ( L
‘𝑥) ∧ (𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧)) → 𝑥𝐿 <s 𝑥) |
| 108 | 107 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑥𝐿 ∈ ( L ‘𝑥) ∧ (𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧))) → 𝑥𝐿 <s 𝑥) |
| 109 | 95, 99, 100, 105, 108 | slelttrd 27730 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑥𝐿 ∈ ( L ‘𝑥) ∧ (𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧))) → 𝑦 <s 𝑥) |
| 110 | 109 | rexlimdvaa 3143 |
. . . . . . . . . 10
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) → (∃𝑥𝐿 ∈ ( L ‘𝑥)(𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧) → 𝑦 <s 𝑥)) |
| 111 | | simpll2 1214 |
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝐿 ∈ ( L ‘𝑧) ∧ (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿))) → 𝑦 ∈
No ) |
| 112 | | leftssno 27849 |
. . . . . . . . . . . . . . . . 17
⊢ ( L
‘𝑧) ⊆ No |
| 113 | 112 | sseli 3959 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧𝐿 ∈ ( L
‘𝑧) → 𝑧𝐿 ∈
No ) |
| 114 | 113 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧𝐿 ∈ ( L
‘𝑧) ∧ (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿)) → 𝑧𝐿 ∈
No ) |
| 115 | 114 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝐿 ∈ ( L ‘𝑧) ∧ (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿))) → 𝑧𝐿 ∈
No ) |
| 116 | 111, 115 | addscld 27944 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝐿 ∈ ( L ‘𝑧) ∧ (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿))) → (𝑦 +s 𝑧𝐿) ∈
No ) |
| 117 | | simpll3 1215 |
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝐿 ∈ ( L ‘𝑧) ∧ (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿))) → 𝑧 ∈
No ) |
| 118 | 111, 117 | addscld 27944 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝐿 ∈ ( L ‘𝑧) ∧ (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿))) → (𝑦 +s 𝑧) ∈
No ) |
| 119 | | simpll1 1213 |
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝐿 ∈ ( L ‘𝑧) ∧ (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿))) → 𝑥 ∈
No ) |
| 120 | 119, 115 | addscld 27944 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝐿 ∈ ( L ‘𝑧) ∧ (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿))) → (𝑥 +s 𝑧𝐿) ∈
No ) |
| 121 | | leftlt 27832 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧𝐿 ∈ ( L
‘𝑧) → 𝑧𝐿 <s 𝑧) |
| 122 | 121 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧𝐿 ∈ ( L
‘𝑧) ∧ (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿)) → 𝑧𝐿 <s 𝑧) |
| 123 | 122 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝐿 ∈ ( L ‘𝑧) ∧ (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿))) → 𝑧𝐿 <s 𝑧) |
| 124 | | sltadd2im 27950 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧𝐿 ∈
No ∧ 𝑧 ∈ No
∧ 𝑦 ∈ No ) → (𝑧𝐿 <s 𝑧 → (𝑦 +s 𝑧𝐿) <s (𝑦 +s 𝑧))) |
| 125 | 115, 117,
111, 124 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝐿 ∈ ( L ‘𝑧) ∧ (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿))) → (𝑧𝐿 <s 𝑧 → (𝑦 +s 𝑧𝐿) <s (𝑦 +s 𝑧))) |
| 126 | 123, 125 | mpd 15 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝐿 ∈ ( L ‘𝑧) ∧ (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿))) → (𝑦 +s 𝑧𝐿) <s
(𝑦 +s 𝑧)) |
| 127 | | simprr 772 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝐿 ∈ ( L ‘𝑧) ∧ (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿))) → (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿)) |
| 128 | 116, 118,
120, 126, 127 | sltletrd 27729 |
. . . . . . . . . . . 12
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝐿 ∈ ( L ‘𝑧) ∧ (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿))) → (𝑦 +s 𝑧𝐿) <s
(𝑥 +s 𝑧𝐿)) |
| 129 | | oveq2 7418 |
. . . . . . . . . . . . . . 15
⊢ (𝑧𝑂 = 𝑧𝐿 →
(𝑦 +s 𝑧𝑂) = (𝑦 +s 𝑧𝐿)) |
| 130 | | oveq2 7418 |
. . . . . . . . . . . . . . 15
⊢ (𝑧𝑂 = 𝑧𝐿 →
(𝑥 +s 𝑧𝑂) = (𝑥 +s 𝑧𝐿)) |
| 131 | 129, 130 | breq12d 5137 |
. . . . . . . . . . . . . 14
⊢ (𝑧𝑂 = 𝑧𝐿 →
((𝑦 +s 𝑧𝑂) <s
(𝑥 +s 𝑧𝑂) ↔
(𝑦 +s 𝑧𝐿) <s
(𝑥 +s 𝑧𝐿))) |
| 132 | 131 | imbi1d 341 |
. . . . . . . . . . . . 13
⊢ (𝑧𝑂 = 𝑧𝐿 →
(((𝑦 +s 𝑧𝑂) <s
(𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥) ↔ ((𝑦 +s 𝑧𝐿) <s (𝑥 +s 𝑧𝐿) →
𝑦 <s 𝑥))) |
| 133 | | simplr3 1218 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝐿 ∈ ( L ‘𝑧) ∧ (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿))) → ∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥)) |
| 134 | | simprl 770 |
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝐿 ∈ ( L ‘𝑧) ∧ (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿))) → 𝑧𝐿 ∈ ( L
‘𝑧)) |
| 135 | | elun1 4162 |
. . . . . . . . . . . . . 14
⊢ (𝑧𝐿 ∈ ( L
‘𝑧) → 𝑧𝐿 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))) |
| 136 | 134, 135 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝐿 ∈ ( L ‘𝑧) ∧ (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿))) → 𝑧𝐿 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))) |
| 137 | 132, 133,
136 | rspcdva 3607 |
. . . . . . . . . . . 12
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝐿 ∈ ( L ‘𝑧) ∧ (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿))) → ((𝑦 +s 𝑧𝐿) <s
(𝑥 +s 𝑧𝐿) →
𝑦 <s 𝑥)) |
| 138 | 128, 137 | mpd 15 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝐿 ∈ ( L ‘𝑧) ∧ (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿))) → 𝑦 <s 𝑥) |
| 139 | 138 | rexlimdvaa 3143 |
. . . . . . . . . 10
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) → (∃𝑧𝐿 ∈ ( L ‘𝑧)(𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿) → 𝑦 <s 𝑥)) |
| 140 | 110, 139 | jaod 859 |
. . . . . . . . 9
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) → ((∃𝑥𝐿 ∈ ( L ‘𝑥)(𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧) ∨ ∃𝑧𝐿 ∈ ( L ‘𝑧)(𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿)) → 𝑦 <s 𝑥)) |
| 141 | 94, 140 | biimtrid 242 |
. . . . . . . 8
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) → (∃𝑝 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)})(𝑦 +s 𝑧) ≤s 𝑝 → 𝑦 <s 𝑥)) |
| 142 | | rexun 4176 |
. . . . . . . . . 10
⊢
(∃𝑞 ∈
({𝑐 ∣ ∃𝑦𝑅 ∈ ( R
‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)})𝑞 ≤s (𝑥 +s 𝑧) ↔ (∃𝑞 ∈ {𝑐 ∣ ∃𝑦𝑅 ∈ ( R ‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)}𝑞 ≤s (𝑥 +s 𝑧) ∨ ∃𝑞 ∈ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)}𝑞 ≤s (𝑥 +s 𝑧))) |
| 143 | | eqeq1 2740 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 𝑞 → (𝑐 = (𝑦𝑅 +s 𝑧) ↔ 𝑞 = (𝑦𝑅 +s 𝑧))) |
| 144 | 143 | rexbidv 3165 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 𝑞 → (∃𝑦𝑅 ∈ ( R ‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧) ↔ ∃𝑦𝑅 ∈ ( R
‘𝑦)𝑞 = (𝑦𝑅 +s 𝑧))) |
| 145 | 144 | rexab 3683 |
. . . . . . . . . . . 12
⊢
(∃𝑞 ∈
{𝑐 ∣ ∃𝑦𝑅 ∈ ( R
‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)}𝑞 ≤s (𝑥 +s 𝑧) ↔ ∃𝑞(∃𝑦𝑅 ∈ ( R ‘𝑦)𝑞 = (𝑦𝑅 +s 𝑧) ∧ 𝑞 ≤s (𝑥 +s 𝑧))) |
| 146 | | rexcom4 3273 |
. . . . . . . . . . . . . 14
⊢
(∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑞(𝑞 = (𝑦𝑅 +s 𝑧) ∧ 𝑞 ≤s (𝑥 +s 𝑧)) ↔ ∃𝑞∃𝑦𝑅 ∈ ( R ‘𝑦)(𝑞 = (𝑦𝑅 +s 𝑧) ∧ 𝑞 ≤s (𝑥 +s 𝑧))) |
| 147 | | r19.41v 3175 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑦𝑅 ∈ ( R ‘𝑦)(𝑞 = (𝑦𝑅 +s 𝑧) ∧ 𝑞 ≤s (𝑥 +s 𝑧)) ↔ (∃𝑦𝑅 ∈ ( R ‘𝑦)𝑞 = (𝑦𝑅 +s 𝑧) ∧ 𝑞 ≤s (𝑥 +s 𝑧))) |
| 148 | 147 | exbii 1848 |
. . . . . . . . . . . . . 14
⊢
(∃𝑞∃𝑦𝑅 ∈ ( R ‘𝑦)(𝑞 = (𝑦𝑅 +s 𝑧) ∧ 𝑞 ≤s (𝑥 +s 𝑧)) ↔ ∃𝑞(∃𝑦𝑅 ∈ ( R ‘𝑦)𝑞 = (𝑦𝑅 +s 𝑧) ∧ 𝑞 ≤s (𝑥 +s 𝑧))) |
| 149 | 146, 148 | bitri 275 |
. . . . . . . . . . . . 13
⊢
(∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑞(𝑞 = (𝑦𝑅 +s 𝑧) ∧ 𝑞 ≤s (𝑥 +s 𝑧)) ↔ ∃𝑞(∃𝑦𝑅 ∈ ( R ‘𝑦)𝑞 = (𝑦𝑅 +s 𝑧) ∧ 𝑞 ≤s (𝑥 +s 𝑧))) |
| 150 | | ovex 7443 |
. . . . . . . . . . . . . . 15
⊢ (𝑦𝑅
+s 𝑧) ∈
V |
| 151 | | breq1 5127 |
. . . . . . . . . . . . . . 15
⊢ (𝑞 = (𝑦𝑅 +s 𝑧) → (𝑞 ≤s (𝑥 +s 𝑧) ↔ (𝑦𝑅 +s 𝑧) ≤s (𝑥 +s 𝑧))) |
| 152 | 150, 151 | ceqsexv 3516 |
. . . . . . . . . . . . . 14
⊢
(∃𝑞(𝑞 = (𝑦𝑅 +s 𝑧) ∧ 𝑞 ≤s (𝑥 +s 𝑧)) ↔ (𝑦𝑅 +s 𝑧) ≤s (𝑥 +s 𝑧)) |
| 153 | 152 | rexbii 3084 |
. . . . . . . . . . . . 13
⊢
(∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑞(𝑞 = (𝑦𝑅 +s 𝑧) ∧ 𝑞 ≤s (𝑥 +s 𝑧)) ↔ ∃𝑦𝑅 ∈ ( R ‘𝑦)(𝑦𝑅 +s 𝑧) ≤s (𝑥 +s 𝑧)) |
| 154 | 149, 153 | bitr3i 277 |
. . . . . . . . . . . 12
⊢
(∃𝑞(∃𝑦𝑅 ∈ ( R ‘𝑦)𝑞 = (𝑦𝑅 +s 𝑧) ∧ 𝑞 ≤s (𝑥 +s 𝑧)) ↔ ∃𝑦𝑅 ∈ ( R ‘𝑦)(𝑦𝑅 +s 𝑧) ≤s (𝑥 +s 𝑧)) |
| 155 | 145, 154 | bitri 275 |
. . . . . . . . . . 11
⊢
(∃𝑞 ∈
{𝑐 ∣ ∃𝑦𝑅 ∈ ( R
‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)}𝑞 ≤s (𝑥 +s 𝑧) ↔ ∃𝑦𝑅 ∈ ( R ‘𝑦)(𝑦𝑅 +s 𝑧) ≤s (𝑥 +s 𝑧)) |
| 156 | | eqeq1 2740 |
. . . . . . . . . . . . . 14
⊢ (𝑑 = 𝑞 → (𝑑 = (𝑦 +s 𝑧𝑅) ↔ 𝑞 = (𝑦 +s 𝑧𝑅))) |
| 157 | 156 | rexbidv 3165 |
. . . . . . . . . . . . 13
⊢ (𝑑 = 𝑞 → (∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅) ↔ ∃𝑧𝑅 ∈ ( R
‘𝑧)𝑞 = (𝑦 +s 𝑧𝑅))) |
| 158 | 157 | rexab 3683 |
. . . . . . . . . . . 12
⊢
(∃𝑞 ∈
{𝑑 ∣ ∃𝑧𝑅 ∈ ( R
‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)}𝑞 ≤s (𝑥 +s 𝑧) ↔ ∃𝑞(∃𝑧𝑅 ∈ ( R ‘𝑧)𝑞 = (𝑦 +s 𝑧𝑅) ∧ 𝑞 ≤s (𝑥 +s 𝑧))) |
| 159 | | rexcom4 3273 |
. . . . . . . . . . . . . 14
⊢
(∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑞(𝑞 = (𝑦 +s 𝑧𝑅) ∧ 𝑞 ≤s (𝑥 +s 𝑧)) ↔ ∃𝑞∃𝑧𝑅 ∈ ( R ‘𝑧)(𝑞 = (𝑦 +s 𝑧𝑅) ∧ 𝑞 ≤s (𝑥 +s 𝑧))) |
| 160 | | r19.41v 3175 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑧𝑅 ∈ ( R ‘𝑧)(𝑞 = (𝑦 +s 𝑧𝑅) ∧ 𝑞 ≤s (𝑥 +s 𝑧)) ↔ (∃𝑧𝑅 ∈ ( R ‘𝑧)𝑞 = (𝑦 +s 𝑧𝑅) ∧ 𝑞 ≤s (𝑥 +s 𝑧))) |
| 161 | 160 | exbii 1848 |
. . . . . . . . . . . . . 14
⊢
(∃𝑞∃𝑧𝑅 ∈ ( R ‘𝑧)(𝑞 = (𝑦 +s 𝑧𝑅) ∧ 𝑞 ≤s (𝑥 +s 𝑧)) ↔ ∃𝑞(∃𝑧𝑅 ∈ ( R ‘𝑧)𝑞 = (𝑦 +s 𝑧𝑅) ∧ 𝑞 ≤s (𝑥 +s 𝑧))) |
| 162 | 159, 161 | bitri 275 |
. . . . . . . . . . . . 13
⊢
(∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑞(𝑞 = (𝑦 +s 𝑧𝑅) ∧ 𝑞 ≤s (𝑥 +s 𝑧)) ↔ ∃𝑞(∃𝑧𝑅 ∈ ( R ‘𝑧)𝑞 = (𝑦 +s 𝑧𝑅) ∧ 𝑞 ≤s (𝑥 +s 𝑧))) |
| 163 | | ovex 7443 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 +s 𝑧𝑅) ∈
V |
| 164 | | breq1 5127 |
. . . . . . . . . . . . . . 15
⊢ (𝑞 = (𝑦 +s 𝑧𝑅) → (𝑞 ≤s (𝑥 +s 𝑧) ↔ (𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧))) |
| 165 | 163, 164 | ceqsexv 3516 |
. . . . . . . . . . . . . 14
⊢
(∃𝑞(𝑞 = (𝑦 +s 𝑧𝑅) ∧ 𝑞 ≤s (𝑥 +s 𝑧)) ↔ (𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧)) |
| 166 | 165 | rexbii 3084 |
. . . . . . . . . . . . 13
⊢
(∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑞(𝑞 = (𝑦 +s 𝑧𝑅) ∧ 𝑞 ≤s (𝑥 +s 𝑧)) ↔ ∃𝑧𝑅 ∈ ( R ‘𝑧)(𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧)) |
| 167 | 162, 166 | bitr3i 277 |
. . . . . . . . . . . 12
⊢
(∃𝑞(∃𝑧𝑅 ∈ ( R ‘𝑧)𝑞 = (𝑦 +s 𝑧𝑅) ∧ 𝑞 ≤s (𝑥 +s 𝑧)) ↔ ∃𝑧𝑅 ∈ ( R ‘𝑧)(𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧)) |
| 168 | 158, 167 | bitri 275 |
. . . . . . . . . . 11
⊢
(∃𝑞 ∈
{𝑑 ∣ ∃𝑧𝑅 ∈ ( R
‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)}𝑞 ≤s (𝑥 +s 𝑧) ↔ ∃𝑧𝑅 ∈ ( R ‘𝑧)(𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧)) |
| 169 | 155, 168 | orbi12i 914 |
. . . . . . . . . 10
⊢
((∃𝑞 ∈
{𝑐 ∣ ∃𝑦𝑅 ∈ ( R
‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)}𝑞 ≤s (𝑥 +s 𝑧) ∨ ∃𝑞 ∈ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)}𝑞 ≤s (𝑥 +s 𝑧)) ↔ (∃𝑦𝑅 ∈ ( R ‘𝑦)(𝑦𝑅 +s 𝑧) ≤s (𝑥 +s 𝑧) ∨ ∃𝑧𝑅 ∈ ( R ‘𝑧)(𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧))) |
| 170 | 142, 169 | bitri 275 |
. . . . . . . . 9
⊢
(∃𝑞 ∈
({𝑐 ∣ ∃𝑦𝑅 ∈ ( R
‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)})𝑞 ≤s (𝑥 +s 𝑧) ↔ (∃𝑦𝑅 ∈ ( R ‘𝑦)(𝑦𝑅 +s 𝑧) ≤s (𝑥 +s 𝑧) ∨ ∃𝑧𝑅 ∈ ( R ‘𝑧)(𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧))) |
| 171 | | simpll2 1214 |
. . . . . . . . . . . 12
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑦𝑅 ∈ ( R ‘𝑦) ∧ (𝑦𝑅 +s 𝑧) ≤s (𝑥 +s 𝑧))) → 𝑦 ∈ No
) |
| 172 | | rightssno 27850 |
. . . . . . . . . . . . . . 15
⊢ ( R
‘𝑦) ⊆ No |
| 173 | 172 | sseli 3959 |
. . . . . . . . . . . . . 14
⊢ (𝑦𝑅 ∈ ( R
‘𝑦) → 𝑦𝑅 ∈
No ) |
| 174 | 173 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑦𝑅 ∈ ( R
‘𝑦) ∧ (𝑦𝑅
+s 𝑧) ≤s
(𝑥 +s 𝑧)) → 𝑦𝑅 ∈ No ) |
| 175 | 174 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑦𝑅 ∈ ( R ‘𝑦) ∧ (𝑦𝑅 +s 𝑧) ≤s (𝑥 +s 𝑧))) → 𝑦𝑅 ∈ No ) |
| 176 | | simpll1 1213 |
. . . . . . . . . . . 12
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑦𝑅 ∈ ( R ‘𝑦) ∧ (𝑦𝑅 +s 𝑧) ≤s (𝑥 +s 𝑧))) → 𝑥 ∈ No
) |
| 177 | | rightgt 27833 |
. . . . . . . . . . . . . 14
⊢ (𝑦𝑅 ∈ ( R
‘𝑦) → 𝑦 <s 𝑦𝑅) |
| 178 | 177 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑦𝑅 ∈ ( R
‘𝑦) ∧ (𝑦𝑅
+s 𝑧) ≤s
(𝑥 +s 𝑧)) → 𝑦 <s 𝑦𝑅) |
| 179 | 178 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑦𝑅 ∈ ( R ‘𝑦) ∧ (𝑦𝑅 +s 𝑧) ≤s (𝑥 +s 𝑧))) → 𝑦 <s 𝑦𝑅) |
| 180 | | simprr 772 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑦𝑅 ∈ ( R ‘𝑦) ∧ (𝑦𝑅 +s 𝑧) ≤s (𝑥 +s 𝑧))) → (𝑦𝑅 +s 𝑧) ≤s (𝑥 +s 𝑧)) |
| 181 | | simpll3 1215 |
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑦𝑅 ∈ ( R ‘𝑦) ∧ (𝑦𝑅 +s 𝑧) ≤s (𝑥 +s 𝑧))) → 𝑧 ∈ No
) |
| 182 | | sleadd1im 27951 |
. . . . . . . . . . . . . 14
⊢ ((𝑦𝑅 ∈
No ∧ 𝑥 ∈ No
∧ 𝑧 ∈ No ) → ((𝑦𝑅 +s 𝑧) ≤s (𝑥 +s 𝑧) → 𝑦𝑅 ≤s 𝑥)) |
| 183 | 175, 176,
181, 182 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑦𝑅 ∈ ( R ‘𝑦) ∧ (𝑦𝑅 +s 𝑧) ≤s (𝑥 +s 𝑧))) → ((𝑦𝑅 +s 𝑧) ≤s (𝑥 +s 𝑧) → 𝑦𝑅 ≤s 𝑥)) |
| 184 | 180, 183 | mpd 15 |
. . . . . . . . . . . 12
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑦𝑅 ∈ ( R ‘𝑦) ∧ (𝑦𝑅 +s 𝑧) ≤s (𝑥 +s 𝑧))) → 𝑦𝑅 ≤s 𝑥) |
| 185 | 171, 175,
176, 179, 184 | sltletrd 27729 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑦𝑅 ∈ ( R ‘𝑦) ∧ (𝑦𝑅 +s 𝑧) ≤s (𝑥 +s 𝑧))) → 𝑦 <s 𝑥) |
| 186 | 185 | rexlimdvaa 3143 |
. . . . . . . . . 10
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) → (∃𝑦𝑅 ∈ ( R ‘𝑦)(𝑦𝑅 +s 𝑧) ≤s (𝑥 +s 𝑧) → 𝑦 <s 𝑥)) |
| 187 | | simpll2 1214 |
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝑅 ∈ ( R ‘𝑧) ∧ (𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧))) → 𝑦 ∈ No
) |
| 188 | | rightssno 27850 |
. . . . . . . . . . . . . . . . 17
⊢ ( R
‘𝑧) ⊆ No |
| 189 | 188 | sseli 3959 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧𝑅 ∈ ( R
‘𝑧) → 𝑧𝑅 ∈
No ) |
| 190 | 189 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧𝑅 ∈ ( R
‘𝑧) ∧ (𝑦 +s 𝑧𝑅) ≤s
(𝑥 +s 𝑧)) → 𝑧𝑅 ∈ No ) |
| 191 | 190 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝑅 ∈ ( R ‘𝑧) ∧ (𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧))) → 𝑧𝑅 ∈ No ) |
| 192 | 187, 191 | addscld 27944 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝑅 ∈ ( R ‘𝑧) ∧ (𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧))) → (𝑦 +s 𝑧𝑅) ∈ No ) |
| 193 | | simpll1 1213 |
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝑅 ∈ ( R ‘𝑧) ∧ (𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧))) → 𝑥 ∈ No
) |
| 194 | | simpll3 1215 |
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝑅 ∈ ( R ‘𝑧) ∧ (𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧))) → 𝑧 ∈ No
) |
| 195 | 193, 194 | addscld 27944 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝑅 ∈ ( R ‘𝑧) ∧ (𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧))) → (𝑥 +s 𝑧) ∈ No
) |
| 196 | 193, 191 | addscld 27944 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝑅 ∈ ( R ‘𝑧) ∧ (𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧))) → (𝑥 +s 𝑧𝑅) ∈ No ) |
| 197 | | simprr 772 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝑅 ∈ ( R ‘𝑧) ∧ (𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧))) → (𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧)) |
| 198 | 194, 191,
193 | 3jca 1128 |
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝑅 ∈ ( R ‘𝑧) ∧ (𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧))) → (𝑧 ∈ No
∧ 𝑧𝑅
∈ No ∧ 𝑥 ∈ No
)) |
| 199 | | rightgt 27833 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧𝑅 ∈ ( R
‘𝑧) → 𝑧 <s 𝑧𝑅) |
| 200 | 199 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧𝑅 ∈ ( R
‘𝑧) ∧ (𝑦 +s 𝑧𝑅) ≤s
(𝑥 +s 𝑧)) → 𝑧 <s 𝑧𝑅) |
| 201 | 200 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝑅 ∈ ( R ‘𝑧) ∧ (𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧))) → 𝑧 <s 𝑧𝑅) |
| 202 | | sltadd2im 27950 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈
No ∧ 𝑧𝑅 ∈ No ∧ 𝑥 ∈ No )
→ (𝑧 <s 𝑧𝑅 →
(𝑥 +s 𝑧) <s (𝑥 +s 𝑧𝑅))) |
| 203 | 198, 201,
202 | sylc 65 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝑅 ∈ ( R ‘𝑧) ∧ (𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧))) → (𝑥 +s 𝑧) <s (𝑥 +s 𝑧𝑅)) |
| 204 | 192, 195,
196, 197, 203 | slelttrd 27730 |
. . . . . . . . . . . 12
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝑅 ∈ ( R ‘𝑧) ∧ (𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧))) → (𝑦 +s 𝑧𝑅) <s (𝑥 +s 𝑧𝑅)) |
| 205 | | oveq2 7418 |
. . . . . . . . . . . . . . 15
⊢ (𝑧𝑂 = 𝑧𝑅 →
(𝑦 +s 𝑧𝑂) = (𝑦 +s 𝑧𝑅)) |
| 206 | | oveq2 7418 |
. . . . . . . . . . . . . . 15
⊢ (𝑧𝑂 = 𝑧𝑅 →
(𝑥 +s 𝑧𝑂) = (𝑥 +s 𝑧𝑅)) |
| 207 | 205, 206 | breq12d 5137 |
. . . . . . . . . . . . . 14
⊢ (𝑧𝑂 = 𝑧𝑅 →
((𝑦 +s 𝑧𝑂) <s
(𝑥 +s 𝑧𝑂) ↔
(𝑦 +s 𝑧𝑅) <s
(𝑥 +s 𝑧𝑅))) |
| 208 | 207 | imbi1d 341 |
. . . . . . . . . . . . 13
⊢ (𝑧𝑂 = 𝑧𝑅 →
(((𝑦 +s 𝑧𝑂) <s
(𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥) ↔ ((𝑦 +s 𝑧𝑅) <s (𝑥 +s 𝑧𝑅) →
𝑦 <s 𝑥))) |
| 209 | | simplr3 1218 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝑅 ∈ ( R ‘𝑧) ∧ (𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧))) → ∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥)) |
| 210 | | simprl 770 |
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝑅 ∈ ( R ‘𝑧) ∧ (𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧))) → 𝑧𝑅 ∈ ( R ‘𝑧)) |
| 211 | | elun2 4163 |
. . . . . . . . . . . . . 14
⊢ (𝑧𝑅 ∈ ( R
‘𝑧) → 𝑧𝑅 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))) |
| 212 | 210, 211 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝑅 ∈ ( R ‘𝑧) ∧ (𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧))) → 𝑧𝑅 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))) |
| 213 | 208, 209,
212 | rspcdva 3607 |
. . . . . . . . . . . 12
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝑅 ∈ ( R ‘𝑧) ∧ (𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧))) → ((𝑦 +s 𝑧𝑅) <s (𝑥 +s 𝑧𝑅) →
𝑦 <s 𝑥)) |
| 214 | 204, 213 | mpd 15 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝑅 ∈ ( R ‘𝑧) ∧ (𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧))) → 𝑦 <s 𝑥) |
| 215 | 214 | rexlimdvaa 3143 |
. . . . . . . . . 10
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) → (∃𝑧𝑅 ∈ ( R ‘𝑧)(𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧) → 𝑦 <s 𝑥)) |
| 216 | 186, 215 | jaod 859 |
. . . . . . . . 9
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) → ((∃𝑦𝑅 ∈ ( R ‘𝑦)(𝑦𝑅 +s 𝑧) ≤s (𝑥 +s 𝑧) ∨ ∃𝑧𝑅 ∈ ( R ‘𝑧)(𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧)) → 𝑦 <s 𝑥)) |
| 217 | 170, 216 | biimtrid 242 |
. . . . . . . 8
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) → (∃𝑞 ∈ ({𝑐 ∣ ∃𝑦𝑅 ∈ ( R ‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)})𝑞 ≤s (𝑥 +s 𝑧) → 𝑦 <s 𝑥)) |
| 218 | 141, 217 | jaod 859 |
. . . . . . 7
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) → ((∃𝑝 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)})(𝑦 +s 𝑧) ≤s 𝑝 ∨ ∃𝑞 ∈ ({𝑐 ∣ ∃𝑦𝑅 ∈ ( R ‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)})𝑞 ≤s (𝑥 +s 𝑧)) → 𝑦 <s 𝑥)) |
| 219 | 65, 218 | sylbid 240 |
. . . . . 6
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) → ((𝑦 +s 𝑧) <s (𝑥 +s 𝑧) → 𝑦 <s 𝑥)) |
| 220 | 219 | ex 412 |
. . . . 5
⊢ ((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
→ (((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥)) → ((𝑦 +s 𝑧) <s (𝑥 +s 𝑧) → 𝑦 <s 𝑥))) |
| 221 | 4, 8, 12, 16, 20, 22, 25, 29, 33, 37, 220 | no3inds 27922 |
. . . 4
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐶 ∈ No )
→ ((𝐵 +s
𝐶) <s (𝐴 +s 𝐶) → 𝐵 <s 𝐴)) |
| 222 | | addscl 27945 |
. . . . . 6
⊢ ((𝐵 ∈
No ∧ 𝐶 ∈
No ) → (𝐵 +s 𝐶) ∈ No
) |
| 223 | 222 | 3adant1 1130 |
. . . . 5
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐶 ∈ No )
→ (𝐵 +s
𝐶) ∈ No ) |
| 224 | | addscl 27945 |
. . . . . 6
⊢ ((𝐴 ∈
No ∧ 𝐶 ∈
No ) → (𝐴 +s 𝐶) ∈ No
) |
| 225 | 224 | 3adant2 1131 |
. . . . 5
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐶 ∈ No )
→ (𝐴 +s
𝐶) ∈ No ) |
| 226 | | sltnle 27722 |
. . . . 5
⊢ (((𝐵 +s 𝐶) ∈ No
∧ (𝐴 +s
𝐶) ∈ No ) → ((𝐵 +s 𝐶) <s (𝐴 +s 𝐶) ↔ ¬ (𝐴 +s 𝐶) ≤s (𝐵 +s 𝐶))) |
| 227 | 223, 225,
226 | syl2anc 584 |
. . . 4
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐶 ∈ No )
→ ((𝐵 +s
𝐶) <s (𝐴 +s 𝐶) ↔ ¬ (𝐴 +s 𝐶) ≤s (𝐵 +s 𝐶))) |
| 228 | | sltnle 27722 |
. . . . . 6
⊢ ((𝐵 ∈
No ∧ 𝐴 ∈
No ) → (𝐵 <s 𝐴 ↔ ¬ 𝐴 ≤s 𝐵)) |
| 229 | 228 | ancoms 458 |
. . . . 5
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (𝐵 <s 𝐴 ↔ ¬ 𝐴 ≤s 𝐵)) |
| 230 | 229 | 3adant3 1132 |
. . . 4
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐶 ∈ No )
→ (𝐵 <s 𝐴 ↔ ¬ 𝐴 ≤s 𝐵)) |
| 231 | 221, 227,
230 | 3imtr3d 293 |
. . 3
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐶 ∈ No )
→ (¬ (𝐴
+s 𝐶) ≤s
(𝐵 +s 𝐶) → ¬ 𝐴 ≤s 𝐵)) |
| 232 | 231 | con4d 115 |
. 2
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐶 ∈ No )
→ (𝐴 ≤s 𝐵 → (𝐴 +s 𝐶) ≤s (𝐵 +s 𝐶))) |
| 233 | | sleadd1im 27951 |
. 2
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐶 ∈ No )
→ ((𝐴 +s
𝐶) ≤s (𝐵 +s 𝐶) → 𝐴 ≤s 𝐵)) |
| 234 | 232, 233 | impbid 212 |
1
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐶 ∈ No )
→ (𝐴 ≤s 𝐵 ↔ (𝐴 +s 𝐶) ≤s (𝐵 +s 𝐶))) |