| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | oveq1 7439 | . . . . . . 7
⊢ (𝑥 = 𝑥𝑂 → (𝑥 +s 𝑧) = (𝑥𝑂 +s 𝑧)) | 
| 2 | 1 | breq2d 5154 | . . . . . 6
⊢ (𝑥 = 𝑥𝑂 → ((𝑦 +s 𝑧) <s (𝑥 +s 𝑧) ↔ (𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧))) | 
| 3 |  | breq2 5146 | . . . . . 6
⊢ (𝑥 = 𝑥𝑂 → (𝑦 <s 𝑥 ↔ 𝑦 <s 𝑥𝑂)) | 
| 4 | 2, 3 | imbi12d 344 | . . . . 5
⊢ (𝑥 = 𝑥𝑂 → (((𝑦 +s 𝑧) <s (𝑥 +s 𝑧) → 𝑦 <s 𝑥) ↔ ((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂))) | 
| 5 |  | oveq1 7439 | . . . . . . 7
⊢ (𝑦 = 𝑦𝑂 → (𝑦 +s 𝑧) = (𝑦𝑂 +s 𝑧)) | 
| 6 | 5 | breq1d 5152 | . . . . . 6
⊢ (𝑦 = 𝑦𝑂 → ((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) ↔ (𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧))) | 
| 7 |  | breq1 5145 | . . . . . 6
⊢ (𝑦 = 𝑦𝑂 → (𝑦 <s 𝑥𝑂 ↔ 𝑦𝑂 <s 𝑥𝑂)) | 
| 8 | 6, 7 | imbi12d 344 | . . . . 5
⊢ (𝑦 = 𝑦𝑂 → (((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ↔ ((𝑦𝑂
+s 𝑧) <s
(𝑥𝑂
+s 𝑧) →
𝑦𝑂 <s
𝑥𝑂))) | 
| 9 |  | oveq2 7440 | . . . . . . 7
⊢ (𝑧 = 𝑧𝑂 → (𝑦𝑂
+s 𝑧) = (𝑦𝑂
+s 𝑧𝑂)) | 
| 10 |  | oveq2 7440 | . . . . . . 7
⊢ (𝑧 = 𝑧𝑂 → (𝑥𝑂
+s 𝑧) = (𝑥𝑂
+s 𝑧𝑂)) | 
| 11 | 9, 10 | breq12d 5155 | . . . . . 6
⊢ (𝑧 = 𝑧𝑂 → ((𝑦𝑂
+s 𝑧) <s
(𝑥𝑂
+s 𝑧) ↔
(𝑦𝑂
+s 𝑧𝑂) <s (𝑥𝑂
+s 𝑧𝑂))) | 
| 12 | 11 | imbi1d 341 | . . . . 5
⊢ (𝑧 = 𝑧𝑂 → (((𝑦𝑂
+s 𝑧) <s
(𝑥𝑂
+s 𝑧) →
𝑦𝑂 <s
𝑥𝑂)
↔ ((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂))) | 
| 13 |  | oveq1 7439 | . . . . . . 7
⊢ (𝑥 = 𝑥𝑂 → (𝑥 +s 𝑧𝑂) = (𝑥𝑂
+s 𝑧𝑂)) | 
| 14 | 13 | breq2d 5154 | . . . . . 6
⊢ (𝑥 = 𝑥𝑂 → ((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) ↔
(𝑦𝑂
+s 𝑧𝑂) <s (𝑥𝑂
+s 𝑧𝑂))) | 
| 15 |  | breq2 5146 | . . . . . 6
⊢ (𝑥 = 𝑥𝑂 → (𝑦𝑂 <s 𝑥 ↔ 𝑦𝑂 <s 𝑥𝑂)) | 
| 16 | 14, 15 | imbi12d 344 | . . . . 5
⊢ (𝑥 = 𝑥𝑂 → (((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ↔ ((𝑦𝑂
+s 𝑧𝑂) <s (𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂))) | 
| 17 |  | oveq1 7439 | . . . . . . 7
⊢ (𝑦 = 𝑦𝑂 → (𝑦 +s 𝑧𝑂) = (𝑦𝑂
+s 𝑧𝑂)) | 
| 18 | 17 | breq1d 5152 | . . . . . 6
⊢ (𝑦 = 𝑦𝑂 → ((𝑦 +s 𝑧𝑂) <s
(𝑥 +s 𝑧𝑂) ↔
(𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂))) | 
| 19 |  | breq1 5145 | . . . . . 6
⊢ (𝑦 = 𝑦𝑂 → (𝑦 <s 𝑥 ↔ 𝑦𝑂 <s 𝑥)) | 
| 20 | 18, 19 | imbi12d 344 | . . . . 5
⊢ (𝑦 = 𝑦𝑂 → (((𝑦 +s 𝑧𝑂) <s
(𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥) ↔ ((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥))) | 
| 21 | 17 | breq1d 5152 | . . . . . 6
⊢ (𝑦 = 𝑦𝑂 → ((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) ↔ (𝑦𝑂
+s 𝑧𝑂) <s (𝑥𝑂
+s 𝑧𝑂))) | 
| 22 | 21, 7 | imbi12d 344 | . . . . 5
⊢ (𝑦 = 𝑦𝑂 → (((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂) ↔ ((𝑦𝑂
+s 𝑧𝑂) <s (𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂))) | 
| 23 |  | oveq2 7440 | . . . . . . 7
⊢ (𝑧 = 𝑧𝑂 → (𝑥 +s 𝑧) = (𝑥 +s 𝑧𝑂)) | 
| 24 | 9, 23 | breq12d 5155 | . . . . . 6
⊢ (𝑧 = 𝑧𝑂 → ((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) ↔ (𝑦𝑂 +s 𝑧𝑂) <s
(𝑥 +s 𝑧𝑂))) | 
| 25 | 24 | imbi1d 341 | . . . . 5
⊢ (𝑧 = 𝑧𝑂 → (((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥) ↔ ((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥))) | 
| 26 |  | oveq1 7439 | . . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑥 +s 𝑧) = (𝐴 +s 𝑧)) | 
| 27 | 26 | breq2d 5154 | . . . . . 6
⊢ (𝑥 = 𝐴 → ((𝑦 +s 𝑧) <s (𝑥 +s 𝑧) ↔ (𝑦 +s 𝑧) <s (𝐴 +s 𝑧))) | 
| 28 |  | breq2 5146 | . . . . . 6
⊢ (𝑥 = 𝐴 → (𝑦 <s 𝑥 ↔ 𝑦 <s 𝐴)) | 
| 29 | 27, 28 | imbi12d 344 | . . . . 5
⊢ (𝑥 = 𝐴 → (((𝑦 +s 𝑧) <s (𝑥 +s 𝑧) → 𝑦 <s 𝑥) ↔ ((𝑦 +s 𝑧) <s (𝐴 +s 𝑧) → 𝑦 <s 𝐴))) | 
| 30 |  | oveq1 7439 | . . . . . . 7
⊢ (𝑦 = 𝐵 → (𝑦 +s 𝑧) = (𝐵 +s 𝑧)) | 
| 31 | 30 | breq1d 5152 | . . . . . 6
⊢ (𝑦 = 𝐵 → ((𝑦 +s 𝑧) <s (𝐴 +s 𝑧) ↔ (𝐵 +s 𝑧) <s (𝐴 +s 𝑧))) | 
| 32 |  | breq1 5145 | . . . . . 6
⊢ (𝑦 = 𝐵 → (𝑦 <s 𝐴 ↔ 𝐵 <s 𝐴)) | 
| 33 | 31, 32 | imbi12d 344 | . . . . 5
⊢ (𝑦 = 𝐵 → (((𝑦 +s 𝑧) <s (𝐴 +s 𝑧) → 𝑦 <s 𝐴) ↔ ((𝐵 +s 𝑧) <s (𝐴 +s 𝑧) → 𝐵 <s 𝐴))) | 
| 34 |  | oveq2 7440 | . . . . . . 7
⊢ (𝑧 = 𝐶 → (𝐵 +s 𝑧) = (𝐵 +s 𝐶)) | 
| 35 |  | oveq2 7440 | . . . . . . 7
⊢ (𝑧 = 𝐶 → (𝐴 +s 𝑧) = (𝐴 +s 𝐶)) | 
| 36 | 34, 35 | breq12d 5155 | . . . . . 6
⊢ (𝑧 = 𝐶 → ((𝐵 +s 𝑧) <s (𝐴 +s 𝑧) ↔ (𝐵 +s 𝐶) <s (𝐴 +s 𝐶))) | 
| 37 | 36 | imbi1d 341 | . . . . 5
⊢ (𝑧 = 𝐶 → (((𝐵 +s 𝑧) <s (𝐴 +s 𝑧) → 𝐵 <s 𝐴) ↔ ((𝐵 +s 𝐶) <s (𝐴 +s 𝐶) → 𝐵 <s 𝐴))) | 
| 38 |  | simp2 1137 | . . . . . . . . . . . 12
⊢ ((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
→ 𝑦 ∈  No ) | 
| 39 |  | simp3 1138 | . . . . . . . . . . . 12
⊢ ((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
→ 𝑧 ∈  No ) | 
| 40 | 38, 39 | addscut 28012 | . . . . . . . . . . 11
⊢ ((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
→ ((𝑦 +s
𝑧) ∈  No  ∧ ({𝑎 ∣ ∃𝑦𝐿 ∈ ( L ‘𝑦)𝑎 = (𝑦𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑦 +s 𝑧𝐿)}) <<s {(𝑦 +s 𝑧)} ∧ {(𝑦 +s 𝑧)} <<s ({𝑐 ∣ ∃𝑦𝑅 ∈ ( R ‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)}))) | 
| 41 |  | simp2 1137 | . . . . . . . . . . 11
⊢ (((𝑦 +s 𝑧) ∈ 
No  ∧ ({𝑎
∣ ∃𝑦𝐿 ∈ ( L ‘𝑦)𝑎 = (𝑦𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑦 +s 𝑧𝐿)}) <<s {(𝑦 +s 𝑧)} ∧ {(𝑦 +s 𝑧)} <<s ({𝑐 ∣ ∃𝑦𝑅 ∈ ( R ‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)})) → ({𝑎 ∣ ∃𝑦𝐿 ∈ ( L
‘𝑦)𝑎 = (𝑦𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑦 +s 𝑧𝐿)}) <<s {(𝑦 +s 𝑧)}) | 
| 42 | 40, 41 | syl 17 | . . . . . . . . . 10
⊢ ((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
→ ({𝑎 ∣
∃𝑦𝐿
∈ ( L ‘𝑦)𝑎 = (𝑦𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑦 +s 𝑧𝐿)}) <<s {(𝑦 +s 𝑧)}) | 
| 43 | 40 | simp3d 1144 | . . . . . . . . . 10
⊢ ((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
→ {(𝑦 +s
𝑧)} <<s ({𝑐 ∣ ∃𝑦𝑅 ∈ ( R
‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)})) | 
| 44 |  | ovex 7465 | . . . . . . . . . . . 12
⊢ (𝑦 +s 𝑧) ∈ V | 
| 45 | 44 | snnz 4775 | . . . . . . . . . . 11
⊢ {(𝑦 +s 𝑧)} ≠ ∅ | 
| 46 |  | sslttr 27853 | . . . . . . . . . . 11
⊢ ((({𝑎 ∣ ∃𝑦𝐿 ∈ ( L
‘𝑦)𝑎 = (𝑦𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑦 +s 𝑧𝐿)}) <<s {(𝑦 +s 𝑧)} ∧ {(𝑦 +s 𝑧)} <<s ({𝑐 ∣ ∃𝑦𝑅 ∈ ( R ‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)}) ∧ {(𝑦 +s 𝑧)} ≠ ∅) → ({𝑎 ∣ ∃𝑦𝐿 ∈ ( L
‘𝑦)𝑎 = (𝑦𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑦 +s 𝑧𝐿)}) <<s ({𝑐 ∣ ∃𝑦𝑅 ∈ ( R
‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)})) | 
| 47 | 45, 46 | mp3an3 1451 | . . . . . . . . . 10
⊢ ((({𝑎 ∣ ∃𝑦𝐿 ∈ ( L
‘𝑦)𝑎 = (𝑦𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑦 +s 𝑧𝐿)}) <<s {(𝑦 +s 𝑧)} ∧ {(𝑦 +s 𝑧)} <<s ({𝑐 ∣ ∃𝑦𝑅 ∈ ( R ‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)})) → ({𝑎 ∣ ∃𝑦𝐿 ∈ ( L
‘𝑦)𝑎 = (𝑦𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑦 +s 𝑧𝐿)}) <<s ({𝑐 ∣ ∃𝑦𝑅 ∈ ( R
‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)})) | 
| 48 | 42, 43, 47 | syl2anc 584 | . . . . . . . . 9
⊢ ((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
→ ({𝑎 ∣
∃𝑦𝐿
∈ ( L ‘𝑦)𝑎 = (𝑦𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑦 +s 𝑧𝐿)}) <<s ({𝑐 ∣ ∃𝑦𝑅 ∈ ( R
‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)})) | 
| 49 |  | simp1 1136 | . . . . . . . . . . . 12
⊢ ((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
→ 𝑥 ∈  No ) | 
| 50 | 49, 39 | addscut 28012 | . . . . . . . . . . 11
⊢ ((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
→ ((𝑥 +s
𝑧) ∈  No  ∧ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)}) <<s {(𝑥 +s 𝑧)} ∧ {(𝑥 +s 𝑧)} <<s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑥 +s 𝑧𝑅)}))) | 
| 51 |  | simp2 1137 | . . . . . . . . . . 11
⊢ (((𝑥 +s 𝑧) ∈ 
No  ∧ ({𝑎
∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)}) <<s {(𝑥 +s 𝑧)} ∧ {(𝑥 +s 𝑧)} <<s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑥 +s 𝑧𝑅)})) → ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)}) <<s {(𝑥 +s 𝑧)}) | 
| 52 | 50, 51 | syl 17 | . . . . . . . . . 10
⊢ ((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
→ ({𝑎 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)}) <<s {(𝑥 +s 𝑧)}) | 
| 53 | 50 | simp3d 1144 | . . . . . . . . . 10
⊢ ((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
→ {(𝑥 +s
𝑧)} <<s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑐 = (𝑥𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑥 +s 𝑧𝑅)})) | 
| 54 |  | ovex 7465 | . . . . . . . . . . . 12
⊢ (𝑥 +s 𝑧) ∈ V | 
| 55 | 54 | snnz 4775 | . . . . . . . . . . 11
⊢ {(𝑥 +s 𝑧)} ≠ ∅ | 
| 56 |  | sslttr 27853 | . . . . . . . . . . 11
⊢ ((({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)}) <<s {(𝑥 +s 𝑧)} ∧ {(𝑥 +s 𝑧)} <<s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑥 +s 𝑧𝑅)}) ∧ {(𝑥 +s 𝑧)} ≠ ∅) → ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)}) <<s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑐 = (𝑥𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑥 +s 𝑧𝑅)})) | 
| 57 | 55, 56 | mp3an3 1451 | . . . . . . . . . 10
⊢ ((({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)}) <<s {(𝑥 +s 𝑧)} ∧ {(𝑥 +s 𝑧)} <<s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑥 +s 𝑧𝑅)})) → ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)}) <<s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑐 = (𝑥𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑥 +s 𝑧𝑅)})) | 
| 58 | 52, 53, 57 | syl2anc 584 | . . . . . . . . 9
⊢ ((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
→ ({𝑎 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)}) <<s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑐 = (𝑥𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑥 +s 𝑧𝑅)})) | 
| 59 |  | addsval2 27997 | . . . . . . . . . 10
⊢ ((𝑦 ∈ 
No  ∧ 𝑧 ∈
 No ) → (𝑦 +s 𝑧) = (({𝑎 ∣ ∃𝑦𝐿 ∈ ( L ‘𝑦)𝑎 = (𝑦𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑦 +s 𝑧𝐿)}) |s ({𝑐 ∣ ∃𝑦𝑅 ∈ ( R
‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)}))) | 
| 60 | 59 | 3adant1 1130 | . . . . . . . . 9
⊢ ((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
→ (𝑦 +s
𝑧) = (({𝑎 ∣ ∃𝑦𝐿 ∈ ( L ‘𝑦)𝑎 = (𝑦𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑦 +s 𝑧𝐿)}) |s ({𝑐 ∣ ∃𝑦𝑅 ∈ ( R
‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)}))) | 
| 61 |  | addsval2 27997 | . . . . . . . . . 10
⊢ ((𝑥 ∈ 
No  ∧ 𝑧 ∈
 No ) → (𝑥 +s 𝑧) = (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)}) |s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑐 = (𝑥𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑥 +s 𝑧𝑅)}))) | 
| 62 | 61 | 3adant2 1131 | . . . . . . . . 9
⊢ ((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
→ (𝑥 +s
𝑧) = (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)}) |s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑐 = (𝑥𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑥 +s 𝑧𝑅)}))) | 
| 63 |  | sltrec 27866 | . . . . . . . . 9
⊢
(((({𝑎 ∣
∃𝑦𝐿
∈ ( L ‘𝑦)𝑎 = (𝑦𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑦 +s 𝑧𝐿)}) <<s ({𝑐 ∣ ∃𝑦𝑅 ∈ ( R
‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)}) ∧ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)}) <<s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑐 = (𝑥𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑥 +s 𝑧𝑅)})) ∧ ((𝑦 +s 𝑧) = (({𝑎 ∣ ∃𝑦𝐿 ∈ ( L ‘𝑦)𝑎 = (𝑦𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑦 +s 𝑧𝐿)}) |s ({𝑐 ∣ ∃𝑦𝑅 ∈ ( R
‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)})) ∧ (𝑥 +s 𝑧) = (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)}) |s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑐 = (𝑥𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑥 +s 𝑧𝑅)})))) → ((𝑦 +s 𝑧) <s (𝑥 +s 𝑧) ↔ (∃𝑝 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)})(𝑦 +s 𝑧) ≤s 𝑝 ∨ ∃𝑞 ∈ ({𝑐 ∣ ∃𝑦𝑅 ∈ ( R ‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)})𝑞 ≤s (𝑥 +s 𝑧)))) | 
| 64 | 48, 58, 60, 62, 63 | syl22anc 838 | . . . . . . . 8
⊢ ((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
→ ((𝑦 +s
𝑧) <s (𝑥 +s 𝑧) ↔ (∃𝑝 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)})(𝑦 +s 𝑧) ≤s 𝑝 ∨ ∃𝑞 ∈ ({𝑐 ∣ ∃𝑦𝑅 ∈ ( R ‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)})𝑞 ≤s (𝑥 +s 𝑧)))) | 
| 65 | 64 | adantr 480 | . . . . . . 7
⊢ (((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) → ((𝑦 +s 𝑧) <s (𝑥 +s 𝑧) ↔ (∃𝑝 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)})(𝑦 +s 𝑧) ≤s 𝑝 ∨ ∃𝑞 ∈ ({𝑐 ∣ ∃𝑦𝑅 ∈ ( R ‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)})𝑞 ≤s (𝑥 +s 𝑧)))) | 
| 66 |  | rexun 4195 | . . . . . . . . . 10
⊢
(∃𝑝 ∈
({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)})(𝑦 +s 𝑧) ≤s 𝑝 ↔ (∃𝑝 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} (𝑦 +s 𝑧) ≤s 𝑝 ∨ ∃𝑝 ∈ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)} (𝑦 +s 𝑧) ≤s 𝑝)) | 
| 67 |  | eqeq1 2740 | . . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑝 → (𝑎 = (𝑥𝐿 +s 𝑧) ↔ 𝑝 = (𝑥𝐿 +s 𝑧))) | 
| 68 | 67 | rexbidv 3178 | . . . . . . . . . . . . 13
⊢ (𝑎 = 𝑝 → (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧) ↔ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑝 = (𝑥𝐿 +s 𝑧))) | 
| 69 | 68 | rexab 3699 | . . . . . . . . . . . 12
⊢
(∃𝑝 ∈
{𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} (𝑦 +s 𝑧) ≤s 𝑝 ↔ ∃𝑝(∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s 𝑧) ∧ (𝑦 +s 𝑧) ≤s 𝑝)) | 
| 70 |  | rexcom4 3287 | . . . . . . . . . . . . . 14
⊢
(∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑝(𝑝 = (𝑥𝐿 +s 𝑧) ∧ (𝑦 +s 𝑧) ≤s 𝑝) ↔ ∃𝑝∃𝑥𝐿 ∈ ( L ‘𝑥)(𝑝 = (𝑥𝐿 +s 𝑧) ∧ (𝑦 +s 𝑧) ≤s 𝑝)) | 
| 71 |  | r19.41v 3188 | . . . . . . . . . . . . . . 15
⊢
(∃𝑥𝐿 ∈ ( L ‘𝑥)(𝑝 = (𝑥𝐿 +s 𝑧) ∧ (𝑦 +s 𝑧) ≤s 𝑝) ↔ (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s 𝑧) ∧ (𝑦 +s 𝑧) ≤s 𝑝)) | 
| 72 | 71 | exbii 1847 | . . . . . . . . . . . . . 14
⊢
(∃𝑝∃𝑥𝐿 ∈ ( L ‘𝑥)(𝑝 = (𝑥𝐿 +s 𝑧) ∧ (𝑦 +s 𝑧) ≤s 𝑝) ↔ ∃𝑝(∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s 𝑧) ∧ (𝑦 +s 𝑧) ≤s 𝑝)) | 
| 73 | 70, 72 | bitri 275 | . . . . . . . . . . . . 13
⊢
(∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑝(𝑝 = (𝑥𝐿 +s 𝑧) ∧ (𝑦 +s 𝑧) ≤s 𝑝) ↔ ∃𝑝(∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s 𝑧) ∧ (𝑦 +s 𝑧) ≤s 𝑝)) | 
| 74 |  | ovex 7465 | . . . . . . . . . . . . . . 15
⊢ (𝑥𝐿
+s 𝑧) ∈
V | 
| 75 |  | breq2 5146 | . . . . . . . . . . . . . . 15
⊢ (𝑝 = (𝑥𝐿 +s 𝑧) → ((𝑦 +s 𝑧) ≤s 𝑝 ↔ (𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧))) | 
| 76 | 74, 75 | ceqsexv 3531 | . . . . . . . . . . . . . 14
⊢
(∃𝑝(𝑝 = (𝑥𝐿 +s 𝑧) ∧ (𝑦 +s 𝑧) ≤s 𝑝) ↔ (𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧)) | 
| 77 | 76 | rexbii 3093 | . . . . . . . . . . . . 13
⊢
(∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑝(𝑝 = (𝑥𝐿 +s 𝑧) ∧ (𝑦 +s 𝑧) ≤s 𝑝) ↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)(𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧)) | 
| 78 | 73, 77 | bitr3i 277 | . . . . . . . . . . . 12
⊢
(∃𝑝(∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s 𝑧) ∧ (𝑦 +s 𝑧) ≤s 𝑝) ↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)(𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧)) | 
| 79 | 69, 78 | bitri 275 | . . . . . . . . . . 11
⊢
(∃𝑝 ∈
{𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} (𝑦 +s 𝑧) ≤s 𝑝 ↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)(𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧)) | 
| 80 |  | eqeq1 2740 | . . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑝 → (𝑏 = (𝑥 +s 𝑧𝐿) ↔ 𝑝 = (𝑥 +s 𝑧𝐿))) | 
| 81 | 80 | rexbidv 3178 | . . . . . . . . . . . . 13
⊢ (𝑏 = 𝑝 → (∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿) ↔ ∃𝑧𝐿 ∈ ( L
‘𝑧)𝑝 = (𝑥 +s 𝑧𝐿))) | 
| 82 | 81 | rexab 3699 | . . . . . . . . . . . 12
⊢
(∃𝑝 ∈
{𝑏 ∣ ∃𝑧𝐿 ∈ ( L
‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)} (𝑦 +s 𝑧) ≤s 𝑝 ↔ ∃𝑝(∃𝑧𝐿 ∈ ( L ‘𝑧)𝑝 = (𝑥 +s 𝑧𝐿) ∧ (𝑦 +s 𝑧) ≤s 𝑝)) | 
| 83 |  | rexcom4 3287 | . . . . . . . . . . . . . 14
⊢
(∃𝑧𝐿 ∈ ( L ‘𝑧)∃𝑝(𝑝 = (𝑥 +s 𝑧𝐿) ∧ (𝑦 +s 𝑧) ≤s 𝑝) ↔ ∃𝑝∃𝑧𝐿 ∈ ( L ‘𝑧)(𝑝 = (𝑥 +s 𝑧𝐿) ∧ (𝑦 +s 𝑧) ≤s 𝑝)) | 
| 84 |  | r19.41v 3188 | . . . . . . . . . . . . . . 15
⊢
(∃𝑧𝐿 ∈ ( L ‘𝑧)(𝑝 = (𝑥 +s 𝑧𝐿) ∧ (𝑦 +s 𝑧) ≤s 𝑝) ↔ (∃𝑧𝐿 ∈ ( L ‘𝑧)𝑝 = (𝑥 +s 𝑧𝐿) ∧ (𝑦 +s 𝑧) ≤s 𝑝)) | 
| 85 | 84 | exbii 1847 | . . . . . . . . . . . . . 14
⊢
(∃𝑝∃𝑧𝐿 ∈ ( L ‘𝑧)(𝑝 = (𝑥 +s 𝑧𝐿) ∧ (𝑦 +s 𝑧) ≤s 𝑝) ↔ ∃𝑝(∃𝑧𝐿 ∈ ( L ‘𝑧)𝑝 = (𝑥 +s 𝑧𝐿) ∧ (𝑦 +s 𝑧) ≤s 𝑝)) | 
| 86 | 83, 85 | bitri 275 | . . . . . . . . . . . . 13
⊢
(∃𝑧𝐿 ∈ ( L ‘𝑧)∃𝑝(𝑝 = (𝑥 +s 𝑧𝐿) ∧ (𝑦 +s 𝑧) ≤s 𝑝) ↔ ∃𝑝(∃𝑧𝐿 ∈ ( L ‘𝑧)𝑝 = (𝑥 +s 𝑧𝐿) ∧ (𝑦 +s 𝑧) ≤s 𝑝)) | 
| 87 |  | ovex 7465 | . . . . . . . . . . . . . . 15
⊢ (𝑥 +s 𝑧𝐿) ∈
V | 
| 88 |  | breq2 5146 | . . . . . . . . . . . . . . 15
⊢ (𝑝 = (𝑥 +s 𝑧𝐿) → ((𝑦 +s 𝑧) ≤s 𝑝 ↔ (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿))) | 
| 89 | 87, 88 | ceqsexv 3531 | . . . . . . . . . . . . . 14
⊢
(∃𝑝(𝑝 = (𝑥 +s 𝑧𝐿) ∧ (𝑦 +s 𝑧) ≤s 𝑝) ↔ (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿)) | 
| 90 | 89 | rexbii 3093 | . . . . . . . . . . . . 13
⊢
(∃𝑧𝐿 ∈ ( L ‘𝑧)∃𝑝(𝑝 = (𝑥 +s 𝑧𝐿) ∧ (𝑦 +s 𝑧) ≤s 𝑝) ↔ ∃𝑧𝐿 ∈ ( L ‘𝑧)(𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿)) | 
| 91 | 86, 90 | bitr3i 277 | . . . . . . . . . . . 12
⊢
(∃𝑝(∃𝑧𝐿 ∈ ( L ‘𝑧)𝑝 = (𝑥 +s 𝑧𝐿) ∧ (𝑦 +s 𝑧) ≤s 𝑝) ↔ ∃𝑧𝐿 ∈ ( L ‘𝑧)(𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿)) | 
| 92 | 82, 91 | bitri 275 | . . . . . . . . . . 11
⊢
(∃𝑝 ∈
{𝑏 ∣ ∃𝑧𝐿 ∈ ( L
‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)} (𝑦 +s 𝑧) ≤s 𝑝 ↔ ∃𝑧𝐿 ∈ ( L ‘𝑧)(𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿)) | 
| 93 | 79, 92 | orbi12i 914 | . . . . . . . . . 10
⊢
((∃𝑝 ∈
{𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} (𝑦 +s 𝑧) ≤s 𝑝 ∨ ∃𝑝 ∈ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)} (𝑦 +s 𝑧) ≤s 𝑝) ↔ (∃𝑥𝐿 ∈ ( L ‘𝑥)(𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧) ∨ ∃𝑧𝐿 ∈ ( L ‘𝑧)(𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿))) | 
| 94 | 66, 93 | bitri 275 | . . . . . . . . 9
⊢
(∃𝑝 ∈
({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)})(𝑦 +s 𝑧) ≤s 𝑝 ↔ (∃𝑥𝐿 ∈ ( L ‘𝑥)(𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧) ∨ ∃𝑧𝐿 ∈ ( L ‘𝑧)(𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿))) | 
| 95 |  | simpll2 1213 | . . . . . . . . . . . 12
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑥𝐿 ∈ ( L ‘𝑥) ∧ (𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧))) → 𝑦 ∈  No
) | 
| 96 |  | leftssno 27920 | . . . . . . . . . . . . . . 15
⊢ ( L
‘𝑥) ⊆  No | 
| 97 | 96 | sseli 3978 | . . . . . . . . . . . . . 14
⊢ (𝑥𝐿 ∈ ( L
‘𝑥) → 𝑥𝐿 ∈
 No ) | 
| 98 | 97 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝑥𝐿 ∈ ( L
‘𝑥) ∧ (𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧)) → 𝑥𝐿 ∈  No ) | 
| 99 | 98 | adantl 481 | . . . . . . . . . . . 12
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑥𝐿 ∈ ( L ‘𝑥) ∧ (𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧))) → 𝑥𝐿 ∈  No ) | 
| 100 |  | simpll1 1212 | . . . . . . . . . . . 12
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑥𝐿 ∈ ( L ‘𝑥) ∧ (𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧))) → 𝑥 ∈  No
) | 
| 101 |  | simprr 772 | . . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑥𝐿 ∈ ( L ‘𝑥) ∧ (𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧))) → (𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧)) | 
| 102 |  | simpll3 1214 | . . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑥𝐿 ∈ ( L ‘𝑥) ∧ (𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧))) → 𝑧 ∈  No
) | 
| 103 |  | sleadd1im 28021 | . . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ 
No  ∧ 𝑥𝐿 ∈  No  ∧ 𝑧 ∈  No )
→ ((𝑦 +s
𝑧) ≤s (𝑥𝐿
+s 𝑧) →
𝑦 ≤s 𝑥𝐿)) | 
| 104 | 95, 99, 102, 103 | syl3anc 1372 | . . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑥𝐿 ∈ ( L ‘𝑥) ∧ (𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧))) → ((𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧) → 𝑦 ≤s 𝑥𝐿)) | 
| 105 | 101, 104 | mpd 15 | . . . . . . . . . . . 12
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑥𝐿 ∈ ( L ‘𝑥) ∧ (𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧))) → 𝑦 ≤s 𝑥𝐿) | 
| 106 |  | leftval 27903 | . . . . . . . . . . . . . . . 16
⊢ ( L
‘𝑥) = {𝑥𝐿 ∈ ( O
‘( bday ‘𝑥)) ∣ 𝑥𝐿 <s 𝑥} | 
| 107 | 106 | reqabi 3459 | . . . . . . . . . . . . . . 15
⊢ (𝑥𝐿 ∈ ( L
‘𝑥) ↔ (𝑥𝐿 ∈ ( O
‘( bday ‘𝑥)) ∧ 𝑥𝐿 <s 𝑥)) | 
| 108 | 107 | simprbi 496 | . . . . . . . . . . . . . 14
⊢ (𝑥𝐿 ∈ ( L
‘𝑥) → 𝑥𝐿 <s 𝑥) | 
| 109 | 108 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝑥𝐿 ∈ ( L
‘𝑥) ∧ (𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧)) → 𝑥𝐿 <s 𝑥) | 
| 110 | 109 | adantl 481 | . . . . . . . . . . . 12
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑥𝐿 ∈ ( L ‘𝑥) ∧ (𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧))) → 𝑥𝐿 <s 𝑥) | 
| 111 | 95, 99, 100, 105, 110 | slelttrd 27807 | . . . . . . . . . . 11
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑥𝐿 ∈ ( L ‘𝑥) ∧ (𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧))) → 𝑦 <s 𝑥) | 
| 112 | 111 | rexlimdvaa 3155 | . . . . . . . . . 10
⊢ (((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) → (∃𝑥𝐿 ∈ ( L ‘𝑥)(𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧) → 𝑦 <s 𝑥)) | 
| 113 |  | simpll2 1213 | . . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝐿 ∈ ( L ‘𝑧) ∧ (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿))) → 𝑦 ∈ 
No ) | 
| 114 |  | leftssno 27920 | . . . . . . . . . . . . . . . . 17
⊢ ( L
‘𝑧) ⊆  No | 
| 115 | 114 | sseli 3978 | . . . . . . . . . . . . . . . 16
⊢ (𝑧𝐿 ∈ ( L
‘𝑧) → 𝑧𝐿 ∈
 No ) | 
| 116 | 115 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ ((𝑧𝐿 ∈ ( L
‘𝑧) ∧ (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿)) → 𝑧𝐿 ∈
 No ) | 
| 117 | 116 | adantl 481 | . . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝐿 ∈ ( L ‘𝑧) ∧ (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿))) → 𝑧𝐿 ∈
 No ) | 
| 118 | 113, 117 | addscld 28014 | . . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝐿 ∈ ( L ‘𝑧) ∧ (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿))) → (𝑦 +s 𝑧𝐿) ∈
 No ) | 
| 119 |  | simpll3 1214 | . . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝐿 ∈ ( L ‘𝑧) ∧ (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿))) → 𝑧 ∈ 
No ) | 
| 120 | 113, 119 | addscld 28014 | . . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝐿 ∈ ( L ‘𝑧) ∧ (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿))) → (𝑦 +s 𝑧) ∈ 
No ) | 
| 121 |  | simpll1 1212 | . . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝐿 ∈ ( L ‘𝑧) ∧ (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿))) → 𝑥 ∈ 
No ) | 
| 122 | 121, 117 | addscld 28014 | . . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝐿 ∈ ( L ‘𝑧) ∧ (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿))) → (𝑥 +s 𝑧𝐿) ∈
 No ) | 
| 123 |  | leftval 27903 | . . . . . . . . . . . . . . . . . 18
⊢ ( L
‘𝑧) = {𝑧𝐿 ∈ ( O
‘( bday ‘𝑧)) ∣ 𝑧𝐿 <s 𝑧} | 
| 124 | 123 | reqabi 3459 | . . . . . . . . . . . . . . . . 17
⊢ (𝑧𝐿 ∈ ( L
‘𝑧) ↔ (𝑧𝐿 ∈ ( O
‘( bday ‘𝑧)) ∧ 𝑧𝐿 <s 𝑧)) | 
| 125 | 124 | simprbi 496 | . . . . . . . . . . . . . . . 16
⊢ (𝑧𝐿 ∈ ( L
‘𝑧) → 𝑧𝐿 <s 𝑧) | 
| 126 | 125 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ ((𝑧𝐿 ∈ ( L
‘𝑧) ∧ (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿)) → 𝑧𝐿 <s 𝑧) | 
| 127 | 126 | adantl 481 | . . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝐿 ∈ ( L ‘𝑧) ∧ (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿))) → 𝑧𝐿 <s 𝑧) | 
| 128 |  | sltadd2im 28020 | . . . . . . . . . . . . . . 15
⊢ ((𝑧𝐿 ∈
 No  ∧ 𝑧 ∈  No 
∧ 𝑦 ∈  No ) → (𝑧𝐿 <s 𝑧 → (𝑦 +s 𝑧𝐿) <s (𝑦 +s 𝑧))) | 
| 129 | 117, 119,
113, 128 | syl3anc 1372 | . . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝐿 ∈ ( L ‘𝑧) ∧ (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿))) → (𝑧𝐿 <s 𝑧 → (𝑦 +s 𝑧𝐿) <s (𝑦 +s 𝑧))) | 
| 130 | 127, 129 | mpd 15 | . . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝐿 ∈ ( L ‘𝑧) ∧ (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿))) → (𝑦 +s 𝑧𝐿) <s
(𝑦 +s 𝑧)) | 
| 131 |  | simprr 772 | . . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝐿 ∈ ( L ‘𝑧) ∧ (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿))) → (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿)) | 
| 132 | 118, 120,
122, 130, 131 | sltletrd 27806 | . . . . . . . . . . . 12
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝐿 ∈ ( L ‘𝑧) ∧ (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿))) → (𝑦 +s 𝑧𝐿) <s
(𝑥 +s 𝑧𝐿)) | 
| 133 |  | oveq2 7440 | . . . . . . . . . . . . . . 15
⊢ (𝑧𝑂 = 𝑧𝐿 →
(𝑦 +s 𝑧𝑂) = (𝑦 +s 𝑧𝐿)) | 
| 134 |  | oveq2 7440 | . . . . . . . . . . . . . . 15
⊢ (𝑧𝑂 = 𝑧𝐿 →
(𝑥 +s 𝑧𝑂) = (𝑥 +s 𝑧𝐿)) | 
| 135 | 133, 134 | breq12d 5155 | . . . . . . . . . . . . . 14
⊢ (𝑧𝑂 = 𝑧𝐿 →
((𝑦 +s 𝑧𝑂) <s
(𝑥 +s 𝑧𝑂) ↔
(𝑦 +s 𝑧𝐿) <s
(𝑥 +s 𝑧𝐿))) | 
| 136 | 135 | imbi1d 341 | . . . . . . . . . . . . 13
⊢ (𝑧𝑂 = 𝑧𝐿 →
(((𝑦 +s 𝑧𝑂) <s
(𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥) ↔ ((𝑦 +s 𝑧𝐿) <s (𝑥 +s 𝑧𝐿) →
𝑦 <s 𝑥))) | 
| 137 |  | simplr3 1217 | . . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝐿 ∈ ( L ‘𝑧) ∧ (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿))) → ∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥)) | 
| 138 |  | simprl 770 | . . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝐿 ∈ ( L ‘𝑧) ∧ (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿))) → 𝑧𝐿 ∈ ( L
‘𝑧)) | 
| 139 |  | elun1 4181 | . . . . . . . . . . . . . 14
⊢ (𝑧𝐿 ∈ ( L
‘𝑧) → 𝑧𝐿 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))) | 
| 140 | 138, 139 | syl 17 | . . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝐿 ∈ ( L ‘𝑧) ∧ (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿))) → 𝑧𝐿 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))) | 
| 141 | 136, 137,
140 | rspcdva 3622 | . . . . . . . . . . . 12
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝐿 ∈ ( L ‘𝑧) ∧ (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿))) → ((𝑦 +s 𝑧𝐿) <s
(𝑥 +s 𝑧𝐿) →
𝑦 <s 𝑥)) | 
| 142 | 132, 141 | mpd 15 | . . . . . . . . . . 11
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝐿 ∈ ( L ‘𝑧) ∧ (𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿))) → 𝑦 <s 𝑥) | 
| 143 | 142 | rexlimdvaa 3155 | . . . . . . . . . 10
⊢ (((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) → (∃𝑧𝐿 ∈ ( L ‘𝑧)(𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿) → 𝑦 <s 𝑥)) | 
| 144 | 112, 143 | jaod 859 | . . . . . . . . 9
⊢ (((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) → ((∃𝑥𝐿 ∈ ( L ‘𝑥)(𝑦 +s 𝑧) ≤s (𝑥𝐿 +s 𝑧) ∨ ∃𝑧𝐿 ∈ ( L ‘𝑧)(𝑦 +s 𝑧) ≤s (𝑥 +s 𝑧𝐿)) → 𝑦 <s 𝑥)) | 
| 145 | 94, 144 | biimtrid 242 | . . . . . . . 8
⊢ (((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) → (∃𝑝 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)})(𝑦 +s 𝑧) ≤s 𝑝 → 𝑦 <s 𝑥)) | 
| 146 |  | rexun 4195 | . . . . . . . . . 10
⊢
(∃𝑞 ∈
({𝑐 ∣ ∃𝑦𝑅 ∈ ( R
‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)})𝑞 ≤s (𝑥 +s 𝑧) ↔ (∃𝑞 ∈ {𝑐 ∣ ∃𝑦𝑅 ∈ ( R ‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)}𝑞 ≤s (𝑥 +s 𝑧) ∨ ∃𝑞 ∈ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)}𝑞 ≤s (𝑥 +s 𝑧))) | 
| 147 |  | eqeq1 2740 | . . . . . . . . . . . . . 14
⊢ (𝑐 = 𝑞 → (𝑐 = (𝑦𝑅 +s 𝑧) ↔ 𝑞 = (𝑦𝑅 +s 𝑧))) | 
| 148 | 147 | rexbidv 3178 | . . . . . . . . . . . . 13
⊢ (𝑐 = 𝑞 → (∃𝑦𝑅 ∈ ( R ‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧) ↔ ∃𝑦𝑅 ∈ ( R
‘𝑦)𝑞 = (𝑦𝑅 +s 𝑧))) | 
| 149 | 148 | rexab 3699 | . . . . . . . . . . . 12
⊢
(∃𝑞 ∈
{𝑐 ∣ ∃𝑦𝑅 ∈ ( R
‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)}𝑞 ≤s (𝑥 +s 𝑧) ↔ ∃𝑞(∃𝑦𝑅 ∈ ( R ‘𝑦)𝑞 = (𝑦𝑅 +s 𝑧) ∧ 𝑞 ≤s (𝑥 +s 𝑧))) | 
| 150 |  | rexcom4 3287 | . . . . . . . . . . . . . 14
⊢
(∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑞(𝑞 = (𝑦𝑅 +s 𝑧) ∧ 𝑞 ≤s (𝑥 +s 𝑧)) ↔ ∃𝑞∃𝑦𝑅 ∈ ( R ‘𝑦)(𝑞 = (𝑦𝑅 +s 𝑧) ∧ 𝑞 ≤s (𝑥 +s 𝑧))) | 
| 151 |  | r19.41v 3188 | . . . . . . . . . . . . . . 15
⊢
(∃𝑦𝑅 ∈ ( R ‘𝑦)(𝑞 = (𝑦𝑅 +s 𝑧) ∧ 𝑞 ≤s (𝑥 +s 𝑧)) ↔ (∃𝑦𝑅 ∈ ( R ‘𝑦)𝑞 = (𝑦𝑅 +s 𝑧) ∧ 𝑞 ≤s (𝑥 +s 𝑧))) | 
| 152 | 151 | exbii 1847 | . . . . . . . . . . . . . 14
⊢
(∃𝑞∃𝑦𝑅 ∈ ( R ‘𝑦)(𝑞 = (𝑦𝑅 +s 𝑧) ∧ 𝑞 ≤s (𝑥 +s 𝑧)) ↔ ∃𝑞(∃𝑦𝑅 ∈ ( R ‘𝑦)𝑞 = (𝑦𝑅 +s 𝑧) ∧ 𝑞 ≤s (𝑥 +s 𝑧))) | 
| 153 | 150, 152 | bitri 275 | . . . . . . . . . . . . 13
⊢
(∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑞(𝑞 = (𝑦𝑅 +s 𝑧) ∧ 𝑞 ≤s (𝑥 +s 𝑧)) ↔ ∃𝑞(∃𝑦𝑅 ∈ ( R ‘𝑦)𝑞 = (𝑦𝑅 +s 𝑧) ∧ 𝑞 ≤s (𝑥 +s 𝑧))) | 
| 154 |  | ovex 7465 | . . . . . . . . . . . . . . 15
⊢ (𝑦𝑅
+s 𝑧) ∈
V | 
| 155 |  | breq1 5145 | . . . . . . . . . . . . . . 15
⊢ (𝑞 = (𝑦𝑅 +s 𝑧) → (𝑞 ≤s (𝑥 +s 𝑧) ↔ (𝑦𝑅 +s 𝑧) ≤s (𝑥 +s 𝑧))) | 
| 156 | 154, 155 | ceqsexv 3531 | . . . . . . . . . . . . . 14
⊢
(∃𝑞(𝑞 = (𝑦𝑅 +s 𝑧) ∧ 𝑞 ≤s (𝑥 +s 𝑧)) ↔ (𝑦𝑅 +s 𝑧) ≤s (𝑥 +s 𝑧)) | 
| 157 | 156 | rexbii 3093 | . . . . . . . . . . . . 13
⊢
(∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑞(𝑞 = (𝑦𝑅 +s 𝑧) ∧ 𝑞 ≤s (𝑥 +s 𝑧)) ↔ ∃𝑦𝑅 ∈ ( R ‘𝑦)(𝑦𝑅 +s 𝑧) ≤s (𝑥 +s 𝑧)) | 
| 158 | 153, 157 | bitr3i 277 | . . . . . . . . . . . 12
⊢
(∃𝑞(∃𝑦𝑅 ∈ ( R ‘𝑦)𝑞 = (𝑦𝑅 +s 𝑧) ∧ 𝑞 ≤s (𝑥 +s 𝑧)) ↔ ∃𝑦𝑅 ∈ ( R ‘𝑦)(𝑦𝑅 +s 𝑧) ≤s (𝑥 +s 𝑧)) | 
| 159 | 149, 158 | bitri 275 | . . . . . . . . . . 11
⊢
(∃𝑞 ∈
{𝑐 ∣ ∃𝑦𝑅 ∈ ( R
‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)}𝑞 ≤s (𝑥 +s 𝑧) ↔ ∃𝑦𝑅 ∈ ( R ‘𝑦)(𝑦𝑅 +s 𝑧) ≤s (𝑥 +s 𝑧)) | 
| 160 |  | eqeq1 2740 | . . . . . . . . . . . . . 14
⊢ (𝑑 = 𝑞 → (𝑑 = (𝑦 +s 𝑧𝑅) ↔ 𝑞 = (𝑦 +s 𝑧𝑅))) | 
| 161 | 160 | rexbidv 3178 | . . . . . . . . . . . . 13
⊢ (𝑑 = 𝑞 → (∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅) ↔ ∃𝑧𝑅 ∈ ( R
‘𝑧)𝑞 = (𝑦 +s 𝑧𝑅))) | 
| 162 | 161 | rexab 3699 | . . . . . . . . . . . 12
⊢
(∃𝑞 ∈
{𝑑 ∣ ∃𝑧𝑅 ∈ ( R
‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)}𝑞 ≤s (𝑥 +s 𝑧) ↔ ∃𝑞(∃𝑧𝑅 ∈ ( R ‘𝑧)𝑞 = (𝑦 +s 𝑧𝑅) ∧ 𝑞 ≤s (𝑥 +s 𝑧))) | 
| 163 |  | rexcom4 3287 | . . . . . . . . . . . . . 14
⊢
(∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑞(𝑞 = (𝑦 +s 𝑧𝑅) ∧ 𝑞 ≤s (𝑥 +s 𝑧)) ↔ ∃𝑞∃𝑧𝑅 ∈ ( R ‘𝑧)(𝑞 = (𝑦 +s 𝑧𝑅) ∧ 𝑞 ≤s (𝑥 +s 𝑧))) | 
| 164 |  | r19.41v 3188 | . . . . . . . . . . . . . . 15
⊢
(∃𝑧𝑅 ∈ ( R ‘𝑧)(𝑞 = (𝑦 +s 𝑧𝑅) ∧ 𝑞 ≤s (𝑥 +s 𝑧)) ↔ (∃𝑧𝑅 ∈ ( R ‘𝑧)𝑞 = (𝑦 +s 𝑧𝑅) ∧ 𝑞 ≤s (𝑥 +s 𝑧))) | 
| 165 | 164 | exbii 1847 | . . . . . . . . . . . . . 14
⊢
(∃𝑞∃𝑧𝑅 ∈ ( R ‘𝑧)(𝑞 = (𝑦 +s 𝑧𝑅) ∧ 𝑞 ≤s (𝑥 +s 𝑧)) ↔ ∃𝑞(∃𝑧𝑅 ∈ ( R ‘𝑧)𝑞 = (𝑦 +s 𝑧𝑅) ∧ 𝑞 ≤s (𝑥 +s 𝑧))) | 
| 166 | 163, 165 | bitri 275 | . . . . . . . . . . . . 13
⊢
(∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑞(𝑞 = (𝑦 +s 𝑧𝑅) ∧ 𝑞 ≤s (𝑥 +s 𝑧)) ↔ ∃𝑞(∃𝑧𝑅 ∈ ( R ‘𝑧)𝑞 = (𝑦 +s 𝑧𝑅) ∧ 𝑞 ≤s (𝑥 +s 𝑧))) | 
| 167 |  | ovex 7465 | . . . . . . . . . . . . . . 15
⊢ (𝑦 +s 𝑧𝑅) ∈
V | 
| 168 |  | breq1 5145 | . . . . . . . . . . . . . . 15
⊢ (𝑞 = (𝑦 +s 𝑧𝑅) → (𝑞 ≤s (𝑥 +s 𝑧) ↔ (𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧))) | 
| 169 | 167, 168 | ceqsexv 3531 | . . . . . . . . . . . . . 14
⊢
(∃𝑞(𝑞 = (𝑦 +s 𝑧𝑅) ∧ 𝑞 ≤s (𝑥 +s 𝑧)) ↔ (𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧)) | 
| 170 | 169 | rexbii 3093 | . . . . . . . . . . . . 13
⊢
(∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑞(𝑞 = (𝑦 +s 𝑧𝑅) ∧ 𝑞 ≤s (𝑥 +s 𝑧)) ↔ ∃𝑧𝑅 ∈ ( R ‘𝑧)(𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧)) | 
| 171 | 166, 170 | bitr3i 277 | . . . . . . . . . . . 12
⊢
(∃𝑞(∃𝑧𝑅 ∈ ( R ‘𝑧)𝑞 = (𝑦 +s 𝑧𝑅) ∧ 𝑞 ≤s (𝑥 +s 𝑧)) ↔ ∃𝑧𝑅 ∈ ( R ‘𝑧)(𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧)) | 
| 172 | 162, 171 | bitri 275 | . . . . . . . . . . 11
⊢
(∃𝑞 ∈
{𝑑 ∣ ∃𝑧𝑅 ∈ ( R
‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)}𝑞 ≤s (𝑥 +s 𝑧) ↔ ∃𝑧𝑅 ∈ ( R ‘𝑧)(𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧)) | 
| 173 | 159, 172 | orbi12i 914 | . . . . . . . . . 10
⊢
((∃𝑞 ∈
{𝑐 ∣ ∃𝑦𝑅 ∈ ( R
‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)}𝑞 ≤s (𝑥 +s 𝑧) ∨ ∃𝑞 ∈ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)}𝑞 ≤s (𝑥 +s 𝑧)) ↔ (∃𝑦𝑅 ∈ ( R ‘𝑦)(𝑦𝑅 +s 𝑧) ≤s (𝑥 +s 𝑧) ∨ ∃𝑧𝑅 ∈ ( R ‘𝑧)(𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧))) | 
| 174 | 146, 173 | bitri 275 | . . . . . . . . 9
⊢
(∃𝑞 ∈
({𝑐 ∣ ∃𝑦𝑅 ∈ ( R
‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)})𝑞 ≤s (𝑥 +s 𝑧) ↔ (∃𝑦𝑅 ∈ ( R ‘𝑦)(𝑦𝑅 +s 𝑧) ≤s (𝑥 +s 𝑧) ∨ ∃𝑧𝑅 ∈ ( R ‘𝑧)(𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧))) | 
| 175 |  | simpll2 1213 | . . . . . . . . . . . 12
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑦𝑅 ∈ ( R ‘𝑦) ∧ (𝑦𝑅 +s 𝑧) ≤s (𝑥 +s 𝑧))) → 𝑦 ∈  No
) | 
| 176 |  | rightssno 27921 | . . . . . . . . . . . . . . 15
⊢ ( R
‘𝑦) ⊆  No | 
| 177 | 176 | sseli 3978 | . . . . . . . . . . . . . 14
⊢ (𝑦𝑅 ∈ ( R
‘𝑦) → 𝑦𝑅 ∈
 No ) | 
| 178 | 177 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝑦𝑅 ∈ ( R
‘𝑦) ∧ (𝑦𝑅
+s 𝑧) ≤s
(𝑥 +s 𝑧)) → 𝑦𝑅 ∈  No ) | 
| 179 | 178 | adantl 481 | . . . . . . . . . . . 12
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑦𝑅 ∈ ( R ‘𝑦) ∧ (𝑦𝑅 +s 𝑧) ≤s (𝑥 +s 𝑧))) → 𝑦𝑅 ∈  No ) | 
| 180 |  | simpll1 1212 | . . . . . . . . . . . 12
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑦𝑅 ∈ ( R ‘𝑦) ∧ (𝑦𝑅 +s 𝑧) ≤s (𝑥 +s 𝑧))) → 𝑥 ∈  No
) | 
| 181 |  | rightval 27904 | . . . . . . . . . . . . . . . 16
⊢ ( R
‘𝑦) = {𝑦𝑅 ∈ ( O
‘( bday ‘𝑦)) ∣ 𝑦 <s 𝑦𝑅} | 
| 182 | 181 | reqabi 3459 | . . . . . . . . . . . . . . 15
⊢ (𝑦𝑅 ∈ ( R
‘𝑦) ↔ (𝑦𝑅 ∈ ( O
‘( bday ‘𝑦)) ∧ 𝑦 <s 𝑦𝑅)) | 
| 183 | 182 | simprbi 496 | . . . . . . . . . . . . . 14
⊢ (𝑦𝑅 ∈ ( R
‘𝑦) → 𝑦 <s 𝑦𝑅) | 
| 184 | 183 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝑦𝑅 ∈ ( R
‘𝑦) ∧ (𝑦𝑅
+s 𝑧) ≤s
(𝑥 +s 𝑧)) → 𝑦 <s 𝑦𝑅) | 
| 185 | 184 | adantl 481 | . . . . . . . . . . . 12
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑦𝑅 ∈ ( R ‘𝑦) ∧ (𝑦𝑅 +s 𝑧) ≤s (𝑥 +s 𝑧))) → 𝑦 <s 𝑦𝑅) | 
| 186 |  | simprr 772 | . . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑦𝑅 ∈ ( R ‘𝑦) ∧ (𝑦𝑅 +s 𝑧) ≤s (𝑥 +s 𝑧))) → (𝑦𝑅 +s 𝑧) ≤s (𝑥 +s 𝑧)) | 
| 187 |  | simpll3 1214 | . . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑦𝑅 ∈ ( R ‘𝑦) ∧ (𝑦𝑅 +s 𝑧) ≤s (𝑥 +s 𝑧))) → 𝑧 ∈  No
) | 
| 188 |  | sleadd1im 28021 | . . . . . . . . . . . . . 14
⊢ ((𝑦𝑅 ∈
 No  ∧ 𝑥 ∈  No 
∧ 𝑧 ∈  No ) → ((𝑦𝑅 +s 𝑧) ≤s (𝑥 +s 𝑧) → 𝑦𝑅 ≤s 𝑥)) | 
| 189 | 179, 180,
187, 188 | syl3anc 1372 | . . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑦𝑅 ∈ ( R ‘𝑦) ∧ (𝑦𝑅 +s 𝑧) ≤s (𝑥 +s 𝑧))) → ((𝑦𝑅 +s 𝑧) ≤s (𝑥 +s 𝑧) → 𝑦𝑅 ≤s 𝑥)) | 
| 190 | 186, 189 | mpd 15 | . . . . . . . . . . . 12
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑦𝑅 ∈ ( R ‘𝑦) ∧ (𝑦𝑅 +s 𝑧) ≤s (𝑥 +s 𝑧))) → 𝑦𝑅 ≤s 𝑥) | 
| 191 | 175, 179,
180, 185, 190 | sltletrd 27806 | . . . . . . . . . . 11
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑦𝑅 ∈ ( R ‘𝑦) ∧ (𝑦𝑅 +s 𝑧) ≤s (𝑥 +s 𝑧))) → 𝑦 <s 𝑥) | 
| 192 | 191 | rexlimdvaa 3155 | . . . . . . . . . 10
⊢ (((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) → (∃𝑦𝑅 ∈ ( R ‘𝑦)(𝑦𝑅 +s 𝑧) ≤s (𝑥 +s 𝑧) → 𝑦 <s 𝑥)) | 
| 193 |  | simpll2 1213 | . . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝑅 ∈ ( R ‘𝑧) ∧ (𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧))) → 𝑦 ∈  No
) | 
| 194 |  | rightssno 27921 | . . . . . . . . . . . . . . . . 17
⊢ ( R
‘𝑧) ⊆  No | 
| 195 | 194 | sseli 3978 | . . . . . . . . . . . . . . . 16
⊢ (𝑧𝑅 ∈ ( R
‘𝑧) → 𝑧𝑅 ∈
 No ) | 
| 196 | 195 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ ((𝑧𝑅 ∈ ( R
‘𝑧) ∧ (𝑦 +s 𝑧𝑅) ≤s
(𝑥 +s 𝑧)) → 𝑧𝑅 ∈  No ) | 
| 197 | 196 | adantl 481 | . . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝑅 ∈ ( R ‘𝑧) ∧ (𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧))) → 𝑧𝑅 ∈  No ) | 
| 198 | 193, 197 | addscld 28014 | . . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝑅 ∈ ( R ‘𝑧) ∧ (𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧))) → (𝑦 +s 𝑧𝑅) ∈  No ) | 
| 199 |  | simpll1 1212 | . . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝑅 ∈ ( R ‘𝑧) ∧ (𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧))) → 𝑥 ∈  No
) | 
| 200 |  | simpll3 1214 | . . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝑅 ∈ ( R ‘𝑧) ∧ (𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧))) → 𝑧 ∈  No
) | 
| 201 | 199, 200 | addscld 28014 | . . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝑅 ∈ ( R ‘𝑧) ∧ (𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧))) → (𝑥 +s 𝑧) ∈  No
) | 
| 202 | 199, 197 | addscld 28014 | . . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝑅 ∈ ( R ‘𝑧) ∧ (𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧))) → (𝑥 +s 𝑧𝑅) ∈  No ) | 
| 203 |  | simprr 772 | . . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝑅 ∈ ( R ‘𝑧) ∧ (𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧))) → (𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧)) | 
| 204 | 200, 197,
199 | 3jca 1128 | . . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝑅 ∈ ( R ‘𝑧) ∧ (𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧))) → (𝑧 ∈  No 
∧ 𝑧𝑅
∈  No  ∧ 𝑥 ∈  No
)) | 
| 205 |  | rightval 27904 | . . . . . . . . . . . . . . . . . 18
⊢ ( R
‘𝑧) = {𝑧𝑅 ∈ ( O
‘( bday ‘𝑧)) ∣ 𝑧 <s 𝑧𝑅} | 
| 206 | 205 | reqabi 3459 | . . . . . . . . . . . . . . . . 17
⊢ (𝑧𝑅 ∈ ( R
‘𝑧) ↔ (𝑧𝑅 ∈ ( O
‘( bday ‘𝑧)) ∧ 𝑧 <s 𝑧𝑅)) | 
| 207 | 206 | simprbi 496 | . . . . . . . . . . . . . . . 16
⊢ (𝑧𝑅 ∈ ( R
‘𝑧) → 𝑧 <s 𝑧𝑅) | 
| 208 | 207 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ ((𝑧𝑅 ∈ ( R
‘𝑧) ∧ (𝑦 +s 𝑧𝑅) ≤s
(𝑥 +s 𝑧)) → 𝑧 <s 𝑧𝑅) | 
| 209 | 208 | adantl 481 | . . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝑅 ∈ ( R ‘𝑧) ∧ (𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧))) → 𝑧 <s 𝑧𝑅) | 
| 210 |  | sltadd2im 28020 | . . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ 
No  ∧ 𝑧𝑅 ∈  No  ∧ 𝑥 ∈  No )
→ (𝑧 <s 𝑧𝑅 →
(𝑥 +s 𝑧) <s (𝑥 +s 𝑧𝑅))) | 
| 211 | 204, 209,
210 | sylc 65 | . . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝑅 ∈ ( R ‘𝑧) ∧ (𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧))) → (𝑥 +s 𝑧) <s (𝑥 +s 𝑧𝑅)) | 
| 212 | 198, 201,
202, 203, 211 | slelttrd 27807 | . . . . . . . . . . . 12
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝑅 ∈ ( R ‘𝑧) ∧ (𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧))) → (𝑦 +s 𝑧𝑅) <s (𝑥 +s 𝑧𝑅)) | 
| 213 |  | oveq2 7440 | . . . . . . . . . . . . . . 15
⊢ (𝑧𝑂 = 𝑧𝑅 →
(𝑦 +s 𝑧𝑂) = (𝑦 +s 𝑧𝑅)) | 
| 214 |  | oveq2 7440 | . . . . . . . . . . . . . . 15
⊢ (𝑧𝑂 = 𝑧𝑅 →
(𝑥 +s 𝑧𝑂) = (𝑥 +s 𝑧𝑅)) | 
| 215 | 213, 214 | breq12d 5155 | . . . . . . . . . . . . . 14
⊢ (𝑧𝑂 = 𝑧𝑅 →
((𝑦 +s 𝑧𝑂) <s
(𝑥 +s 𝑧𝑂) ↔
(𝑦 +s 𝑧𝑅) <s
(𝑥 +s 𝑧𝑅))) | 
| 216 | 215 | imbi1d 341 | . . . . . . . . . . . . 13
⊢ (𝑧𝑂 = 𝑧𝑅 →
(((𝑦 +s 𝑧𝑂) <s
(𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥) ↔ ((𝑦 +s 𝑧𝑅) <s (𝑥 +s 𝑧𝑅) →
𝑦 <s 𝑥))) | 
| 217 |  | simplr3 1217 | . . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝑅 ∈ ( R ‘𝑧) ∧ (𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧))) → ∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥)) | 
| 218 |  | simprl 770 | . . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝑅 ∈ ( R ‘𝑧) ∧ (𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧))) → 𝑧𝑅 ∈ ( R ‘𝑧)) | 
| 219 |  | elun2 4182 | . . . . . . . . . . . . . 14
⊢ (𝑧𝑅 ∈ ( R
‘𝑧) → 𝑧𝑅 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))) | 
| 220 | 218, 219 | syl 17 | . . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝑅 ∈ ( R ‘𝑧) ∧ (𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧))) → 𝑧𝑅 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))) | 
| 221 | 216, 217,
220 | rspcdva 3622 | . . . . . . . . . . . 12
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝑅 ∈ ( R ‘𝑧) ∧ (𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧))) → ((𝑦 +s 𝑧𝑅) <s (𝑥 +s 𝑧𝑅) →
𝑦 <s 𝑥)) | 
| 222 | 212, 221 | mpd 15 | . . . . . . . . . . 11
⊢ ((((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) ∧ (𝑧𝑅 ∈ ( R ‘𝑧) ∧ (𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧))) → 𝑦 <s 𝑥) | 
| 223 | 222 | rexlimdvaa 3155 | . . . . . . . . . 10
⊢ (((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) → (∃𝑧𝑅 ∈ ( R ‘𝑧)(𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧) → 𝑦 <s 𝑥)) | 
| 224 | 192, 223 | jaod 859 | . . . . . . . . 9
⊢ (((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) → ((∃𝑦𝑅 ∈ ( R ‘𝑦)(𝑦𝑅 +s 𝑧) ≤s (𝑥 +s 𝑧) ∨ ∃𝑧𝑅 ∈ ( R ‘𝑧)(𝑦 +s 𝑧𝑅) ≤s (𝑥 +s 𝑧)) → 𝑦 <s 𝑥)) | 
| 225 | 174, 224 | biimtrid 242 | . . . . . . . 8
⊢ (((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) → (∃𝑞 ∈ ({𝑐 ∣ ∃𝑦𝑅 ∈ ( R ‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)})𝑞 ≤s (𝑥 +s 𝑧) → 𝑦 <s 𝑥)) | 
| 226 | 145, 225 | jaod 859 | . . . . . . 7
⊢ (((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) → ((∃𝑝 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s 𝑧)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ ( L ‘𝑧)𝑏 = (𝑥 +s 𝑧𝐿)})(𝑦 +s 𝑧) ≤s 𝑝 ∨ ∃𝑞 ∈ ({𝑐 ∣ ∃𝑦𝑅 ∈ ( R ‘𝑦)𝑐 = (𝑦𝑅 +s 𝑧)} ∪ {𝑑 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)𝑑 = (𝑦 +s 𝑧𝑅)})𝑞 ≤s (𝑥 +s 𝑧)) → 𝑦 <s 𝑥)) | 
| 227 | 65, 226 | sylbid 240 | . . . . . 6
⊢ (((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥))) → ((𝑦 +s 𝑧) <s (𝑥 +s 𝑧) → 𝑦 <s 𝑥)) | 
| 228 | 227 | ex 412 | . . . . 5
⊢ ((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No  ∧ 𝑧 ∈  No )
→ (((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦𝑂 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦𝑂 <s 𝑥𝑂) ∧
∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑦𝑂 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦𝑂 <s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦 +s 𝑧𝑂) <s
(𝑥𝑂
+s 𝑧𝑂) → 𝑦 <s 𝑥𝑂)) ∧ (∀𝑥𝑂 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))((𝑦 +s 𝑧) <s (𝑥𝑂 +s 𝑧) → 𝑦 <s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))∀𝑧𝑂 ∈ (( L
‘𝑧) ∪ ( R
‘𝑧))((𝑦𝑂
+s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦𝑂 <s
𝑥) ∧ ∀𝑦𝑂 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))((𝑦𝑂
+s 𝑧) <s
(𝑥 +s 𝑧) → 𝑦𝑂 <s 𝑥)) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑦 +s 𝑧𝑂) <s (𝑥 +s 𝑧𝑂) →
𝑦 <s 𝑥)) → ((𝑦 +s 𝑧) <s (𝑥 +s 𝑧) → 𝑦 <s 𝑥))) | 
| 229 | 4, 8, 12, 16, 20, 22, 25, 29, 33, 37, 228 | no3inds 27992 | . . . 4
⊢ ((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No  ∧ 𝐶 ∈  No )
→ ((𝐵 +s
𝐶) <s (𝐴 +s 𝐶) → 𝐵 <s 𝐴)) | 
| 230 |  | addscl 28015 | . . . . . 6
⊢ ((𝐵 ∈ 
No  ∧ 𝐶 ∈
 No ) → (𝐵 +s 𝐶) ∈  No
) | 
| 231 | 230 | 3adant1 1130 | . . . . 5
⊢ ((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No  ∧ 𝐶 ∈  No )
→ (𝐵 +s
𝐶) ∈  No ) | 
| 232 |  | addscl 28015 | . . . . . 6
⊢ ((𝐴 ∈ 
No  ∧ 𝐶 ∈
 No ) → (𝐴 +s 𝐶) ∈  No
) | 
| 233 | 232 | 3adant2 1131 | . . . . 5
⊢ ((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No  ∧ 𝐶 ∈  No )
→ (𝐴 +s
𝐶) ∈  No ) | 
| 234 |  | sltnle 27799 | . . . . 5
⊢ (((𝐵 +s 𝐶) ∈  No 
∧ (𝐴 +s
𝐶) ∈  No ) → ((𝐵 +s 𝐶) <s (𝐴 +s 𝐶) ↔ ¬ (𝐴 +s 𝐶) ≤s (𝐵 +s 𝐶))) | 
| 235 | 231, 233,
234 | syl2anc 584 | . . . 4
⊢ ((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No  ∧ 𝐶 ∈  No )
→ ((𝐵 +s
𝐶) <s (𝐴 +s 𝐶) ↔ ¬ (𝐴 +s 𝐶) ≤s (𝐵 +s 𝐶))) | 
| 236 |  | sltnle 27799 | . . . . . 6
⊢ ((𝐵 ∈ 
No  ∧ 𝐴 ∈
 No ) → (𝐵 <s 𝐴 ↔ ¬ 𝐴 ≤s 𝐵)) | 
| 237 | 236 | ancoms 458 | . . . . 5
⊢ ((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) → (𝐵 <s 𝐴 ↔ ¬ 𝐴 ≤s 𝐵)) | 
| 238 | 237 | 3adant3 1132 | . . . 4
⊢ ((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No  ∧ 𝐶 ∈  No )
→ (𝐵 <s 𝐴 ↔ ¬ 𝐴 ≤s 𝐵)) | 
| 239 | 229, 235,
238 | 3imtr3d 293 | . . 3
⊢ ((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No  ∧ 𝐶 ∈  No )
→ (¬ (𝐴
+s 𝐶) ≤s
(𝐵 +s 𝐶) → ¬ 𝐴 ≤s 𝐵)) | 
| 240 | 239 | con4d 115 | . 2
⊢ ((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No  ∧ 𝐶 ∈  No )
→ (𝐴 ≤s 𝐵 → (𝐴 +s 𝐶) ≤s (𝐵 +s 𝐶))) | 
| 241 |  | sleadd1im 28021 | . 2
⊢ ((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No  ∧ 𝐶 ∈  No )
→ ((𝐴 +s
𝐶) ≤s (𝐵 +s 𝐶) → 𝐴 ≤s 𝐵)) | 
| 242 | 240, 241 | impbid 212 | 1
⊢ ((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No  ∧ 𝐶 ∈  No )
→ (𝐴 ≤s 𝐵 ↔ (𝐴 +s 𝐶) ≤s (𝐵 +s 𝐶))) |