| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpon0 | Structured version Visualization version GIF version | ||
| Description: The base set of a group is not empty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| grpfo.1 | ⊢ 𝑋 = ran 𝐺 |
| Ref | Expression |
|---|---|
| grpon0 | ⊢ (𝐺 ∈ GrpOp → 𝑋 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpfo.1 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
| 2 | 1 | grpolidinv 30449 | . 2 ⊢ (𝐺 ∈ GrpOp → ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑢)) |
| 3 | rexn0 4491 | . 2 ⊢ (∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑢) → 𝑋 ≠ ∅) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝐺 ∈ GrpOp → 𝑋 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 ∃wrex 3059 ∅c0 4313 ran crn 5666 (class class class)co 7413 GrpOpcgr 30437 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fo 6547 df-fv 6549 df-ov 7416 df-grpo 30441 |
| This theorem is referenced by: 0ngrp 30459 rngone0 37893 |
| Copyright terms: Public domain | W3C validator |