Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isbnd2 Structured version   Visualization version   GIF version

Theorem isbnd2 34503
Description: The predicate "is a bounded metric space". Uses a single point instead of an arbitrary point in the space. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
isbnd2 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
Distinct variable groups:   𝑥,𝑟,𝑀   𝑋,𝑟,𝑥

Proof of Theorem isbnd2
Dummy variables 𝑠 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isbndx 34502 . . 3 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
21anbi1i 614 . 2 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) ↔ ((𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)) ∧ 𝑋 ≠ ∅))
3 anass 461 . 2 (((𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)) ∧ 𝑋 ≠ ∅) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑋 ≠ ∅)))
4 r19.2z 4317 . . . . 5 ((𝑋 ≠ ∅ ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)) → ∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))
54ancoms 451 . . . 4 ((∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑋 ≠ ∅) → ∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))
6 oveq1 6977 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥(ball‘𝑀)𝑟) = (𝑦(ball‘𝑀)𝑟))
76eqeq2d 2782 . . . . . . 7 (𝑥 = 𝑦 → (𝑋 = (𝑥(ball‘𝑀)𝑟) ↔ 𝑋 = (𝑦(ball‘𝑀)𝑟)))
8 oveq2 6978 . . . . . . . 8 (𝑟 = 𝑠 → (𝑦(ball‘𝑀)𝑟) = (𝑦(ball‘𝑀)𝑠))
98eqeq2d 2782 . . . . . . 7 (𝑟 = 𝑠 → (𝑋 = (𝑦(ball‘𝑀)𝑟) ↔ 𝑋 = (𝑦(ball‘𝑀)𝑠)))
107, 9cbvrex2v 3387 . . . . . 6 (∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ↔ ∃𝑦𝑋𝑠 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑠))
11 2rp 12203 . . . . . . . . . . . . 13 2 ∈ ℝ+
12 rpmulcl 12223 . . . . . . . . . . . . 13 ((2 ∈ ℝ+𝑠 ∈ ℝ+) → (2 · 𝑠) ∈ ℝ+)
1311, 12mpan 677 . . . . . . . . . . . 12 (𝑠 ∈ ℝ+ → (2 · 𝑠) ∈ ℝ+)
1413ad2antll 716 . . . . . . . . . . 11 ((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) → (2 · 𝑠) ∈ ℝ+)
1514ad2antrr 713 . . . . . . . . . 10 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑠)) → (2 · 𝑠) ∈ ℝ+)
16 rpcn 12210 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ℝ+𝑠 ∈ ℂ)
17 2cnd 11512 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ℝ+ → 2 ∈ ℂ)
18 2ne0 11545 . . . . . . . . . . . . . . . . . . . 20 2 ≠ 0
1918a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ℝ+ → 2 ≠ 0)
20 divcan3 11119 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · 𝑠) / 2) = 𝑠)
2120eqcomd 2778 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → 𝑠 = ((2 · 𝑠) / 2))
2216, 17, 19, 21syl3anc 1351 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℝ+𝑠 = ((2 · 𝑠) / 2))
2322oveq2d 6986 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℝ+ → (𝑦(ball‘𝑀)𝑠) = (𝑦(ball‘𝑀)((2 · 𝑠) / 2)))
2423eqeq2d 2782 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℝ+ → (𝑋 = (𝑦(ball‘𝑀)𝑠) ↔ 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2))))
2524biimpd 221 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℝ+ → (𝑋 = (𝑦(ball‘𝑀)𝑠) → 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2))))
2625ad2antll 716 . . . . . . . . . . . . . 14 ((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) → (𝑋 = (𝑦(ball‘𝑀)𝑠) → 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2))))
2726adantr 473 . . . . . . . . . . . . 13 (((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) → (𝑋 = (𝑦(ball‘𝑀)𝑠) → 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2))))
2827imp 398 . . . . . . . . . . . 12 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑠)) → 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2)))
29 simpr 477 . . . . . . . . . . . . 13 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2))) → 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2)))
30 eleq2 2848 . . . . . . . . . . . . . . . 16 (𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) → (𝑥𝑋𝑥 ∈ (𝑦(ball‘𝑀)((2 · 𝑠) / 2))))
3130biimpac 471 . . . . . . . . . . . . . . 15 ((𝑥𝑋𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2))) → 𝑥 ∈ (𝑦(ball‘𝑀)((2 · 𝑠) / 2)))
32 2re 11508 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ
33 rpre 12206 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ℝ+𝑠 ∈ ℝ)
34 remulcl 10414 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℝ ∧ 𝑠 ∈ ℝ) → (2 · 𝑠) ∈ ℝ)
3532, 33, 34sylancr 578 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℝ+ → (2 · 𝑠) ∈ ℝ)
36 blhalf 22712 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋) ∧ ((2 · 𝑠) ∈ ℝ ∧ 𝑥 ∈ (𝑦(ball‘𝑀)((2 · 𝑠) / 2)))) → (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) ⊆ (𝑥(ball‘𝑀)(2 · 𝑠)))
3736expr 449 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋) ∧ (2 · 𝑠) ∈ ℝ) → (𝑥 ∈ (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) → (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) ⊆ (𝑥(ball‘𝑀)(2 · 𝑠))))
3835, 37sylan2 583 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋) ∧ 𝑠 ∈ ℝ+) → (𝑥 ∈ (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) → (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) ⊆ (𝑥(ball‘𝑀)(2 · 𝑠))))
3938anasss 459 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) → (𝑥 ∈ (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) → (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) ⊆ (𝑥(ball‘𝑀)(2 · 𝑠))))
4039imp 398 . . . . . . . . . . . . . . 15 (((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥 ∈ (𝑦(ball‘𝑀)((2 · 𝑠) / 2))) → (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) ⊆ (𝑥(ball‘𝑀)(2 · 𝑠)))
4131, 40sylan2 583 . . . . . . . . . . . . . 14 (((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ (𝑥𝑋𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2)))) → (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) ⊆ (𝑥(ball‘𝑀)(2 · 𝑠)))
4241anassrs 460 . . . . . . . . . . . . 13 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2))) → (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) ⊆ (𝑥(ball‘𝑀)(2 · 𝑠)))
4329, 42eqsstrd 3889 . . . . . . . . . . . 12 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2))) → 𝑋 ⊆ (𝑥(ball‘𝑀)(2 · 𝑠)))
4428, 43syldan 582 . . . . . . . . . . 11 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑠)) → 𝑋 ⊆ (𝑥(ball‘𝑀)(2 · 𝑠)))
4513adantl 474 . . . . . . . . . . . . . 14 ((𝑦𝑋𝑠 ∈ ℝ+) → (2 · 𝑠) ∈ ℝ+)
46 rpxr 12209 . . . . . . . . . . . . . . . 16 ((2 · 𝑠) ∈ ℝ+ → (2 · 𝑠) ∈ ℝ*)
47 blssm 22725 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (2 · 𝑠) ∈ ℝ*) → (𝑥(ball‘𝑀)(2 · 𝑠)) ⊆ 𝑋)
4846, 47syl3an3 1145 . . . . . . . . . . . . . . 15 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (2 · 𝑠) ∈ ℝ+) → (𝑥(ball‘𝑀)(2 · 𝑠)) ⊆ 𝑋)
49483expa 1098 . . . . . . . . . . . . . 14 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (2 · 𝑠) ∈ ℝ+) → (𝑥(ball‘𝑀)(2 · 𝑠)) ⊆ 𝑋)
5045, 49sylan2 583 . . . . . . . . . . . . 13 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) → (𝑥(ball‘𝑀)(2 · 𝑠)) ⊆ 𝑋)
5150an32s 639 . . . . . . . . . . . 12 (((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) → (𝑥(ball‘𝑀)(2 · 𝑠)) ⊆ 𝑋)
5251adantr 473 . . . . . . . . . . 11 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑠)) → (𝑥(ball‘𝑀)(2 · 𝑠)) ⊆ 𝑋)
5344, 52eqssd 3869 . . . . . . . . . 10 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑠)) → 𝑋 = (𝑥(ball‘𝑀)(2 · 𝑠)))
54 oveq2 6978 . . . . . . . . . . 11 (𝑟 = (2 · 𝑠) → (𝑥(ball‘𝑀)𝑟) = (𝑥(ball‘𝑀)(2 · 𝑠)))
5554rspceeqv 3547 . . . . . . . . . 10 (((2 · 𝑠) ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)(2 · 𝑠))) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))
5615, 53, 55syl2anc 576 . . . . . . . . 9 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑠)) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))
5756ex 405 . . . . . . . 8 (((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) → (𝑋 = (𝑦(ball‘𝑀)𝑠) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
5857ralrimdva 3133 . . . . . . 7 ((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) → (𝑋 = (𝑦(ball‘𝑀)𝑠) → ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
5958rexlimdvva 3233 . . . . . 6 (𝑀 ∈ (∞Met‘𝑋) → (∃𝑦𝑋𝑠 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑠) → ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
6010, 59syl5bi 234 . . . . 5 (𝑀 ∈ (∞Met‘𝑋) → (∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
61 rexn0 4331 . . . . . 6 (∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → 𝑋 ≠ ∅)
6261a1i 11 . . . . 5 (𝑀 ∈ (∞Met‘𝑋) → (∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → 𝑋 ≠ ∅))
6360, 62jcad 505 . . . 4 (𝑀 ∈ (∞Met‘𝑋) → (∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑋 ≠ ∅)))
645, 63impbid2 218 . . 3 (𝑀 ∈ (∞Met‘𝑋) → ((∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑋 ≠ ∅) ↔ ∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
6564pm5.32i 567 . 2 ((𝑀 ∈ (∞Met‘𝑋) ∧ (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑋 ≠ ∅)) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
662, 3, 653bitri 289 1 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  wne 2961  wral 3082  wrex 3083  wss 3823  c0 4172  cfv 6182  (class class class)co 6970  cc 10327  cr 10328  0cc0 10329   · cmul 10334  *cxr 10467   / cdiv 11092  2c2 11489  +crp 12198  ∞Metcxmet 20226  ballcbl 20228  Bndcbnd 34487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10385  ax-resscn 10386  ax-1cn 10387  ax-icn 10388  ax-addcl 10389  ax-addrcl 10390  ax-mulcl 10391  ax-mulrcl 10392  ax-mulcom 10393  ax-addass 10394  ax-mulass 10395  ax-distr 10396  ax-i2m1 10397  ax-1ne0 10398  ax-1rid 10399  ax-rnegex 10400  ax-rrecex 10401  ax-cnre 10402  ax-pre-lttri 10403  ax-pre-lttrn 10404  ax-pre-ltadd 10405  ax-pre-mulgt0 10406
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-id 5306  df-po 5320  df-so 5321  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-1st 7495  df-2nd 7496  df-er 8083  df-ec 8085  df-map 8202  df-en 8301  df-dom 8302  df-sdom 8303  df-pnf 10470  df-mnf 10471  df-xr 10472  df-ltxr 10473  df-le 10474  df-sub 10666  df-neg 10667  df-div 11093  df-2 11497  df-rp 12199  df-xneg 12318  df-xadd 12319  df-xmul 12320  df-psmet 20233  df-xmet 20234  df-met 20235  df-bl 20236  df-bnd 34499
This theorem is referenced by:  isbnd3  34504  blbnd  34507  ssbnd  34508
  Copyright terms: Public domain W3C validator