Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isbnd2 Structured version   Visualization version   GIF version

Theorem isbnd2 35868
Description: The predicate "is a bounded metric space". Uses a single point instead of an arbitrary point in the space. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
isbnd2 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
Distinct variable groups:   𝑥,𝑟,𝑀   𝑋,𝑟,𝑥

Proof of Theorem isbnd2
Dummy variables 𝑠 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isbndx 35867 . . 3 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
21anbi1i 623 . 2 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) ↔ ((𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)) ∧ 𝑋 ≠ ∅))
3 anass 468 . 2 (((𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)) ∧ 𝑋 ≠ ∅) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑋 ≠ ∅)))
4 r19.2z 4422 . . . . 5 ((𝑋 ≠ ∅ ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)) → ∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))
54ancoms 458 . . . 4 ((∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑋 ≠ ∅) → ∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))
6 oveq1 7262 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥(ball‘𝑀)𝑟) = (𝑦(ball‘𝑀)𝑟))
76eqeq2d 2749 . . . . . . 7 (𝑥 = 𝑦 → (𝑋 = (𝑥(ball‘𝑀)𝑟) ↔ 𝑋 = (𝑦(ball‘𝑀)𝑟)))
8 oveq2 7263 . . . . . . . 8 (𝑟 = 𝑠 → (𝑦(ball‘𝑀)𝑟) = (𝑦(ball‘𝑀)𝑠))
98eqeq2d 2749 . . . . . . 7 (𝑟 = 𝑠 → (𝑋 = (𝑦(ball‘𝑀)𝑟) ↔ 𝑋 = (𝑦(ball‘𝑀)𝑠)))
107, 9cbvrex2vw 3386 . . . . . 6 (∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ↔ ∃𝑦𝑋𝑠 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑠))
11 2rp 12664 . . . . . . . . . . . . 13 2 ∈ ℝ+
12 rpmulcl 12682 . . . . . . . . . . . . 13 ((2 ∈ ℝ+𝑠 ∈ ℝ+) → (2 · 𝑠) ∈ ℝ+)
1311, 12mpan 686 . . . . . . . . . . . 12 (𝑠 ∈ ℝ+ → (2 · 𝑠) ∈ ℝ+)
1413ad2antll 725 . . . . . . . . . . 11 ((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) → (2 · 𝑠) ∈ ℝ+)
1514ad2antrr 722 . . . . . . . . . 10 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑠)) → (2 · 𝑠) ∈ ℝ+)
16 rpcn 12669 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ℝ+𝑠 ∈ ℂ)
17 2cnd 11981 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ℝ+ → 2 ∈ ℂ)
18 2ne0 12007 . . . . . . . . . . . . . . . . . . . 20 2 ≠ 0
1918a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ℝ+ → 2 ≠ 0)
20 divcan3 11589 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · 𝑠) / 2) = 𝑠)
2120eqcomd 2744 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → 𝑠 = ((2 · 𝑠) / 2))
2216, 17, 19, 21syl3anc 1369 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℝ+𝑠 = ((2 · 𝑠) / 2))
2322oveq2d 7271 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℝ+ → (𝑦(ball‘𝑀)𝑠) = (𝑦(ball‘𝑀)((2 · 𝑠) / 2)))
2423eqeq2d 2749 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℝ+ → (𝑋 = (𝑦(ball‘𝑀)𝑠) ↔ 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2))))
2524biimpd 228 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℝ+ → (𝑋 = (𝑦(ball‘𝑀)𝑠) → 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2))))
2625ad2antll 725 . . . . . . . . . . . . . 14 ((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) → (𝑋 = (𝑦(ball‘𝑀)𝑠) → 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2))))
2726adantr 480 . . . . . . . . . . . . 13 (((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) → (𝑋 = (𝑦(ball‘𝑀)𝑠) → 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2))))
2827imp 406 . . . . . . . . . . . 12 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑠)) → 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2)))
29 simpr 484 . . . . . . . . . . . . 13 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2))) → 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2)))
30 eleq2 2827 . . . . . . . . . . . . . . . 16 (𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) → (𝑥𝑋𝑥 ∈ (𝑦(ball‘𝑀)((2 · 𝑠) / 2))))
3130biimpac 478 . . . . . . . . . . . . . . 15 ((𝑥𝑋𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2))) → 𝑥 ∈ (𝑦(ball‘𝑀)((2 · 𝑠) / 2)))
32 2re 11977 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ
33 rpre 12667 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ℝ+𝑠 ∈ ℝ)
34 remulcl 10887 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℝ ∧ 𝑠 ∈ ℝ) → (2 · 𝑠) ∈ ℝ)
3532, 33, 34sylancr 586 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℝ+ → (2 · 𝑠) ∈ ℝ)
36 blhalf 23466 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋) ∧ ((2 · 𝑠) ∈ ℝ ∧ 𝑥 ∈ (𝑦(ball‘𝑀)((2 · 𝑠) / 2)))) → (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) ⊆ (𝑥(ball‘𝑀)(2 · 𝑠)))
3736expr 456 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋) ∧ (2 · 𝑠) ∈ ℝ) → (𝑥 ∈ (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) → (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) ⊆ (𝑥(ball‘𝑀)(2 · 𝑠))))
3835, 37sylan2 592 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋) ∧ 𝑠 ∈ ℝ+) → (𝑥 ∈ (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) → (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) ⊆ (𝑥(ball‘𝑀)(2 · 𝑠))))
3938anasss 466 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) → (𝑥 ∈ (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) → (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) ⊆ (𝑥(ball‘𝑀)(2 · 𝑠))))
4039imp 406 . . . . . . . . . . . . . . 15 (((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥 ∈ (𝑦(ball‘𝑀)((2 · 𝑠) / 2))) → (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) ⊆ (𝑥(ball‘𝑀)(2 · 𝑠)))
4131, 40sylan2 592 . . . . . . . . . . . . . 14 (((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ (𝑥𝑋𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2)))) → (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) ⊆ (𝑥(ball‘𝑀)(2 · 𝑠)))
4241anassrs 467 . . . . . . . . . . . . 13 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2))) → (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) ⊆ (𝑥(ball‘𝑀)(2 · 𝑠)))
4329, 42eqsstrd 3955 . . . . . . . . . . . 12 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2))) → 𝑋 ⊆ (𝑥(ball‘𝑀)(2 · 𝑠)))
4428, 43syldan 590 . . . . . . . . . . 11 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑠)) → 𝑋 ⊆ (𝑥(ball‘𝑀)(2 · 𝑠)))
4513adantl 481 . . . . . . . . . . . . . 14 ((𝑦𝑋𝑠 ∈ ℝ+) → (2 · 𝑠) ∈ ℝ+)
46 rpxr 12668 . . . . . . . . . . . . . . . 16 ((2 · 𝑠) ∈ ℝ+ → (2 · 𝑠) ∈ ℝ*)
47 blssm 23479 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (2 · 𝑠) ∈ ℝ*) → (𝑥(ball‘𝑀)(2 · 𝑠)) ⊆ 𝑋)
4846, 47syl3an3 1163 . . . . . . . . . . . . . . 15 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (2 · 𝑠) ∈ ℝ+) → (𝑥(ball‘𝑀)(2 · 𝑠)) ⊆ 𝑋)
49483expa 1116 . . . . . . . . . . . . . 14 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (2 · 𝑠) ∈ ℝ+) → (𝑥(ball‘𝑀)(2 · 𝑠)) ⊆ 𝑋)
5045, 49sylan2 592 . . . . . . . . . . . . 13 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) → (𝑥(ball‘𝑀)(2 · 𝑠)) ⊆ 𝑋)
5150an32s 648 . . . . . . . . . . . 12 (((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) → (𝑥(ball‘𝑀)(2 · 𝑠)) ⊆ 𝑋)
5251adantr 480 . . . . . . . . . . 11 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑠)) → (𝑥(ball‘𝑀)(2 · 𝑠)) ⊆ 𝑋)
5344, 52eqssd 3934 . . . . . . . . . 10 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑠)) → 𝑋 = (𝑥(ball‘𝑀)(2 · 𝑠)))
54 oveq2 7263 . . . . . . . . . . 11 (𝑟 = (2 · 𝑠) → (𝑥(ball‘𝑀)𝑟) = (𝑥(ball‘𝑀)(2 · 𝑠)))
5554rspceeqv 3567 . . . . . . . . . 10 (((2 · 𝑠) ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)(2 · 𝑠))) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))
5615, 53, 55syl2anc 583 . . . . . . . . 9 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑠)) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))
5756ex 412 . . . . . . . 8 (((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) → (𝑋 = (𝑦(ball‘𝑀)𝑠) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
5857ralrimdva 3112 . . . . . . 7 ((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) → (𝑋 = (𝑦(ball‘𝑀)𝑠) → ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
5958rexlimdvva 3222 . . . . . 6 (𝑀 ∈ (∞Met‘𝑋) → (∃𝑦𝑋𝑠 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑠) → ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
6010, 59syl5bi 241 . . . . 5 (𝑀 ∈ (∞Met‘𝑋) → (∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
61 rexn0 4438 . . . . . 6 (∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → 𝑋 ≠ ∅)
6261a1i 11 . . . . 5 (𝑀 ∈ (∞Met‘𝑋) → (∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → 𝑋 ≠ ∅))
6360, 62jcad 512 . . . 4 (𝑀 ∈ (∞Met‘𝑋) → (∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑋 ≠ ∅)))
645, 63impbid2 225 . . 3 (𝑀 ∈ (∞Met‘𝑋) → ((∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑋 ≠ ∅) ↔ ∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
6564pm5.32i 574 . 2 ((𝑀 ∈ (∞Met‘𝑋) ∧ (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑋 ≠ ∅)) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
662, 3, 653bitri 296 1 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  wss 3883  c0 4253  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802   · cmul 10807  *cxr 10939   / cdiv 11562  2c2 11958  +crp 12659  ∞Metcxmet 20495  ballcbl 20497  Bndcbnd 35852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-ec 8458  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-2 11966  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-bnd 35864
This theorem is referenced by:  isbnd3  35869  blbnd  35872  ssbnd  35873
  Copyright terms: Public domain W3C validator