Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isbnd2 Structured version   Visualization version   GIF version

Theorem isbnd2 35214
 Description: The predicate "is a bounded metric space". Uses a single point instead of an arbitrary point in the space. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
isbnd2 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
Distinct variable groups:   𝑥,𝑟,𝑀   𝑋,𝑟,𝑥

Proof of Theorem isbnd2
Dummy variables 𝑠 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isbndx 35213 . . 3 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
21anbi1i 626 . 2 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) ↔ ((𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)) ∧ 𝑋 ≠ ∅))
3 anass 472 . 2 (((𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)) ∧ 𝑋 ≠ ∅) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑋 ≠ ∅)))
4 r19.2z 4401 . . . . 5 ((𝑋 ≠ ∅ ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)) → ∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))
54ancoms 462 . . . 4 ((∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑋 ≠ ∅) → ∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))
6 oveq1 7146 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥(ball‘𝑀)𝑟) = (𝑦(ball‘𝑀)𝑟))
76eqeq2d 2812 . . . . . . 7 (𝑥 = 𝑦 → (𝑋 = (𝑥(ball‘𝑀)𝑟) ↔ 𝑋 = (𝑦(ball‘𝑀)𝑟)))
8 oveq2 7147 . . . . . . . 8 (𝑟 = 𝑠 → (𝑦(ball‘𝑀)𝑟) = (𝑦(ball‘𝑀)𝑠))
98eqeq2d 2812 . . . . . . 7 (𝑟 = 𝑠 → (𝑋 = (𝑦(ball‘𝑀)𝑟) ↔ 𝑋 = (𝑦(ball‘𝑀)𝑠)))
107, 9cbvrex2vw 3412 . . . . . 6 (∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ↔ ∃𝑦𝑋𝑠 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑠))
11 2rp 12386 . . . . . . . . . . . . 13 2 ∈ ℝ+
12 rpmulcl 12404 . . . . . . . . . . . . 13 ((2 ∈ ℝ+𝑠 ∈ ℝ+) → (2 · 𝑠) ∈ ℝ+)
1311, 12mpan 689 . . . . . . . . . . . 12 (𝑠 ∈ ℝ+ → (2 · 𝑠) ∈ ℝ+)
1413ad2antll 728 . . . . . . . . . . 11 ((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) → (2 · 𝑠) ∈ ℝ+)
1514ad2antrr 725 . . . . . . . . . 10 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑠)) → (2 · 𝑠) ∈ ℝ+)
16 rpcn 12391 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ℝ+𝑠 ∈ ℂ)
17 2cnd 11707 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ℝ+ → 2 ∈ ℂ)
18 2ne0 11733 . . . . . . . . . . . . . . . . . . . 20 2 ≠ 0
1918a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ℝ+ → 2 ≠ 0)
20 divcan3 11317 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · 𝑠) / 2) = 𝑠)
2120eqcomd 2807 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → 𝑠 = ((2 · 𝑠) / 2))
2216, 17, 19, 21syl3anc 1368 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℝ+𝑠 = ((2 · 𝑠) / 2))
2322oveq2d 7155 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℝ+ → (𝑦(ball‘𝑀)𝑠) = (𝑦(ball‘𝑀)((2 · 𝑠) / 2)))
2423eqeq2d 2812 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℝ+ → (𝑋 = (𝑦(ball‘𝑀)𝑠) ↔ 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2))))
2524biimpd 232 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℝ+ → (𝑋 = (𝑦(ball‘𝑀)𝑠) → 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2))))
2625ad2antll 728 . . . . . . . . . . . . . 14 ((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) → (𝑋 = (𝑦(ball‘𝑀)𝑠) → 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2))))
2726adantr 484 . . . . . . . . . . . . 13 (((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) → (𝑋 = (𝑦(ball‘𝑀)𝑠) → 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2))))
2827imp 410 . . . . . . . . . . . 12 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑠)) → 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2)))
29 simpr 488 . . . . . . . . . . . . 13 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2))) → 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2)))
30 eleq2 2881 . . . . . . . . . . . . . . . 16 (𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) → (𝑥𝑋𝑥 ∈ (𝑦(ball‘𝑀)((2 · 𝑠) / 2))))
3130biimpac 482 . . . . . . . . . . . . . . 15 ((𝑥𝑋𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2))) → 𝑥 ∈ (𝑦(ball‘𝑀)((2 · 𝑠) / 2)))
32 2re 11703 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ
33 rpre 12389 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ℝ+𝑠 ∈ ℝ)
34 remulcl 10615 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℝ ∧ 𝑠 ∈ ℝ) → (2 · 𝑠) ∈ ℝ)
3532, 33, 34sylancr 590 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℝ+ → (2 · 𝑠) ∈ ℝ)
36 blhalf 23015 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋) ∧ ((2 · 𝑠) ∈ ℝ ∧ 𝑥 ∈ (𝑦(ball‘𝑀)((2 · 𝑠) / 2)))) → (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) ⊆ (𝑥(ball‘𝑀)(2 · 𝑠)))
3736expr 460 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋) ∧ (2 · 𝑠) ∈ ℝ) → (𝑥 ∈ (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) → (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) ⊆ (𝑥(ball‘𝑀)(2 · 𝑠))))
3835, 37sylan2 595 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋) ∧ 𝑠 ∈ ℝ+) → (𝑥 ∈ (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) → (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) ⊆ (𝑥(ball‘𝑀)(2 · 𝑠))))
3938anasss 470 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) → (𝑥 ∈ (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) → (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) ⊆ (𝑥(ball‘𝑀)(2 · 𝑠))))
4039imp 410 . . . . . . . . . . . . . . 15 (((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥 ∈ (𝑦(ball‘𝑀)((2 · 𝑠) / 2))) → (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) ⊆ (𝑥(ball‘𝑀)(2 · 𝑠)))
4131, 40sylan2 595 . . . . . . . . . . . . . 14 (((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ (𝑥𝑋𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2)))) → (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) ⊆ (𝑥(ball‘𝑀)(2 · 𝑠)))
4241anassrs 471 . . . . . . . . . . . . 13 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2))) → (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) ⊆ (𝑥(ball‘𝑀)(2 · 𝑠)))
4329, 42eqsstrd 3956 . . . . . . . . . . . 12 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2))) → 𝑋 ⊆ (𝑥(ball‘𝑀)(2 · 𝑠)))
4428, 43syldan 594 . . . . . . . . . . 11 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑠)) → 𝑋 ⊆ (𝑥(ball‘𝑀)(2 · 𝑠)))
4513adantl 485 . . . . . . . . . . . . . 14 ((𝑦𝑋𝑠 ∈ ℝ+) → (2 · 𝑠) ∈ ℝ+)
46 rpxr 12390 . . . . . . . . . . . . . . . 16 ((2 · 𝑠) ∈ ℝ+ → (2 · 𝑠) ∈ ℝ*)
47 blssm 23028 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (2 · 𝑠) ∈ ℝ*) → (𝑥(ball‘𝑀)(2 · 𝑠)) ⊆ 𝑋)
4846, 47syl3an3 1162 . . . . . . . . . . . . . . 15 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (2 · 𝑠) ∈ ℝ+) → (𝑥(ball‘𝑀)(2 · 𝑠)) ⊆ 𝑋)
49483expa 1115 . . . . . . . . . . . . . 14 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (2 · 𝑠) ∈ ℝ+) → (𝑥(ball‘𝑀)(2 · 𝑠)) ⊆ 𝑋)
5045, 49sylan2 595 . . . . . . . . . . . . 13 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) → (𝑥(ball‘𝑀)(2 · 𝑠)) ⊆ 𝑋)
5150an32s 651 . . . . . . . . . . . 12 (((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) → (𝑥(ball‘𝑀)(2 · 𝑠)) ⊆ 𝑋)
5251adantr 484 . . . . . . . . . . 11 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑠)) → (𝑥(ball‘𝑀)(2 · 𝑠)) ⊆ 𝑋)
5344, 52eqssd 3935 . . . . . . . . . 10 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑠)) → 𝑋 = (𝑥(ball‘𝑀)(2 · 𝑠)))
54 oveq2 7147 . . . . . . . . . . 11 (𝑟 = (2 · 𝑠) → (𝑥(ball‘𝑀)𝑟) = (𝑥(ball‘𝑀)(2 · 𝑠)))
5554rspceeqv 3589 . . . . . . . . . 10 (((2 · 𝑠) ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)(2 · 𝑠))) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))
5615, 53, 55syl2anc 587 . . . . . . . . 9 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑠)) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))
5756ex 416 . . . . . . . 8 (((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) → (𝑋 = (𝑦(ball‘𝑀)𝑠) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
5857ralrimdva 3157 . . . . . . 7 ((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) → (𝑋 = (𝑦(ball‘𝑀)𝑠) → ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
5958rexlimdvva 3256 . . . . . 6 (𝑀 ∈ (∞Met‘𝑋) → (∃𝑦𝑋𝑠 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑠) → ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
6010, 59syl5bi 245 . . . . 5 (𝑀 ∈ (∞Met‘𝑋) → (∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
61 rexn0 4415 . . . . . 6 (∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → 𝑋 ≠ ∅)
6261a1i 11 . . . . 5 (𝑀 ∈ (∞Met‘𝑋) → (∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → 𝑋 ≠ ∅))
6360, 62jcad 516 . . . 4 (𝑀 ∈ (∞Met‘𝑋) → (∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑋 ≠ ∅)))
645, 63impbid2 229 . . 3 (𝑀 ∈ (∞Met‘𝑋) → ((∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑋 ≠ ∅) ↔ ∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
6564pm5.32i 578 . 2 ((𝑀 ∈ (∞Met‘𝑋) ∧ (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑋 ≠ ∅)) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
662, 3, 653bitri 300 1 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2112   ≠ wne 2990  ∀wral 3109  ∃wrex 3110   ⊆ wss 3884  ∅c0 4246  ‘cfv 6328  (class class class)co 7139  ℂcc 10528  ℝcr 10529  0cc0 10530   · cmul 10535  ℝ*cxr 10667   / cdiv 11290  2c2 11684  ℝ+crp 12381  ∞Metcxmet 20079  ballcbl 20081  Bndcbnd 35198 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-po 5442  df-so 5443  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-1st 7675  df-2nd 7676  df-er 8276  df-ec 8278  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-2 11692  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-psmet 20086  df-xmet 20087  df-met 20088  df-bl 20089  df-bnd 35210 This theorem is referenced by:  isbnd3  35215  blbnd  35218  ssbnd  35219
 Copyright terms: Public domain W3C validator