Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isbnd2 Structured version   Visualization version   GIF version

Theorem isbnd2 33907
Description: The predicate "is a bounded metric space". Uses a single point instead of an arbitrary point in the space. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
isbnd2 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
Distinct variable groups:   𝑥,𝑟,𝑀   𝑋,𝑟,𝑥

Proof of Theorem isbnd2
Dummy variables 𝑠 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isbndx 33906 . . 3 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
21anbi1i 610 . 2 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) ↔ ((𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)) ∧ 𝑋 ≠ ∅))
3 anass 454 . 2 (((𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)) ∧ 𝑋 ≠ ∅) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑋 ≠ ∅)))
4 r19.2z 4201 . . . . 5 ((𝑋 ≠ ∅ ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)) → ∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))
54ancoms 446 . . . 4 ((∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑋 ≠ ∅) → ∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))
6 oveq1 6798 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥(ball‘𝑀)𝑟) = (𝑦(ball‘𝑀)𝑟))
76eqeq2d 2781 . . . . . . 7 (𝑥 = 𝑦 → (𝑋 = (𝑥(ball‘𝑀)𝑟) ↔ 𝑋 = (𝑦(ball‘𝑀)𝑟)))
8 oveq2 6799 . . . . . . . 8 (𝑟 = 𝑠 → (𝑦(ball‘𝑀)𝑟) = (𝑦(ball‘𝑀)𝑠))
98eqeq2d 2781 . . . . . . 7 (𝑟 = 𝑠 → (𝑋 = (𝑦(ball‘𝑀)𝑟) ↔ 𝑋 = (𝑦(ball‘𝑀)𝑠)))
107, 9cbvrex2v 3329 . . . . . 6 (∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ↔ ∃𝑦𝑋𝑠 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑠))
11 2rp 12033 . . . . . . . . . . . . 13 2 ∈ ℝ+
12 rpmulcl 12051 . . . . . . . . . . . . 13 ((2 ∈ ℝ+𝑠 ∈ ℝ+) → (2 · 𝑠) ∈ ℝ+)
1311, 12mpan 670 . . . . . . . . . . . 12 (𝑠 ∈ ℝ+ → (2 · 𝑠) ∈ ℝ+)
1413ad2antll 708 . . . . . . . . . . 11 ((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) → (2 · 𝑠) ∈ ℝ+)
1514ad2antrr 705 . . . . . . . . . 10 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑠)) → (2 · 𝑠) ∈ ℝ+)
16 rpcn 12037 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ℝ+𝑠 ∈ ℂ)
17 2cnd 11293 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ℝ+ → 2 ∈ ℂ)
18 2ne0 11313 . . . . . . . . . . . . . . . . . . . 20 2 ≠ 0
1918a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ℝ+ → 2 ≠ 0)
20 divcan3 10911 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · 𝑠) / 2) = 𝑠)
2120eqcomd 2777 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → 𝑠 = ((2 · 𝑠) / 2))
2216, 17, 19, 21syl3anc 1476 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℝ+𝑠 = ((2 · 𝑠) / 2))
2322oveq2d 6807 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℝ+ → (𝑦(ball‘𝑀)𝑠) = (𝑦(ball‘𝑀)((2 · 𝑠) / 2)))
2423eqeq2d 2781 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℝ+ → (𝑋 = (𝑦(ball‘𝑀)𝑠) ↔ 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2))))
2524biimpd 219 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℝ+ → (𝑋 = (𝑦(ball‘𝑀)𝑠) → 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2))))
2625ad2antll 708 . . . . . . . . . . . . . 14 ((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) → (𝑋 = (𝑦(ball‘𝑀)𝑠) → 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2))))
2726adantr 466 . . . . . . . . . . . . 13 (((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) → (𝑋 = (𝑦(ball‘𝑀)𝑠) → 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2))))
2827imp 393 . . . . . . . . . . . 12 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑠)) → 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2)))
29 simpr 471 . . . . . . . . . . . . 13 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2))) → 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2)))
30 eleq2 2839 . . . . . . . . . . . . . . . 16 (𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) → (𝑥𝑋𝑥 ∈ (𝑦(ball‘𝑀)((2 · 𝑠) / 2))))
3130biimpac 464 . . . . . . . . . . . . . . 15 ((𝑥𝑋𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2))) → 𝑥 ∈ (𝑦(ball‘𝑀)((2 · 𝑠) / 2)))
32 2re 11290 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ
33 rpre 12035 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ℝ+𝑠 ∈ ℝ)
34 remulcl 10221 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℝ ∧ 𝑠 ∈ ℝ) → (2 · 𝑠) ∈ ℝ)
3532, 33, 34sylancr 575 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℝ+ → (2 · 𝑠) ∈ ℝ)
36 blhalf 22423 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋) ∧ ((2 · 𝑠) ∈ ℝ ∧ 𝑥 ∈ (𝑦(ball‘𝑀)((2 · 𝑠) / 2)))) → (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) ⊆ (𝑥(ball‘𝑀)(2 · 𝑠)))
3736expr 444 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋) ∧ (2 · 𝑠) ∈ ℝ) → (𝑥 ∈ (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) → (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) ⊆ (𝑥(ball‘𝑀)(2 · 𝑠))))
3835, 37sylan2 580 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋) ∧ 𝑠 ∈ ℝ+) → (𝑥 ∈ (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) → (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) ⊆ (𝑥(ball‘𝑀)(2 · 𝑠))))
3938anasss 452 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) → (𝑥 ∈ (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) → (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) ⊆ (𝑥(ball‘𝑀)(2 · 𝑠))))
4039imp 393 . . . . . . . . . . . . . . 15 (((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥 ∈ (𝑦(ball‘𝑀)((2 · 𝑠) / 2))) → (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) ⊆ (𝑥(ball‘𝑀)(2 · 𝑠)))
4131, 40sylan2 580 . . . . . . . . . . . . . 14 (((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ (𝑥𝑋𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2)))) → (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) ⊆ (𝑥(ball‘𝑀)(2 · 𝑠)))
4241anassrs 453 . . . . . . . . . . . . 13 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2))) → (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) ⊆ (𝑥(ball‘𝑀)(2 · 𝑠)))
4329, 42eqsstrd 3788 . . . . . . . . . . . 12 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2))) → 𝑋 ⊆ (𝑥(ball‘𝑀)(2 · 𝑠)))
4428, 43syldan 579 . . . . . . . . . . 11 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑠)) → 𝑋 ⊆ (𝑥(ball‘𝑀)(2 · 𝑠)))
4513adantl 467 . . . . . . . . . . . . . 14 ((𝑦𝑋𝑠 ∈ ℝ+) → (2 · 𝑠) ∈ ℝ+)
46 rpxr 12036 . . . . . . . . . . . . . . . 16 ((2 · 𝑠) ∈ ℝ+ → (2 · 𝑠) ∈ ℝ*)
47 blssm 22436 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (2 · 𝑠) ∈ ℝ*) → (𝑥(ball‘𝑀)(2 · 𝑠)) ⊆ 𝑋)
4846, 47syl3an3 1169 . . . . . . . . . . . . . . 15 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (2 · 𝑠) ∈ ℝ+) → (𝑥(ball‘𝑀)(2 · 𝑠)) ⊆ 𝑋)
49483expa 1111 . . . . . . . . . . . . . 14 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (2 · 𝑠) ∈ ℝ+) → (𝑥(ball‘𝑀)(2 · 𝑠)) ⊆ 𝑋)
5045, 49sylan2 580 . . . . . . . . . . . . 13 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) → (𝑥(ball‘𝑀)(2 · 𝑠)) ⊆ 𝑋)
5150an32s 631 . . . . . . . . . . . 12 (((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) → (𝑥(ball‘𝑀)(2 · 𝑠)) ⊆ 𝑋)
5251adantr 466 . . . . . . . . . . 11 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑠)) → (𝑥(ball‘𝑀)(2 · 𝑠)) ⊆ 𝑋)
5344, 52eqssd 3769 . . . . . . . . . 10 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑠)) → 𝑋 = (𝑥(ball‘𝑀)(2 · 𝑠)))
54 oveq2 6799 . . . . . . . . . . . 12 (𝑟 = (2 · 𝑠) → (𝑥(ball‘𝑀)𝑟) = (𝑥(ball‘𝑀)(2 · 𝑠)))
5554eqeq2d 2781 . . . . . . . . . . 11 (𝑟 = (2 · 𝑠) → (𝑋 = (𝑥(ball‘𝑀)𝑟) ↔ 𝑋 = (𝑥(ball‘𝑀)(2 · 𝑠))))
5655rspcev 3460 . . . . . . . . . 10 (((2 · 𝑠) ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)(2 · 𝑠))) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))
5715, 53, 56syl2anc 573 . . . . . . . . 9 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑠)) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))
5857ex 397 . . . . . . . 8 (((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) → (𝑋 = (𝑦(ball‘𝑀)𝑠) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
5958ralrimdva 3118 . . . . . . 7 ((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) → (𝑋 = (𝑦(ball‘𝑀)𝑠) → ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
6059rexlimdvva 3186 . . . . . 6 (𝑀 ∈ (∞Met‘𝑋) → (∃𝑦𝑋𝑠 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑠) → ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
6110, 60syl5bi 232 . . . . 5 (𝑀 ∈ (∞Met‘𝑋) → (∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
62 rexn0 4215 . . . . . 6 (∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → 𝑋 ≠ ∅)
6362a1i 11 . . . . 5 (𝑀 ∈ (∞Met‘𝑋) → (∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → 𝑋 ≠ ∅))
6461, 63jcad 502 . . . 4 (𝑀 ∈ (∞Met‘𝑋) → (∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑋 ≠ ∅)))
655, 64impbid2 216 . . 3 (𝑀 ∈ (∞Met‘𝑋) → ((∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑋 ≠ ∅) ↔ ∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
6665pm5.32i 564 . 2 ((𝑀 ∈ (∞Met‘𝑋) ∧ (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑋 ≠ ∅)) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
672, 3, 663bitri 286 1 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wral 3061  wrex 3062  wss 3723  c0 4063  cfv 6029  (class class class)co 6791  cc 10134  cr 10135  0cc0 10136   · cmul 10141  *cxr 10273   / cdiv 10884  2c2 11270  +crp 12028  ∞Metcxmt 19939  ballcbl 19941  Bndcbnd 33891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-po 5170  df-so 5171  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-1st 7313  df-2nd 7314  df-er 7894  df-ec 7896  df-map 8009  df-en 8108  df-dom 8109  df-sdom 8110  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-div 10885  df-2 11279  df-rp 12029  df-xneg 12144  df-xadd 12145  df-xmul 12146  df-psmet 19946  df-xmet 19947  df-met 19948  df-bl 19949  df-bnd 33903
This theorem is referenced by:  isbnd3  33908  blbnd  33911  ssbnd  33912
  Copyright terms: Public domain W3C validator