Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  filbcmb Structured version   Visualization version   GIF version

Theorem filbcmb 35178
Description: Combine a finite set of lower bounds. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
filbcmb ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) → (∀𝑥𝐴𝑦𝐵𝑧𝐵 (𝑦𝑧𝜑) → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑧)

Proof of Theorem filbcmb
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 10617 . . . . 5 ℝ ∈ V
21ssex 5189 . . . 4 (𝐵 ⊆ ℝ → 𝐵 ∈ V)
3 indexfi 8816 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ V ∧ ∀𝑥𝐴𝑦𝐵𝑧𝐵 (𝑦𝑧𝜑)) → ∃𝑤 ∈ Fin (𝑤𝐵 ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑)))
433expia 1118 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ V) → (∀𝑥𝐴𝑦𝐵𝑧𝐵 (𝑦𝑧𝜑) → ∃𝑤 ∈ Fin (𝑤𝐵 ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑))))
52, 4sylan2 595 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ⊆ ℝ) → (∀𝑥𝐴𝑦𝐵𝑧𝐵 (𝑦𝑧𝜑) → ∃𝑤 ∈ Fin (𝑤𝐵 ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑))))
653adant2 1128 . 2 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) → (∀𝑥𝐴𝑦𝐵𝑧𝐵 (𝑦𝑧𝜑) → ∃𝑤 ∈ Fin (𝑤𝐵 ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑))))
7 r19.2z 4398 . . . . . . . . . . . 12 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)) → ∃𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑))
8 rexn0 4412 . . . . . . . . . . . . 13 (∃𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → 𝑤 ≠ ∅)
98rexlimivw 3241 . . . . . . . . . . . 12 (∃𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → 𝑤 ≠ ∅)
107, 9syl 17 . . . . . . . . . . 11 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)) → 𝑤 ≠ ∅)
1110ex 416 . . . . . . . . . 10 (𝐴 ≠ ∅ → (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → 𝑤 ≠ ∅))
12113ad2ant2 1131 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) → (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → 𝑤 ≠ ∅))
1312ad2antrr 725 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) ∧ 𝑤 ∈ Fin) ∧ 𝑤𝐵) → (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → 𝑤 ≠ ∅))
14 sstr 3923 . . . . . . . . . . . . . 14 ((𝑤𝐵𝐵 ⊆ ℝ) → 𝑤 ⊆ ℝ)
1514ancoms 462 . . . . . . . . . . . . 13 ((𝐵 ⊆ ℝ ∧ 𝑤𝐵) → 𝑤 ⊆ ℝ)
16 fimaxre 11573 . . . . . . . . . . . . . 14 ((𝑤 ⊆ ℝ ∧ 𝑤 ∈ Fin ∧ 𝑤 ≠ ∅) → ∃𝑦𝑤𝑢𝑤 𝑢𝑦)
17163expia 1118 . . . . . . . . . . . . 13 ((𝑤 ⊆ ℝ ∧ 𝑤 ∈ Fin) → (𝑤 ≠ ∅ → ∃𝑦𝑤𝑢𝑤 𝑢𝑦))
1815, 17sylan 583 . . . . . . . . . . . 12 (((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ 𝑤 ∈ Fin) → (𝑤 ≠ ∅ → ∃𝑦𝑤𝑢𝑤 𝑢𝑦))
1918anasss 470 . . . . . . . . . . 11 ((𝐵 ⊆ ℝ ∧ (𝑤𝐵𝑤 ∈ Fin)) → (𝑤 ≠ ∅ → ∃𝑦𝑤𝑢𝑤 𝑢𝑦))
2019ancom2s 649 . . . . . . . . . 10 ((𝐵 ⊆ ℝ ∧ (𝑤 ∈ Fin ∧ 𝑤𝐵)) → (𝑤 ≠ ∅ → ∃𝑦𝑤𝑢𝑤 𝑢𝑦))
21203ad2antl3 1184 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) ∧ (𝑤 ∈ Fin ∧ 𝑤𝐵)) → (𝑤 ≠ ∅ → ∃𝑦𝑤𝑢𝑤 𝑢𝑦))
2221anassrs 471 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) ∧ 𝑤 ∈ Fin) ∧ 𝑤𝐵) → (𝑤 ≠ ∅ → ∃𝑦𝑤𝑢𝑤 𝑢𝑦))
2313, 22syld 47 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) ∧ 𝑤 ∈ Fin) ∧ 𝑤𝐵) → (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → ∃𝑦𝑤𝑢𝑤 𝑢𝑦))
2423a1dd 50 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) ∧ 𝑤 ∈ Fin) ∧ 𝑤𝐵) → (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → (∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑) → ∃𝑦𝑤𝑢𝑤 𝑢𝑦)))
2524ex 416 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) ∧ 𝑤 ∈ Fin) → (𝑤𝐵 → (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → (∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑) → ∃𝑦𝑤𝑢𝑤 𝑢𝑦))))
26253impd 1345 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) ∧ 𝑤 ∈ Fin) → ((𝑤𝐵 ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑)) → ∃𝑦𝑤𝑢𝑤 𝑢𝑦))
27 nfv 1915 . . . . . . . . . . . 12 𝑦(𝐵 ⊆ ℝ ∧ 𝑤𝐵)
28 nfcv 2955 . . . . . . . . . . . . 13 𝑦𝐴
29 nfre1 3265 . . . . . . . . . . . . 13 𝑦𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)
3028, 29nfralw 3189 . . . . . . . . . . . 12 𝑦𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)
3127, 30nfan 1900 . . . . . . . . . . 11 𝑦((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑))
32 nfv 1915 . . . . . . . . . . . . . . 15 𝑧(𝐵 ⊆ ℝ ∧ 𝑤𝐵)
33 nfcv 2955 . . . . . . . . . . . . . . . 16 𝑧𝐴
34 nfcv 2955 . . . . . . . . . . . . . . . . 17 𝑧𝑤
35 nfra1 3183 . . . . . . . . . . . . . . . . 17 𝑧𝑧𝐵 (𝑦𝑧𝜑)
3634, 35nfrex 3268 . . . . . . . . . . . . . . . 16 𝑧𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)
3733, 36nfralw 3189 . . . . . . . . . . . . . . 15 𝑧𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)
3832, 37nfan 1900 . . . . . . . . . . . . . 14 𝑧((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑))
39 nfv 1915 . . . . . . . . . . . . . 14 𝑧(𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)
4038, 39nfan 1900 . . . . . . . . . . . . 13 𝑧(((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦))
41 breq1 5033 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑣 → (𝑦𝑧𝑣𝑧))
4241imbi1d 345 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑣 → ((𝑦𝑧𝜑) ↔ (𝑣𝑧𝜑)))
4342ralbidv 3162 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑣 → (∀𝑧𝐵 (𝑦𝑧𝜑) ↔ ∀𝑧𝐵 (𝑣𝑧𝜑)))
4443cbvrexvw 3397 . . . . . . . . . . . . . . . . . . 19 (∃𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ↔ ∃𝑣𝑤𝑧𝐵 (𝑣𝑧𝜑))
45 rsp 3170 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑧𝐵 (𝑣𝑧𝜑) → (𝑧𝐵 → (𝑣𝑧𝜑)))
46 ssel2 3910 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑤𝐵𝑣𝑤) → 𝑣𝐵)
47 ssel2 3910 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐵 ⊆ ℝ ∧ 𝑣𝐵) → 𝑣 ∈ ℝ)
4846, 47sylan2 595 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 ⊆ ℝ ∧ (𝑤𝐵𝑣𝑤)) → 𝑣 ∈ ℝ)
4948anassrs 471 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ 𝑣𝑤) → 𝑣 ∈ ℝ)
5049adantlr 714 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ 𝑣𝑤) → 𝑣 ∈ ℝ)
5150adantlr 714 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑣𝑤) → 𝑣 ∈ ℝ)
52 ssel2 3910 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑤𝐵𝑦𝑤) → 𝑦𝐵)
53 ssel2 3910 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐵 ⊆ ℝ ∧ 𝑦𝐵) → 𝑦 ∈ ℝ)
5452, 53sylan2 595 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 ⊆ ℝ ∧ (𝑤𝐵𝑦𝑤)) → 𝑦 ∈ ℝ)
5554anassrs 471 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ 𝑦𝑤) → 𝑦 ∈ ℝ)
5655adantrr 716 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) → 𝑦 ∈ ℝ)
5756ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑣𝑤) → 𝑦 ∈ ℝ)
58 ssel2 3910 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 ⊆ ℝ ∧ 𝑧𝐵) → 𝑧 ∈ ℝ)
5958adantlr 714 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ 𝑧𝐵) → 𝑧 ∈ ℝ)
6059ad2ant2r 746 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) → 𝑧 ∈ ℝ)
6160adantr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑣𝑤) → 𝑧 ∈ ℝ)
62 breq1 5033 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑢 = 𝑣 → (𝑢𝑦𝑣𝑦))
6362rspccva 3570 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((∀𝑢𝑤 𝑢𝑦𝑣𝑤) → 𝑣𝑦)
6463adantll 713 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦) ∧ 𝑣𝑤) → 𝑣𝑦)
6564adantll 713 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ 𝑣𝑤) → 𝑣𝑦)
6665adantlr 714 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑣𝑤) → 𝑣𝑦)
67 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑣𝑤) → 𝑦𝑧)
6851, 57, 61, 66, 67letrd 10786 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑣𝑤) → 𝑣𝑧)
69 pm2.27 42 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧𝐵 → ((𝑧𝐵 → (𝑣𝑧𝜑)) → (𝑣𝑧𝜑)))
7069adantr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧𝐵𝑦𝑧) → ((𝑧𝐵 → (𝑣𝑧𝜑)) → (𝑣𝑧𝜑)))
7170ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑣𝑤) → ((𝑧𝐵 → (𝑣𝑧𝜑)) → (𝑣𝑧𝜑)))
7268, 71mpid 44 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑣𝑤) → ((𝑧𝐵 → (𝑣𝑧𝜑)) → 𝜑))
7345, 72syl5 34 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑣𝑤) → (∀𝑧𝐵 (𝑣𝑧𝜑) → 𝜑))
7473adantlr 714 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑥𝐴) ∧ 𝑣𝑤) → (∀𝑧𝐵 (𝑣𝑧𝜑) → 𝜑))
7574rexlimdva 3243 . . . . . . . . . . . . . . . . . . 19 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑥𝐴) → (∃𝑣𝑤𝑧𝐵 (𝑣𝑧𝜑) → 𝜑))
7644, 75syl5bi 245 . . . . . . . . . . . . . . . . . 18 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑥𝐴) → (∃𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → 𝜑))
7776ralimdva 3144 . . . . . . . . . . . . . . . . 17 ((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) → (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → ∀𝑥𝐴 𝜑))
7877imp 410 . . . . . . . . . . . . . . . 16 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)) → ∀𝑥𝐴 𝜑)
7978an32s 651 . . . . . . . . . . . . . . 15 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)) ∧ (𝑧𝐵𝑦𝑧)) → ∀𝑥𝐴 𝜑)
8079exp32 424 . . . . . . . . . . . . . 14 ((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)) → (𝑧𝐵 → (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
8180an32s 651 . . . . . . . . . . . . 13 ((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) → (𝑧𝐵 → (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
8240, 81ralrimi 3180 . . . . . . . . . . . 12 ((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) → ∀𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑))
8382exp32 424 . . . . . . . . . . 11 (((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)) → (𝑦𝑤 → (∀𝑢𝑤 𝑢𝑦 → ∀𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑))))
8431, 83reximdai 3270 . . . . . . . . . 10 (((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)) → (∃𝑦𝑤𝑢𝑤 𝑢𝑦 → ∃𝑦𝑤𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
8584adantrr 716 . . . . . . . . 9 (((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑))) → (∃𝑦𝑤𝑢𝑤 𝑢𝑦 → ∃𝑦𝑤𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
86 ssrexv 3982 . . . . . . . . . 10 (𝑤𝐵 → (∃𝑦𝑤𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑) → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
8786ad2antlr 726 . . . . . . . . 9 (((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑))) → (∃𝑦𝑤𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑) → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
8885, 87syld 47 . . . . . . . 8 (((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑))) → (∃𝑦𝑤𝑢𝑤 𝑢𝑦 → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
8988exp43 440 . . . . . . 7 (𝐵 ⊆ ℝ → (𝑤𝐵 → (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → (∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑) → (∃𝑦𝑤𝑢𝑤 𝑢𝑦 → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑))))))
90893impd 1345 . . . . . 6 (𝐵 ⊆ ℝ → ((𝑤𝐵 ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑)) → (∃𝑦𝑤𝑢𝑤 𝑢𝑦 → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑))))
91903ad2ant3 1132 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) → ((𝑤𝐵 ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑)) → (∃𝑦𝑤𝑢𝑤 𝑢𝑦 → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑))))
9291adantr 484 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) ∧ 𝑤 ∈ Fin) → ((𝑤𝐵 ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑)) → (∃𝑦𝑤𝑢𝑤 𝑢𝑦 → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑))))
9326, 92mpdd 43 . . 3 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) ∧ 𝑤 ∈ Fin) → ((𝑤𝐵 ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑)) → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
9493rexlimdva 3243 . 2 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) → (∃𝑤 ∈ Fin (𝑤𝐵 ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑)) → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
956, 94syld 47 1 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) → (∀𝑥𝐴𝑦𝐵𝑧𝐵 (𝑦𝑧𝜑) → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084  wcel 2111  wne 2987  wral 3106  wrex 3107  Vcvv 3441  wss 3881  c0 4243   class class class wbr 5030  Fincfn 8492  cr 10525  cle 10665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-pre-lttri 10600  ax-pre-lttrn 10601
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-om 7561  df-1o 8085  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator