Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  filbcmb Structured version   Visualization version   GIF version

Theorem filbcmb 37720
Description: Combine a finite set of lower bounds. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
filbcmb ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) → (∀𝑥𝐴𝑦𝐵𝑧𝐵 (𝑦𝑧𝜑) → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑧)

Proof of Theorem filbcmb
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 11100 . . . . 5 ℝ ∈ V
21ssex 5260 . . . 4 (𝐵 ⊆ ℝ → 𝐵 ∈ V)
3 indexfi 9250 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ V ∧ ∀𝑥𝐴𝑦𝐵𝑧𝐵 (𝑦𝑧𝜑)) → ∃𝑤 ∈ Fin (𝑤𝐵 ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑)))
433expia 1121 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ V) → (∀𝑥𝐴𝑦𝐵𝑧𝐵 (𝑦𝑧𝜑) → ∃𝑤 ∈ Fin (𝑤𝐵 ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑))))
52, 4sylan2 593 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ⊆ ℝ) → (∀𝑥𝐴𝑦𝐵𝑧𝐵 (𝑦𝑧𝜑) → ∃𝑤 ∈ Fin (𝑤𝐵 ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑))))
653adant2 1131 . 2 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) → (∀𝑥𝐴𝑦𝐵𝑧𝐵 (𝑦𝑧𝜑) → ∃𝑤 ∈ Fin (𝑤𝐵 ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑))))
7 r19.2z 4446 . . . . . . . . . . . 12 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)) → ∃𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑))
8 rexn0 4462 . . . . . . . . . . . . 13 (∃𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → 𝑤 ≠ ∅)
98rexlimivw 3126 . . . . . . . . . . . 12 (∃𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → 𝑤 ≠ ∅)
107, 9syl 17 . . . . . . . . . . 11 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)) → 𝑤 ≠ ∅)
1110ex 412 . . . . . . . . . 10 (𝐴 ≠ ∅ → (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → 𝑤 ≠ ∅))
12113ad2ant2 1134 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) → (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → 𝑤 ≠ ∅))
1312ad2antrr 726 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) ∧ 𝑤 ∈ Fin) ∧ 𝑤𝐵) → (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → 𝑤 ≠ ∅))
14 sstr 3944 . . . . . . . . . . . . . 14 ((𝑤𝐵𝐵 ⊆ ℝ) → 𝑤 ⊆ ℝ)
1514ancoms 458 . . . . . . . . . . . . 13 ((𝐵 ⊆ ℝ ∧ 𝑤𝐵) → 𝑤 ⊆ ℝ)
16 fimaxre 12069 . . . . . . . . . . . . . 14 ((𝑤 ⊆ ℝ ∧ 𝑤 ∈ Fin ∧ 𝑤 ≠ ∅) → ∃𝑦𝑤𝑢𝑤 𝑢𝑦)
17163expia 1121 . . . . . . . . . . . . 13 ((𝑤 ⊆ ℝ ∧ 𝑤 ∈ Fin) → (𝑤 ≠ ∅ → ∃𝑦𝑤𝑢𝑤 𝑢𝑦))
1815, 17sylan 580 . . . . . . . . . . . 12 (((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ 𝑤 ∈ Fin) → (𝑤 ≠ ∅ → ∃𝑦𝑤𝑢𝑤 𝑢𝑦))
1918anasss 466 . . . . . . . . . . 11 ((𝐵 ⊆ ℝ ∧ (𝑤𝐵𝑤 ∈ Fin)) → (𝑤 ≠ ∅ → ∃𝑦𝑤𝑢𝑤 𝑢𝑦))
2019ancom2s 650 . . . . . . . . . 10 ((𝐵 ⊆ ℝ ∧ (𝑤 ∈ Fin ∧ 𝑤𝐵)) → (𝑤 ≠ ∅ → ∃𝑦𝑤𝑢𝑤 𝑢𝑦))
21203ad2antl3 1188 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) ∧ (𝑤 ∈ Fin ∧ 𝑤𝐵)) → (𝑤 ≠ ∅ → ∃𝑦𝑤𝑢𝑤 𝑢𝑦))
2221anassrs 467 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) ∧ 𝑤 ∈ Fin) ∧ 𝑤𝐵) → (𝑤 ≠ ∅ → ∃𝑦𝑤𝑢𝑤 𝑢𝑦))
2313, 22syld 47 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) ∧ 𝑤 ∈ Fin) ∧ 𝑤𝐵) → (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → ∃𝑦𝑤𝑢𝑤 𝑢𝑦))
2423a1dd 50 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) ∧ 𝑤 ∈ Fin) ∧ 𝑤𝐵) → (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → (∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑) → ∃𝑦𝑤𝑢𝑤 𝑢𝑦)))
2524ex 412 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) ∧ 𝑤 ∈ Fin) → (𝑤𝐵 → (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → (∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑) → ∃𝑦𝑤𝑢𝑤 𝑢𝑦))))
26253impd 1349 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) ∧ 𝑤 ∈ Fin) → ((𝑤𝐵 ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑)) → ∃𝑦𝑤𝑢𝑤 𝑢𝑦))
27 nfv 1914 . . . . . . . . . . . 12 𝑦(𝐵 ⊆ ℝ ∧ 𝑤𝐵)
28 nfcv 2891 . . . . . . . . . . . . 13 𝑦𝐴
29 nfre1 3254 . . . . . . . . . . . . 13 𝑦𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)
3028, 29nfralw 3276 . . . . . . . . . . . 12 𝑦𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)
3127, 30nfan 1899 . . . . . . . . . . 11 𝑦((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑))
32 nfv 1914 . . . . . . . . . . . . . . 15 𝑧(𝐵 ⊆ ℝ ∧ 𝑤𝐵)
33 nfcv 2891 . . . . . . . . . . . . . . . 16 𝑧𝐴
34 nfcv 2891 . . . . . . . . . . . . . . . . 17 𝑧𝑤
35 nfra1 3253 . . . . . . . . . . . . . . . . 17 𝑧𝑧𝐵 (𝑦𝑧𝜑)
3634, 35nfrexw 3277 . . . . . . . . . . . . . . . 16 𝑧𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)
3733, 36nfralw 3276 . . . . . . . . . . . . . . 15 𝑧𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)
3832, 37nfan 1899 . . . . . . . . . . . . . 14 𝑧((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑))
39 nfv 1914 . . . . . . . . . . . . . 14 𝑧(𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)
4038, 39nfan 1899 . . . . . . . . . . . . 13 𝑧(((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦))
41 breq1 5095 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑣 → (𝑦𝑧𝑣𝑧))
4241imbi1d 341 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑣 → ((𝑦𝑧𝜑) ↔ (𝑣𝑧𝜑)))
4342ralbidv 3152 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑣 → (∀𝑧𝐵 (𝑦𝑧𝜑) ↔ ∀𝑧𝐵 (𝑣𝑧𝜑)))
4443cbvrexvw 3208 . . . . . . . . . . . . . . . . . . 19 (∃𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ↔ ∃𝑣𝑤𝑧𝐵 (𝑣𝑧𝜑))
45 rsp 3217 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑧𝐵 (𝑣𝑧𝜑) → (𝑧𝐵 → (𝑣𝑧𝜑)))
46 ssel2 3930 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑤𝐵𝑣𝑤) → 𝑣𝐵)
47 ssel2 3930 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐵 ⊆ ℝ ∧ 𝑣𝐵) → 𝑣 ∈ ℝ)
4846, 47sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 ⊆ ℝ ∧ (𝑤𝐵𝑣𝑤)) → 𝑣 ∈ ℝ)
4948anassrs 467 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ 𝑣𝑤) → 𝑣 ∈ ℝ)
5049adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ 𝑣𝑤) → 𝑣 ∈ ℝ)
5150adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑣𝑤) → 𝑣 ∈ ℝ)
52 ssel2 3930 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑤𝐵𝑦𝑤) → 𝑦𝐵)
53 ssel2 3930 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐵 ⊆ ℝ ∧ 𝑦𝐵) → 𝑦 ∈ ℝ)
5452, 53sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 ⊆ ℝ ∧ (𝑤𝐵𝑦𝑤)) → 𝑦 ∈ ℝ)
5554anassrs 467 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ 𝑦𝑤) → 𝑦 ∈ ℝ)
5655adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) → 𝑦 ∈ ℝ)
5756ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑣𝑤) → 𝑦 ∈ ℝ)
58 ssel2 3930 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 ⊆ ℝ ∧ 𝑧𝐵) → 𝑧 ∈ ℝ)
5958adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ 𝑧𝐵) → 𝑧 ∈ ℝ)
6059ad2ant2r 747 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) → 𝑧 ∈ ℝ)
6160adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑣𝑤) → 𝑧 ∈ ℝ)
62 breq1 5095 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑢 = 𝑣 → (𝑢𝑦𝑣𝑦))
6362rspccva 3576 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((∀𝑢𝑤 𝑢𝑦𝑣𝑤) → 𝑣𝑦)
6463adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦) ∧ 𝑣𝑤) → 𝑣𝑦)
6564adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ 𝑣𝑤) → 𝑣𝑦)
6665adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑣𝑤) → 𝑣𝑦)
67 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑣𝑤) → 𝑦𝑧)
6851, 57, 61, 66, 67letrd 11273 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑣𝑤) → 𝑣𝑧)
69 pm2.27 42 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧𝐵 → ((𝑧𝐵 → (𝑣𝑧𝜑)) → (𝑣𝑧𝜑)))
7069adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧𝐵𝑦𝑧) → ((𝑧𝐵 → (𝑣𝑧𝜑)) → (𝑣𝑧𝜑)))
7170ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑣𝑤) → ((𝑧𝐵 → (𝑣𝑧𝜑)) → (𝑣𝑧𝜑)))
7268, 71mpid 44 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑣𝑤) → ((𝑧𝐵 → (𝑣𝑧𝜑)) → 𝜑))
7345, 72syl5 34 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑣𝑤) → (∀𝑧𝐵 (𝑣𝑧𝜑) → 𝜑))
7473adantlr 715 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑥𝐴) ∧ 𝑣𝑤) → (∀𝑧𝐵 (𝑣𝑧𝜑) → 𝜑))
7574rexlimdva 3130 . . . . . . . . . . . . . . . . . . 19 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑥𝐴) → (∃𝑣𝑤𝑧𝐵 (𝑣𝑧𝜑) → 𝜑))
7644, 75biimtrid 242 . . . . . . . . . . . . . . . . . 18 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑥𝐴) → (∃𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → 𝜑))
7776ralimdva 3141 . . . . . . . . . . . . . . . . 17 ((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) → (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → ∀𝑥𝐴 𝜑))
7877imp 406 . . . . . . . . . . . . . . . 16 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)) → ∀𝑥𝐴 𝜑)
7978an32s 652 . . . . . . . . . . . . . . 15 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)) ∧ (𝑧𝐵𝑦𝑧)) → ∀𝑥𝐴 𝜑)
8079exp32 420 . . . . . . . . . . . . . 14 ((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)) → (𝑧𝐵 → (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
8180an32s 652 . . . . . . . . . . . . 13 ((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) → (𝑧𝐵 → (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
8240, 81ralrimi 3227 . . . . . . . . . . . 12 ((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) → ∀𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑))
8382exp32 420 . . . . . . . . . . 11 (((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)) → (𝑦𝑤 → (∀𝑢𝑤 𝑢𝑦 → ∀𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑))))
8431, 83reximdai 3231 . . . . . . . . . 10 (((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)) → (∃𝑦𝑤𝑢𝑤 𝑢𝑦 → ∃𝑦𝑤𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
8584adantrr 717 . . . . . . . . 9 (((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑))) → (∃𝑦𝑤𝑢𝑤 𝑢𝑦 → ∃𝑦𝑤𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
86 ssrexv 4005 . . . . . . . . . 10 (𝑤𝐵 → (∃𝑦𝑤𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑) → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
8786ad2antlr 727 . . . . . . . . 9 (((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑))) → (∃𝑦𝑤𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑) → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
8885, 87syld 47 . . . . . . . 8 (((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑))) → (∃𝑦𝑤𝑢𝑤 𝑢𝑦 → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
8988exp43 436 . . . . . . 7 (𝐵 ⊆ ℝ → (𝑤𝐵 → (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → (∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑) → (∃𝑦𝑤𝑢𝑤 𝑢𝑦 → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑))))))
90893impd 1349 . . . . . 6 (𝐵 ⊆ ℝ → ((𝑤𝐵 ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑)) → (∃𝑦𝑤𝑢𝑤 𝑢𝑦 → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑))))
91903ad2ant3 1135 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) → ((𝑤𝐵 ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑)) → (∃𝑦𝑤𝑢𝑤 𝑢𝑦 → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑))))
9291adantr 480 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) ∧ 𝑤 ∈ Fin) → ((𝑤𝐵 ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑)) → (∃𝑦𝑤𝑢𝑤 𝑢𝑦 → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑))))
9326, 92mpdd 43 . . 3 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) ∧ 𝑤 ∈ Fin) → ((𝑤𝐵 ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑)) → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
9493rexlimdva 3130 . 2 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) → (∃𝑤 ∈ Fin (𝑤𝐵 ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑)) → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
956, 94syld 47 1 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) → (∀𝑥𝐴𝑦𝐵𝑧𝐵 (𝑦𝑧𝜑) → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3436  wss 3903  c0 4284   class class class wbr 5092  Fincfn 8872  cr 11008  cle 11150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-pre-lttri 11083  ax-pre-lttrn 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-om 7800  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator