Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  filbcmb Structured version   Visualization version   GIF version

Theorem filbcmb 34896
Description: Combine a finite set of lower bounds. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
filbcmb ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) → (∀𝑥𝐴𝑦𝐵𝑧𝐵 (𝑦𝑧𝜑) → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑧)

Proof of Theorem filbcmb
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 10616 . . . . 5 ℝ ∈ V
21ssex 5216 . . . 4 (𝐵 ⊆ ℝ → 𝐵 ∈ V)
3 indexfi 8820 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ V ∧ ∀𝑥𝐴𝑦𝐵𝑧𝐵 (𝑦𝑧𝜑)) → ∃𝑤 ∈ Fin (𝑤𝐵 ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑)))
433expia 1113 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ V) → (∀𝑥𝐴𝑦𝐵𝑧𝐵 (𝑦𝑧𝜑) → ∃𝑤 ∈ Fin (𝑤𝐵 ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑))))
52, 4sylan2 592 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ⊆ ℝ) → (∀𝑥𝐴𝑦𝐵𝑧𝐵 (𝑦𝑧𝜑) → ∃𝑤 ∈ Fin (𝑤𝐵 ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑))))
653adant2 1123 . 2 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) → (∀𝑥𝐴𝑦𝐵𝑧𝐵 (𝑦𝑧𝜑) → ∃𝑤 ∈ Fin (𝑤𝐵 ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑))))
7 r19.2z 4436 . . . . . . . . . . . 12 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)) → ∃𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑))
8 rexn0 4450 . . . . . . . . . . . . 13 (∃𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → 𝑤 ≠ ∅)
98rexlimivw 3279 . . . . . . . . . . . 12 (∃𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → 𝑤 ≠ ∅)
107, 9syl 17 . . . . . . . . . . 11 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)) → 𝑤 ≠ ∅)
1110ex 413 . . . . . . . . . 10 (𝐴 ≠ ∅ → (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → 𝑤 ≠ ∅))
12113ad2ant2 1126 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) → (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → 𝑤 ≠ ∅))
1312ad2antrr 722 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) ∧ 𝑤 ∈ Fin) ∧ 𝑤𝐵) → (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → 𝑤 ≠ ∅))
14 sstr 3972 . . . . . . . . . . . . . 14 ((𝑤𝐵𝐵 ⊆ ℝ) → 𝑤 ⊆ ℝ)
1514ancoms 459 . . . . . . . . . . . . 13 ((𝐵 ⊆ ℝ ∧ 𝑤𝐵) → 𝑤 ⊆ ℝ)
16 fimaxre 11572 . . . . . . . . . . . . . 14 ((𝑤 ⊆ ℝ ∧ 𝑤 ∈ Fin ∧ 𝑤 ≠ ∅) → ∃𝑦𝑤𝑢𝑤 𝑢𝑦)
17163expia 1113 . . . . . . . . . . . . 13 ((𝑤 ⊆ ℝ ∧ 𝑤 ∈ Fin) → (𝑤 ≠ ∅ → ∃𝑦𝑤𝑢𝑤 𝑢𝑦))
1815, 17sylan 580 . . . . . . . . . . . 12 (((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ 𝑤 ∈ Fin) → (𝑤 ≠ ∅ → ∃𝑦𝑤𝑢𝑤 𝑢𝑦))
1918anasss 467 . . . . . . . . . . 11 ((𝐵 ⊆ ℝ ∧ (𝑤𝐵𝑤 ∈ Fin)) → (𝑤 ≠ ∅ → ∃𝑦𝑤𝑢𝑤 𝑢𝑦))
2019ancom2s 646 . . . . . . . . . 10 ((𝐵 ⊆ ℝ ∧ (𝑤 ∈ Fin ∧ 𝑤𝐵)) → (𝑤 ≠ ∅ → ∃𝑦𝑤𝑢𝑤 𝑢𝑦))
21203ad2antl3 1179 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) ∧ (𝑤 ∈ Fin ∧ 𝑤𝐵)) → (𝑤 ≠ ∅ → ∃𝑦𝑤𝑢𝑤 𝑢𝑦))
2221anassrs 468 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) ∧ 𝑤 ∈ Fin) ∧ 𝑤𝐵) → (𝑤 ≠ ∅ → ∃𝑦𝑤𝑢𝑤 𝑢𝑦))
2313, 22syld 47 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) ∧ 𝑤 ∈ Fin) ∧ 𝑤𝐵) → (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → ∃𝑦𝑤𝑢𝑤 𝑢𝑦))
2423a1dd 50 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) ∧ 𝑤 ∈ Fin) ∧ 𝑤𝐵) → (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → (∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑) → ∃𝑦𝑤𝑢𝑤 𝑢𝑦)))
2524ex 413 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) ∧ 𝑤 ∈ Fin) → (𝑤𝐵 → (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → (∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑) → ∃𝑦𝑤𝑢𝑤 𝑢𝑦))))
26253impd 1340 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) ∧ 𝑤 ∈ Fin) → ((𝑤𝐵 ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑)) → ∃𝑦𝑤𝑢𝑤 𝑢𝑦))
27 nfv 1906 . . . . . . . . . . . 12 𝑦(𝐵 ⊆ ℝ ∧ 𝑤𝐵)
28 nfcv 2974 . . . . . . . . . . . . 13 𝑦𝐴
29 nfre1 3303 . . . . . . . . . . . . 13 𝑦𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)
3028, 29nfralw 3222 . . . . . . . . . . . 12 𝑦𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)
3127, 30nfan 1891 . . . . . . . . . . 11 𝑦((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑))
32 nfv 1906 . . . . . . . . . . . . . . 15 𝑧(𝐵 ⊆ ℝ ∧ 𝑤𝐵)
33 nfcv 2974 . . . . . . . . . . . . . . . 16 𝑧𝐴
34 nfcv 2974 . . . . . . . . . . . . . . . . 17 𝑧𝑤
35 nfra1 3216 . . . . . . . . . . . . . . . . 17 𝑧𝑧𝐵 (𝑦𝑧𝜑)
3634, 35nfrex 3306 . . . . . . . . . . . . . . . 16 𝑧𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)
3733, 36nfralw 3222 . . . . . . . . . . . . . . 15 𝑧𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)
3832, 37nfan 1891 . . . . . . . . . . . . . 14 𝑧((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑))
39 nfv 1906 . . . . . . . . . . . . . 14 𝑧(𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)
4038, 39nfan 1891 . . . . . . . . . . . . 13 𝑧(((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦))
41 breq1 5060 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑣 → (𝑦𝑧𝑣𝑧))
4241imbi1d 343 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑣 → ((𝑦𝑧𝜑) ↔ (𝑣𝑧𝜑)))
4342ralbidv 3194 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑣 → (∀𝑧𝐵 (𝑦𝑧𝜑) ↔ ∀𝑧𝐵 (𝑣𝑧𝜑)))
4443cbvrexvw 3448 . . . . . . . . . . . . . . . . . . 19 (∃𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ↔ ∃𝑣𝑤𝑧𝐵 (𝑣𝑧𝜑))
45 rsp 3202 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑧𝐵 (𝑣𝑧𝜑) → (𝑧𝐵 → (𝑣𝑧𝜑)))
46 ssel2 3959 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑤𝐵𝑣𝑤) → 𝑣𝐵)
47 ssel2 3959 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐵 ⊆ ℝ ∧ 𝑣𝐵) → 𝑣 ∈ ℝ)
4846, 47sylan2 592 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 ⊆ ℝ ∧ (𝑤𝐵𝑣𝑤)) → 𝑣 ∈ ℝ)
4948anassrs 468 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ 𝑣𝑤) → 𝑣 ∈ ℝ)
5049adantlr 711 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ 𝑣𝑤) → 𝑣 ∈ ℝ)
5150adantlr 711 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑣𝑤) → 𝑣 ∈ ℝ)
52 ssel2 3959 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑤𝐵𝑦𝑤) → 𝑦𝐵)
53 ssel2 3959 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐵 ⊆ ℝ ∧ 𝑦𝐵) → 𝑦 ∈ ℝ)
5452, 53sylan2 592 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 ⊆ ℝ ∧ (𝑤𝐵𝑦𝑤)) → 𝑦 ∈ ℝ)
5554anassrs 468 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ 𝑦𝑤) → 𝑦 ∈ ℝ)
5655adantrr 713 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) → 𝑦 ∈ ℝ)
5756ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑣𝑤) → 𝑦 ∈ ℝ)
58 ssel2 3959 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 ⊆ ℝ ∧ 𝑧𝐵) → 𝑧 ∈ ℝ)
5958adantlr 711 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ 𝑧𝐵) → 𝑧 ∈ ℝ)
6059ad2ant2r 743 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) → 𝑧 ∈ ℝ)
6160adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑣𝑤) → 𝑧 ∈ ℝ)
62 breq1 5060 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑢 = 𝑣 → (𝑢𝑦𝑣𝑦))
6362rspccva 3619 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((∀𝑢𝑤 𝑢𝑦𝑣𝑤) → 𝑣𝑦)
6463adantll 710 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦) ∧ 𝑣𝑤) → 𝑣𝑦)
6564adantll 710 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ 𝑣𝑤) → 𝑣𝑦)
6665adantlr 711 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑣𝑤) → 𝑣𝑦)
67 simplrr 774 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑣𝑤) → 𝑦𝑧)
6851, 57, 61, 66, 67letrd 10785 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑣𝑤) → 𝑣𝑧)
69 pm2.27 42 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧𝐵 → ((𝑧𝐵 → (𝑣𝑧𝜑)) → (𝑣𝑧𝜑)))
7069adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧𝐵𝑦𝑧) → ((𝑧𝐵 → (𝑣𝑧𝜑)) → (𝑣𝑧𝜑)))
7170ad2antlr 723 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑣𝑤) → ((𝑧𝐵 → (𝑣𝑧𝜑)) → (𝑣𝑧𝜑)))
7268, 71mpid 44 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑣𝑤) → ((𝑧𝐵 → (𝑣𝑧𝜑)) → 𝜑))
7345, 72syl5 34 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑣𝑤) → (∀𝑧𝐵 (𝑣𝑧𝜑) → 𝜑))
7473adantlr 711 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑥𝐴) ∧ 𝑣𝑤) → (∀𝑧𝐵 (𝑣𝑧𝜑) → 𝜑))
7574rexlimdva 3281 . . . . . . . . . . . . . . . . . . 19 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑥𝐴) → (∃𝑣𝑤𝑧𝐵 (𝑣𝑧𝜑) → 𝜑))
7644, 75syl5bi 243 . . . . . . . . . . . . . . . . . 18 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑥𝐴) → (∃𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → 𝜑))
7776ralimdva 3174 . . . . . . . . . . . . . . . . 17 ((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) → (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → ∀𝑥𝐴 𝜑))
7877imp 407 . . . . . . . . . . . . . . . 16 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)) → ∀𝑥𝐴 𝜑)
7978an32s 648 . . . . . . . . . . . . . . 15 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)) ∧ (𝑧𝐵𝑦𝑧)) → ∀𝑥𝐴 𝜑)
8079exp32 421 . . . . . . . . . . . . . 14 ((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)) → (𝑧𝐵 → (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
8180an32s 648 . . . . . . . . . . . . 13 ((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) → (𝑧𝐵 → (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
8240, 81ralrimi 3213 . . . . . . . . . . . 12 ((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) → ∀𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑))
8382exp32 421 . . . . . . . . . . 11 (((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)) → (𝑦𝑤 → (∀𝑢𝑤 𝑢𝑦 → ∀𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑))))
8431, 83reximdai 3308 . . . . . . . . . 10 (((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)) → (∃𝑦𝑤𝑢𝑤 𝑢𝑦 → ∃𝑦𝑤𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
8584adantrr 713 . . . . . . . . 9 (((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑))) → (∃𝑦𝑤𝑢𝑤 𝑢𝑦 → ∃𝑦𝑤𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
86 ssrexv 4031 . . . . . . . . . 10 (𝑤𝐵 → (∃𝑦𝑤𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑) → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
8786ad2antlr 723 . . . . . . . . 9 (((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑))) → (∃𝑦𝑤𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑) → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
8885, 87syld 47 . . . . . . . 8 (((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑))) → (∃𝑦𝑤𝑢𝑤 𝑢𝑦 → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
8988exp43 437 . . . . . . 7 (𝐵 ⊆ ℝ → (𝑤𝐵 → (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → (∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑) → (∃𝑦𝑤𝑢𝑤 𝑢𝑦 → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑))))))
90893impd 1340 . . . . . 6 (𝐵 ⊆ ℝ → ((𝑤𝐵 ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑)) → (∃𝑦𝑤𝑢𝑤 𝑢𝑦 → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑))))
91903ad2ant3 1127 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) → ((𝑤𝐵 ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑)) → (∃𝑦𝑤𝑢𝑤 𝑢𝑦 → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑))))
9291adantr 481 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) ∧ 𝑤 ∈ Fin) → ((𝑤𝐵 ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑)) → (∃𝑦𝑤𝑢𝑤 𝑢𝑦 → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑))))
9326, 92mpdd 43 . . 3 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) ∧ 𝑤 ∈ Fin) → ((𝑤𝐵 ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑)) → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
9493rexlimdva 3281 . 2 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) → (∃𝑤 ∈ Fin (𝑤𝐵 ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑)) → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
956, 94syld 47 1 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) → (∀𝑥𝐴𝑦𝐵𝑧𝐵 (𝑦𝑧𝜑) → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1079  wcel 2105  wne 3013  wral 3135  wrex 3136  Vcvv 3492  wss 3933  c0 4288   class class class wbr 5057  Fincfn 8497  cr 10524  cle 10664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-pre-lttri 10599  ax-pre-lttrn 10600
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-om 7570  df-1o 8091  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator