| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lbsexg | Structured version Visualization version GIF version | ||
| Description: Every vector space has a basis. This theorem is an AC equivalent; this is the forward implication. (Contributed by Mario Carneiro, 17-May-2015.) |
| Ref | Expression |
|---|---|
| lbsex.j | ⊢ 𝐽 = (LBasis‘𝑊) |
| Ref | Expression |
|---|---|
| lbsexg | ⊢ ((CHOICE ∧ 𝑊 ∈ LVec) → 𝐽 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LVec) | |
| 2 | fvex 6835 | . . . . 5 ⊢ (Base‘𝑊) ∈ V | |
| 3 | 2 | pwex 5319 | . . . 4 ⊢ 𝒫 (Base‘𝑊) ∈ V |
| 4 | dfac10 10032 | . . . . 5 ⊢ (CHOICE ↔ dom card = V) | |
| 5 | 4 | biimpi 216 | . . . 4 ⊢ (CHOICE → dom card = V) |
| 6 | 3, 5 | eleqtrrid 2835 | . . 3 ⊢ (CHOICE → 𝒫 (Base‘𝑊) ∈ dom card) |
| 7 | 0ss 4351 | . . . 4 ⊢ ∅ ⊆ (Base‘𝑊) | |
| 8 | ral0 4464 | . . . 4 ⊢ ∀𝑥 ∈ ∅ ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(∅ ∖ {𝑥})) | |
| 9 | lbsex.j | . . . . 5 ⊢ 𝐽 = (LBasis‘𝑊) | |
| 10 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 11 | eqid 2729 | . . . . 5 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
| 12 | 9, 10, 11 | lbsextg 21069 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ 𝒫 (Base‘𝑊) ∈ dom card) ∧ ∅ ⊆ (Base‘𝑊) ∧ ∀𝑥 ∈ ∅ ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(∅ ∖ {𝑥}))) → ∃𝑠 ∈ 𝐽 ∅ ⊆ 𝑠) |
| 13 | 7, 8, 12 | mp3an23 1455 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝒫 (Base‘𝑊) ∈ dom card) → ∃𝑠 ∈ 𝐽 ∅ ⊆ 𝑠) |
| 14 | 1, 6, 13 | syl2anr 597 | . 2 ⊢ ((CHOICE ∧ 𝑊 ∈ LVec) → ∃𝑠 ∈ 𝐽 ∅ ⊆ 𝑠) |
| 15 | rexn0 4462 | . 2 ⊢ (∃𝑠 ∈ 𝐽 ∅ ⊆ 𝑠 → 𝐽 ≠ ∅) | |
| 16 | 14, 15 | syl 17 | 1 ⊢ ((CHOICE ∧ 𝑊 ∈ LVec) → 𝐽 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 Vcvv 3436 ∖ cdif 3900 ⊆ wss 3903 ∅c0 4284 𝒫 cpw 4551 {csn 4577 dom cdm 5619 ‘cfv 6482 cardccrd 9831 CHOICEwac 10009 Basecbs 17120 LSpanclspn 20874 LBasisclbs 20978 LVecclvec 21006 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-rpss 7659 df-om 7800 df-1st 7924 df-2nd 7925 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-oadd 8392 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-dju 9797 df-card 9835 df-ac 10010 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-minusg 18816 df-sbg 18817 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-drng 20616 df-lmod 20765 df-lss 20835 df-lsp 20875 df-lbs 20979 df-lvec 21007 |
| This theorem is referenced by: lbsex 21072 |
| Copyright terms: Public domain | W3C validator |