MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbsexg Structured version   Visualization version   GIF version

Theorem lbsexg 19912
Description: Every vector space has a basis. This theorem is an AC equivalent; this is the forward implication. (Contributed by Mario Carneiro, 17-May-2015.)
Hypothesis
Ref Expression
lbsex.j 𝐽 = (LBasis‘𝑊)
Assertion
Ref Expression
lbsexg ((CHOICE𝑊 ∈ LVec) → 𝐽 ≠ ∅)

Proof of Theorem lbsexg
Dummy variables 𝑥 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝑊 ∈ LVec → 𝑊 ∈ LVec)
2 fvex 6659 . . . . 5 (Base‘𝑊) ∈ V
32pwex 5257 . . . 4 𝒫 (Base‘𝑊) ∈ V
4 dfac10 9541 . . . . 5 (CHOICE ↔ dom card = V)
54biimpi 218 . . . 4 (CHOICE → dom card = V)
63, 5eleqtrrid 2918 . . 3 (CHOICE → 𝒫 (Base‘𝑊) ∈ dom card)
7 0ss 4326 . . . 4 ∅ ⊆ (Base‘𝑊)
8 ral0 4432 . . . 4 𝑥 ∈ ∅ ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(∅ ∖ {𝑥}))
9 lbsex.j . . . . 5 𝐽 = (LBasis‘𝑊)
10 eqid 2820 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
11 eqid 2820 . . . . 5 (LSpan‘𝑊) = (LSpan‘𝑊)
129, 10, 11lbsextg 19910 . . . 4 (((𝑊 ∈ LVec ∧ 𝒫 (Base‘𝑊) ∈ dom card) ∧ ∅ ⊆ (Base‘𝑊) ∧ ∀𝑥 ∈ ∅ ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(∅ ∖ {𝑥}))) → ∃𝑠𝐽 ∅ ⊆ 𝑠)
137, 8, 12mp3an23 1449 . . 3 ((𝑊 ∈ LVec ∧ 𝒫 (Base‘𝑊) ∈ dom card) → ∃𝑠𝐽 ∅ ⊆ 𝑠)
141, 6, 13syl2anr 598 . 2 ((CHOICE𝑊 ∈ LVec) → ∃𝑠𝐽 ∅ ⊆ 𝑠)
15 rexn0 4430 . 2 (∃𝑠𝐽 ∅ ⊆ 𝑠𝐽 ≠ ∅)
1614, 15syl 17 1 ((CHOICE𝑊 ∈ LVec) → 𝐽 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3006  wral 3125  wrex 3126  Vcvv 3473  cdif 3910  wss 3913  c0 4269  𝒫 cpw 4515  {csn 4543  dom cdm 5531  cfv 6331  cardccrd 9342  CHOICEwac 9519  Basecbs 16462  LSpanclspn 19719  LBasisclbs 19822  LVecclvec 19850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-int 4853  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-se 5491  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-isom 6340  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-rpss 7427  df-om 7559  df-1st 7667  df-2nd 7668  df-tpos 7870  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-1o 8080  df-oadd 8084  df-er 8267  df-en 8488  df-dom 8489  df-sdom 8490  df-fin 8491  df-dju 9308  df-card 9346  df-ac 9520  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-nn 11617  df-2 11679  df-3 11680  df-ndx 16465  df-slot 16466  df-base 16468  df-sets 16469  df-ress 16470  df-plusg 16557  df-mulr 16558  df-0g 16694  df-mgm 17831  df-sgrp 17880  df-mnd 17891  df-grp 18085  df-minusg 18086  df-sbg 18087  df-cmn 18887  df-abl 18888  df-mgp 19219  df-ur 19231  df-ring 19278  df-oppr 19352  df-dvdsr 19370  df-unit 19371  df-invr 19401  df-drng 19480  df-lmod 19612  df-lss 19680  df-lsp 19720  df-lbs 19823  df-lvec 19851
This theorem is referenced by:  lbsex  19913
  Copyright terms: Public domain W3C validator