MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sltn0 Structured version   Visualization version   GIF version

Theorem sltn0 27943
Description: If 𝑋 is less than 𝑌, then either ( L ‘𝑌) or ( R ‘𝑋) is non-empty. (Contributed by Scott Fenton, 10-Dec-2024.)
Assertion
Ref Expression
sltn0 ((𝑋 No 𝑌 No 𝑋 <s 𝑌) → (( L ‘𝑌) ≠ ∅ ∨ ( R ‘𝑋) ≠ ∅))

Proof of Theorem sltn0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lltropt 27911 . . . . 5 ( L ‘𝑋) <<s ( R ‘𝑋)
21a1i 11 . . . 4 ((𝑋 No 𝑌 No ) → ( L ‘𝑋) <<s ( R ‘𝑋))
3 lltropt 27911 . . . . 5 ( L ‘𝑌) <<s ( R ‘𝑌)
43a1i 11 . . . 4 ((𝑋 No 𝑌 No ) → ( L ‘𝑌) <<s ( R ‘𝑌))
5 lrcut 27941 . . . . . 6 (𝑋 No → (( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋)
65eqcomd 2743 . . . . 5 (𝑋 No 𝑋 = (( L ‘𝑋) |s ( R ‘𝑋)))
76adantr 480 . . . 4 ((𝑋 No 𝑌 No ) → 𝑋 = (( L ‘𝑋) |s ( R ‘𝑋)))
8 lrcut 27941 . . . . . 6 (𝑌 No → (( L ‘𝑌) |s ( R ‘𝑌)) = 𝑌)
98eqcomd 2743 . . . . 5 (𝑌 No 𝑌 = (( L ‘𝑌) |s ( R ‘𝑌)))
109adantl 481 . . . 4 ((𝑋 No 𝑌 No ) → 𝑌 = (( L ‘𝑌) |s ( R ‘𝑌)))
11 sltrec 27865 . . . 4 (((( L ‘𝑋) <<s ( R ‘𝑋) ∧ ( L ‘𝑌) <<s ( R ‘𝑌)) ∧ (𝑋 = (( L ‘𝑋) |s ( R ‘𝑋)) ∧ 𝑌 = (( L ‘𝑌) |s ( R ‘𝑌)))) → (𝑋 <s 𝑌 ↔ (∃𝑦 ∈ ( L ‘𝑌)𝑋 ≤s 𝑦 ∨ ∃𝑥 ∈ ( R ‘𝑋)𝑥 ≤s 𝑌)))
122, 4, 7, 10, 11syl22anc 839 . . 3 ((𝑋 No 𝑌 No ) → (𝑋 <s 𝑌 ↔ (∃𝑦 ∈ ( L ‘𝑌)𝑋 ≤s 𝑦 ∨ ∃𝑥 ∈ ( R ‘𝑋)𝑥 ≤s 𝑌)))
1312biimp3a 1471 . 2 ((𝑋 No 𝑌 No 𝑋 <s 𝑌) → (∃𝑦 ∈ ( L ‘𝑌)𝑋 ≤s 𝑦 ∨ ∃𝑥 ∈ ( R ‘𝑋)𝑥 ≤s 𝑌))
14 rexn0 4511 . . 3 (∃𝑦 ∈ ( L ‘𝑌)𝑋 ≤s 𝑦 → ( L ‘𝑌) ≠ ∅)
15 rexn0 4511 . . 3 (∃𝑥 ∈ ( R ‘𝑋)𝑥 ≤s 𝑌 → ( R ‘𝑋) ≠ ∅)
1614, 15orim12i 909 . 2 ((∃𝑦 ∈ ( L ‘𝑌)𝑋 ≤s 𝑦 ∨ ∃𝑥 ∈ ( R ‘𝑋)𝑥 ≤s 𝑌) → (( L ‘𝑌) ≠ ∅ ∨ ( R ‘𝑋) ≠ ∅))
1713, 16syl 17 1 ((𝑋 No 𝑌 No 𝑋 <s 𝑌) → (( L ‘𝑌) ≠ ∅ ∨ ( R ‘𝑋) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wrex 3070  c0 4333   class class class wbr 5143  cfv 6561  (class class class)co 7431   No csur 27684   <s cslt 27685   ≤s csle 27789   <<s csslt 27825   |s cscut 27827   L cleft 27884   R cright 27885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-1o 8506  df-2o 8507  df-no 27687  df-slt 27688  df-bday 27689  df-sle 27790  df-sslt 27826  df-scut 27828  df-made 27886  df-old 27887  df-left 27889  df-right 27890
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator