MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sltn0 Structured version   Visualization version   GIF version

Theorem sltn0 27958
Description: If 𝑋 is less than 𝑌, then either ( L ‘𝑌) or ( R ‘𝑋) is non-empty. (Contributed by Scott Fenton, 10-Dec-2024.)
Assertion
Ref Expression
sltn0 ((𝑋 No 𝑌 No 𝑋 <s 𝑌) → (( L ‘𝑌) ≠ ∅ ∨ ( R ‘𝑋) ≠ ∅))

Proof of Theorem sltn0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lltropt 27926 . . . . 5 ( L ‘𝑋) <<s ( R ‘𝑋)
21a1i 11 . . . 4 ((𝑋 No 𝑌 No ) → ( L ‘𝑋) <<s ( R ‘𝑋))
3 lltropt 27926 . . . . 5 ( L ‘𝑌) <<s ( R ‘𝑌)
43a1i 11 . . . 4 ((𝑋 No 𝑌 No ) → ( L ‘𝑌) <<s ( R ‘𝑌))
5 lrcut 27956 . . . . . 6 (𝑋 No → (( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋)
65eqcomd 2741 . . . . 5 (𝑋 No 𝑋 = (( L ‘𝑋) |s ( R ‘𝑋)))
76adantr 480 . . . 4 ((𝑋 No 𝑌 No ) → 𝑋 = (( L ‘𝑋) |s ( R ‘𝑋)))
8 lrcut 27956 . . . . . 6 (𝑌 No → (( L ‘𝑌) |s ( R ‘𝑌)) = 𝑌)
98eqcomd 2741 . . . . 5 (𝑌 No 𝑌 = (( L ‘𝑌) |s ( R ‘𝑌)))
109adantl 481 . . . 4 ((𝑋 No 𝑌 No ) → 𝑌 = (( L ‘𝑌) |s ( R ‘𝑌)))
11 sltrec 27880 . . . 4 (((( L ‘𝑋) <<s ( R ‘𝑋) ∧ ( L ‘𝑌) <<s ( R ‘𝑌)) ∧ (𝑋 = (( L ‘𝑋) |s ( R ‘𝑋)) ∧ 𝑌 = (( L ‘𝑌) |s ( R ‘𝑌)))) → (𝑋 <s 𝑌 ↔ (∃𝑦 ∈ ( L ‘𝑌)𝑋 ≤s 𝑦 ∨ ∃𝑥 ∈ ( R ‘𝑋)𝑥 ≤s 𝑌)))
122, 4, 7, 10, 11syl22anc 839 . . 3 ((𝑋 No 𝑌 No ) → (𝑋 <s 𝑌 ↔ (∃𝑦 ∈ ( L ‘𝑌)𝑋 ≤s 𝑦 ∨ ∃𝑥 ∈ ( R ‘𝑋)𝑥 ≤s 𝑌)))
1312biimp3a 1468 . 2 ((𝑋 No 𝑌 No 𝑋 <s 𝑌) → (∃𝑦 ∈ ( L ‘𝑌)𝑋 ≤s 𝑦 ∨ ∃𝑥 ∈ ( R ‘𝑋)𝑥 ≤s 𝑌))
14 rexn0 4517 . . 3 (∃𝑦 ∈ ( L ‘𝑌)𝑋 ≤s 𝑦 → ( L ‘𝑌) ≠ ∅)
15 rexn0 4517 . . 3 (∃𝑥 ∈ ( R ‘𝑋)𝑥 ≤s 𝑌 → ( R ‘𝑋) ≠ ∅)
1614, 15orim12i 908 . 2 ((∃𝑦 ∈ ( L ‘𝑌)𝑋 ≤s 𝑦 ∨ ∃𝑥 ∈ ( R ‘𝑋)𝑥 ≤s 𝑌) → (( L ‘𝑌) ≠ ∅ ∨ ( R ‘𝑋) ≠ ∅))
1713, 16syl 17 1 ((𝑋 No 𝑌 No 𝑋 <s 𝑌) → (( L ‘𝑌) ≠ ∅ ∨ ( R ‘𝑋) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wrex 3068  c0 4339   class class class wbr 5148  cfv 6563  (class class class)co 7431   No csur 27699   <s cslt 27700   ≤s csle 27804   <<s csslt 27840   |s cscut 27842   L cleft 27899   R cright 27900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-1o 8505  df-2o 8506  df-no 27702  df-slt 27703  df-bday 27704  df-sle 27805  df-sslt 27841  df-scut 27843  df-made 27901  df-old 27902  df-left 27904  df-right 27905
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator