MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sltn0 Structured version   Visualization version   GIF version

Theorem sltn0 27793
Description: If 𝑋 is less than 𝑌, then either ( L ‘𝑌) or ( R ‘𝑋) is non-empty. (Contributed by Scott Fenton, 10-Dec-2024.)
Assertion
Ref Expression
sltn0 ((𝑋 No 𝑌 No 𝑋 <s 𝑌) → (( L ‘𝑌) ≠ ∅ ∨ ( R ‘𝑋) ≠ ∅))

Proof of Theorem sltn0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lltropt 27760 . . . . 5 ( L ‘𝑋) <<s ( R ‘𝑋)
21a1i 11 . . . 4 ((𝑋 No 𝑌 No ) → ( L ‘𝑋) <<s ( R ‘𝑋))
3 lltropt 27760 . . . . 5 ( L ‘𝑌) <<s ( R ‘𝑌)
43a1i 11 . . . 4 ((𝑋 No 𝑌 No ) → ( L ‘𝑌) <<s ( R ‘𝑌))
5 lrcut 27791 . . . . . 6 (𝑋 No → (( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋)
65eqcomd 2735 . . . . 5 (𝑋 No 𝑋 = (( L ‘𝑋) |s ( R ‘𝑋)))
76adantr 480 . . . 4 ((𝑋 No 𝑌 No ) → 𝑋 = (( L ‘𝑋) |s ( R ‘𝑋)))
8 lrcut 27791 . . . . . 6 (𝑌 No → (( L ‘𝑌) |s ( R ‘𝑌)) = 𝑌)
98eqcomd 2735 . . . . 5 (𝑌 No 𝑌 = (( L ‘𝑌) |s ( R ‘𝑌)))
109adantl 481 . . . 4 ((𝑋 No 𝑌 No ) → 𝑌 = (( L ‘𝑌) |s ( R ‘𝑌)))
11 sltrec 27708 . . . 4 (((( L ‘𝑋) <<s ( R ‘𝑋) ∧ ( L ‘𝑌) <<s ( R ‘𝑌)) ∧ (𝑋 = (( L ‘𝑋) |s ( R ‘𝑋)) ∧ 𝑌 = (( L ‘𝑌) |s ( R ‘𝑌)))) → (𝑋 <s 𝑌 ↔ (∃𝑦 ∈ ( L ‘𝑌)𝑋 ≤s 𝑦 ∨ ∃𝑥 ∈ ( R ‘𝑋)𝑥 ≤s 𝑌)))
122, 4, 7, 10, 11syl22anc 838 . . 3 ((𝑋 No 𝑌 No ) → (𝑋 <s 𝑌 ↔ (∃𝑦 ∈ ( L ‘𝑌)𝑋 ≤s 𝑦 ∨ ∃𝑥 ∈ ( R ‘𝑋)𝑥 ≤s 𝑌)))
1312biimp3a 1471 . 2 ((𝑋 No 𝑌 No 𝑋 <s 𝑌) → (∃𝑦 ∈ ( L ‘𝑌)𝑋 ≤s 𝑦 ∨ ∃𝑥 ∈ ( R ‘𝑋)𝑥 ≤s 𝑌))
14 rexn0 4470 . . 3 (∃𝑦 ∈ ( L ‘𝑌)𝑋 ≤s 𝑦 → ( L ‘𝑌) ≠ ∅)
15 rexn0 4470 . . 3 (∃𝑥 ∈ ( R ‘𝑋)𝑥 ≤s 𝑌 → ( R ‘𝑋) ≠ ∅)
1614, 15orim12i 908 . 2 ((∃𝑦 ∈ ( L ‘𝑌)𝑋 ≤s 𝑦 ∨ ∃𝑥 ∈ ( R ‘𝑋)𝑥 ≤s 𝑌) → (( L ‘𝑌) ≠ ∅ ∨ ( R ‘𝑋) ≠ ∅))
1713, 16syl 17 1 ((𝑋 No 𝑌 No 𝑋 <s 𝑌) → (( L ‘𝑌) ≠ ∅ ∨ ( R ‘𝑋) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  c0 4292   class class class wbr 5102  cfv 6499  (class class class)co 7369   No csur 27527   <s cslt 27528   ≤s csle 27632   <<s csslt 27668   |s cscut 27670   L cleft 27729   R cright 27730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-1o 8411  df-2o 8412  df-no 27530  df-slt 27531  df-bday 27532  df-sle 27633  df-sslt 27669  df-scut 27671  df-made 27731  df-old 27732  df-left 27734  df-right 27735
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator