|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > sltn0 | Structured version Visualization version GIF version | ||
| Description: If 𝑋 is less than 𝑌, then either ( L ‘𝑌) or ( R ‘𝑋) is non-empty. (Contributed by Scott Fenton, 10-Dec-2024.) | 
| Ref | Expression | 
|---|---|
| sltn0 | ⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ∧ 𝑋 <s 𝑌) → (( L ‘𝑌) ≠ ∅ ∨ ( R ‘𝑋) ≠ ∅)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lltropt 27911 | . . . . 5 ⊢ ( L ‘𝑋) <<s ( R ‘𝑋) | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ) → ( L ‘𝑋) <<s ( R ‘𝑋)) | 
| 3 | lltropt 27911 | . . . . 5 ⊢ ( L ‘𝑌) <<s ( R ‘𝑌) | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ) → ( L ‘𝑌) <<s ( R ‘𝑌)) | 
| 5 | lrcut 27941 | . . . . . 6 ⊢ (𝑋 ∈ No → (( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋) | |
| 6 | 5 | eqcomd 2743 | . . . . 5 ⊢ (𝑋 ∈ No → 𝑋 = (( L ‘𝑋) |s ( R ‘𝑋))) | 
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ) → 𝑋 = (( L ‘𝑋) |s ( R ‘𝑋))) | 
| 8 | lrcut 27941 | . . . . . 6 ⊢ (𝑌 ∈ No → (( L ‘𝑌) |s ( R ‘𝑌)) = 𝑌) | |
| 9 | 8 | eqcomd 2743 | . . . . 5 ⊢ (𝑌 ∈ No → 𝑌 = (( L ‘𝑌) |s ( R ‘𝑌))) | 
| 10 | 9 | adantl 481 | . . . 4 ⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ) → 𝑌 = (( L ‘𝑌) |s ( R ‘𝑌))) | 
| 11 | sltrec 27865 | . . . 4 ⊢ (((( L ‘𝑋) <<s ( R ‘𝑋) ∧ ( L ‘𝑌) <<s ( R ‘𝑌)) ∧ (𝑋 = (( L ‘𝑋) |s ( R ‘𝑋)) ∧ 𝑌 = (( L ‘𝑌) |s ( R ‘𝑌)))) → (𝑋 <s 𝑌 ↔ (∃𝑦 ∈ ( L ‘𝑌)𝑋 ≤s 𝑦 ∨ ∃𝑥 ∈ ( R ‘𝑋)𝑥 ≤s 𝑌))) | |
| 12 | 2, 4, 7, 10, 11 | syl22anc 839 | . . 3 ⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ) → (𝑋 <s 𝑌 ↔ (∃𝑦 ∈ ( L ‘𝑌)𝑋 ≤s 𝑦 ∨ ∃𝑥 ∈ ( R ‘𝑋)𝑥 ≤s 𝑌))) | 
| 13 | 12 | biimp3a 1471 | . 2 ⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ∧ 𝑋 <s 𝑌) → (∃𝑦 ∈ ( L ‘𝑌)𝑋 ≤s 𝑦 ∨ ∃𝑥 ∈ ( R ‘𝑋)𝑥 ≤s 𝑌)) | 
| 14 | rexn0 4511 | . . 3 ⊢ (∃𝑦 ∈ ( L ‘𝑌)𝑋 ≤s 𝑦 → ( L ‘𝑌) ≠ ∅) | |
| 15 | rexn0 4511 | . . 3 ⊢ (∃𝑥 ∈ ( R ‘𝑋)𝑥 ≤s 𝑌 → ( R ‘𝑋) ≠ ∅) | |
| 16 | 14, 15 | orim12i 909 | . 2 ⊢ ((∃𝑦 ∈ ( L ‘𝑌)𝑋 ≤s 𝑦 ∨ ∃𝑥 ∈ ( R ‘𝑋)𝑥 ≤s 𝑌) → (( L ‘𝑌) ≠ ∅ ∨ ( R ‘𝑋) ≠ ∅)) | 
| 17 | 13, 16 | syl 17 | 1 ⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ∧ 𝑋 <s 𝑌) → (( L ‘𝑌) ≠ ∅ ∨ ( R ‘𝑋) ≠ ∅)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∃wrex 3070 ∅c0 4333 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 No csur 27684 <s cslt 27685 ≤s csle 27789 <<s csslt 27825 |s cscut 27827 L cleft 27884 R cright 27885 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-1o 8506 df-2o 8507 df-no 27687 df-slt 27688 df-bday 27689 df-sle 27790 df-sslt 27826 df-scut 27828 df-made 27886 df-old 27887 df-left 27889 df-right 27890 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |