Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sltn0 Structured version   Visualization version   GIF version

Theorem sltn0 34012
Description: If 𝑋 is less than 𝑌, then either ( L ‘𝑌) or ( R ‘𝑋) is non-empty. (Contributed by Scott Fenton, 10-Dec-2024.)
Assertion
Ref Expression
sltn0 ((𝑋 No 𝑌 No 𝑋 <s 𝑌) → (( L ‘𝑌) ≠ ∅ ∨ ( R ‘𝑋) ≠ ∅))

Proof of Theorem sltn0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lltropt 33983 . . . . 5 (𝑋 No → ( L ‘𝑋) <<s ( R ‘𝑋))
21adantr 480 . . . 4 ((𝑋 No 𝑌 No ) → ( L ‘𝑋) <<s ( R ‘𝑋))
3 lltropt 33983 . . . . 5 (𝑌 No → ( L ‘𝑌) <<s ( R ‘𝑌))
43adantl 481 . . . 4 ((𝑋 No 𝑌 No ) → ( L ‘𝑌) <<s ( R ‘𝑌))
5 lrcut 34010 . . . . . 6 (𝑋 No → (( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋)
65eqcomd 2744 . . . . 5 (𝑋 No 𝑋 = (( L ‘𝑋) |s ( R ‘𝑋)))
76adantr 480 . . . 4 ((𝑋 No 𝑌 No ) → 𝑋 = (( L ‘𝑋) |s ( R ‘𝑋)))
8 lrcut 34010 . . . . . 6 (𝑌 No → (( L ‘𝑌) |s ( R ‘𝑌)) = 𝑌)
98eqcomd 2744 . . . . 5 (𝑌 No 𝑌 = (( L ‘𝑌) |s ( R ‘𝑌)))
109adantl 481 . . . 4 ((𝑋 No 𝑌 No ) → 𝑌 = (( L ‘𝑌) |s ( R ‘𝑌)))
11 sltrec 33941 . . . 4 (((( L ‘𝑋) <<s ( R ‘𝑋) ∧ ( L ‘𝑌) <<s ( R ‘𝑌)) ∧ (𝑋 = (( L ‘𝑋) |s ( R ‘𝑋)) ∧ 𝑌 = (( L ‘𝑌) |s ( R ‘𝑌)))) → (𝑋 <s 𝑌 ↔ (∃𝑦 ∈ ( L ‘𝑌)𝑋 ≤s 𝑦 ∨ ∃𝑥 ∈ ( R ‘𝑋)𝑥 ≤s 𝑌)))
122, 4, 7, 10, 11syl22anc 835 . . 3 ((𝑋 No 𝑌 No ) → (𝑋 <s 𝑌 ↔ (∃𝑦 ∈ ( L ‘𝑌)𝑋 ≤s 𝑦 ∨ ∃𝑥 ∈ ( R ‘𝑋)𝑥 ≤s 𝑌)))
1312biimp3a 1467 . 2 ((𝑋 No 𝑌 No 𝑋 <s 𝑌) → (∃𝑦 ∈ ( L ‘𝑌)𝑋 ≤s 𝑦 ∨ ∃𝑥 ∈ ( R ‘𝑋)𝑥 ≤s 𝑌))
14 rexn0 4438 . . 3 (∃𝑦 ∈ ( L ‘𝑌)𝑋 ≤s 𝑦 → ( L ‘𝑌) ≠ ∅)
15 rexn0 4438 . . 3 (∃𝑥 ∈ ( R ‘𝑋)𝑥 ≤s 𝑌 → ( R ‘𝑋) ≠ ∅)
1614, 15orim12i 905 . 2 ((∃𝑦 ∈ ( L ‘𝑌)𝑋 ≤s 𝑦 ∨ ∃𝑥 ∈ ( R ‘𝑋)𝑥 ≤s 𝑌) → (( L ‘𝑌) ≠ ∅ ∨ ( R ‘𝑋) ≠ ∅))
1713, 16syl 17 1 ((𝑋 No 𝑌 No 𝑋 <s 𝑌) → (( L ‘𝑌) ≠ ∅ ∨ ( R ‘𝑋) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064  c0 4253   class class class wbr 5070  cfv 6418  (class class class)co 7255   No csur 33770   <s cslt 33771   ≤s csle 33874   <<s csslt 33902   |s cscut 33904   L cleft 33956   R cright 33957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-1o 8267  df-2o 8268  df-no 33773  df-slt 33774  df-bday 33775  df-sle 33875  df-sslt 33903  df-scut 33905  df-made 33958  df-old 33959  df-left 33961  df-right 33962
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator