| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sltn0 | Structured version Visualization version GIF version | ||
| Description: If 𝑋 is less than 𝑌, then either ( L ‘𝑌) or ( R ‘𝑋) is non-empty. (Contributed by Scott Fenton, 10-Dec-2024.) |
| Ref | Expression |
|---|---|
| sltn0 | ⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ∧ 𝑋 <s 𝑌) → (( L ‘𝑌) ≠ ∅ ∨ ( R ‘𝑋) ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lltropt 27812 | . . . . 5 ⊢ ( L ‘𝑋) <<s ( R ‘𝑋) | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ) → ( L ‘𝑋) <<s ( R ‘𝑋)) |
| 3 | lltropt 27812 | . . . . 5 ⊢ ( L ‘𝑌) <<s ( R ‘𝑌) | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ) → ( L ‘𝑌) <<s ( R ‘𝑌)) |
| 5 | lrcut 27844 | . . . . . 6 ⊢ (𝑋 ∈ No → (( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋) | |
| 6 | 5 | eqcomd 2737 | . . . . 5 ⊢ (𝑋 ∈ No → 𝑋 = (( L ‘𝑋) |s ( R ‘𝑋))) |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ) → 𝑋 = (( L ‘𝑋) |s ( R ‘𝑋))) |
| 8 | lrcut 27844 | . . . . . 6 ⊢ (𝑌 ∈ No → (( L ‘𝑌) |s ( R ‘𝑌)) = 𝑌) | |
| 9 | 8 | eqcomd 2737 | . . . . 5 ⊢ (𝑌 ∈ No → 𝑌 = (( L ‘𝑌) |s ( R ‘𝑌))) |
| 10 | 9 | adantl 481 | . . . 4 ⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ) → 𝑌 = (( L ‘𝑌) |s ( R ‘𝑌))) |
| 11 | 2, 4, 7, 10 | sltrecd 27758 | . . 3 ⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ) → (𝑋 <s 𝑌 ↔ (∃𝑦 ∈ ( L ‘𝑌)𝑋 ≤s 𝑦 ∨ ∃𝑥 ∈ ( R ‘𝑋)𝑥 ≤s 𝑌))) |
| 12 | 11 | biimp3a 1471 | . 2 ⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ∧ 𝑋 <s 𝑌) → (∃𝑦 ∈ ( L ‘𝑌)𝑋 ≤s 𝑦 ∨ ∃𝑥 ∈ ( R ‘𝑋)𝑥 ≤s 𝑌)) |
| 13 | rexn0 4456 | . . 3 ⊢ (∃𝑦 ∈ ( L ‘𝑌)𝑋 ≤s 𝑦 → ( L ‘𝑌) ≠ ∅) | |
| 14 | rexn0 4456 | . . 3 ⊢ (∃𝑥 ∈ ( R ‘𝑋)𝑥 ≤s 𝑌 → ( R ‘𝑋) ≠ ∅) | |
| 15 | 13, 14 | orim12i 908 | . 2 ⊢ ((∃𝑦 ∈ ( L ‘𝑌)𝑋 ≤s 𝑦 ∨ ∃𝑥 ∈ ( R ‘𝑋)𝑥 ≤s 𝑌) → (( L ‘𝑌) ≠ ∅ ∨ ( R ‘𝑋) ≠ ∅)) |
| 16 | 12, 15 | syl 17 | 1 ⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ∧ 𝑋 <s 𝑌) → (( L ‘𝑌) ≠ ∅ ∨ ( R ‘𝑋) ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 ∅c0 4278 class class class wbr 5086 ‘cfv 6476 (class class class)co 7341 No csur 27573 <s cslt 27574 ≤s csle 27678 <<s csslt 27715 |s cscut 27717 L cleft 27781 R cright 27782 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-1o 8380 df-2o 8381 df-no 27576 df-slt 27577 df-bday 27578 df-sle 27679 df-sslt 27716 df-scut 27718 df-made 27783 df-old 27784 df-left 27786 df-right 27787 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |