| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sltn0 | Structured version Visualization version GIF version | ||
| Description: If 𝑋 is less than 𝑌, then either ( L ‘𝑌) or ( R ‘𝑋) is non-empty. (Contributed by Scott Fenton, 10-Dec-2024.) |
| Ref | Expression |
|---|---|
| sltn0 | ⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ∧ 𝑋 <s 𝑌) → (( L ‘𝑌) ≠ ∅ ∨ ( R ‘𝑋) ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lltropt 27786 | . . . . 5 ⊢ ( L ‘𝑋) <<s ( R ‘𝑋) | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ) → ( L ‘𝑋) <<s ( R ‘𝑋)) |
| 3 | lltropt 27786 | . . . . 5 ⊢ ( L ‘𝑌) <<s ( R ‘𝑌) | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ) → ( L ‘𝑌) <<s ( R ‘𝑌)) |
| 5 | lrcut 27818 | . . . . . 6 ⊢ (𝑋 ∈ No → (( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋) | |
| 6 | 5 | eqcomd 2735 | . . . . 5 ⊢ (𝑋 ∈ No → 𝑋 = (( L ‘𝑋) |s ( R ‘𝑋))) |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ) → 𝑋 = (( L ‘𝑋) |s ( R ‘𝑋))) |
| 8 | lrcut 27818 | . . . . . 6 ⊢ (𝑌 ∈ No → (( L ‘𝑌) |s ( R ‘𝑌)) = 𝑌) | |
| 9 | 8 | eqcomd 2735 | . . . . 5 ⊢ (𝑌 ∈ No → 𝑌 = (( L ‘𝑌) |s ( R ‘𝑌))) |
| 10 | 9 | adantl 481 | . . . 4 ⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ) → 𝑌 = (( L ‘𝑌) |s ( R ‘𝑌))) |
| 11 | 2, 4, 7, 10 | sltrecd 27733 | . . 3 ⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ) → (𝑋 <s 𝑌 ↔ (∃𝑦 ∈ ( L ‘𝑌)𝑋 ≤s 𝑦 ∨ ∃𝑥 ∈ ( R ‘𝑋)𝑥 ≤s 𝑌))) |
| 12 | 11 | biimp3a 1471 | . 2 ⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ∧ 𝑋 <s 𝑌) → (∃𝑦 ∈ ( L ‘𝑌)𝑋 ≤s 𝑦 ∨ ∃𝑥 ∈ ( R ‘𝑋)𝑥 ≤s 𝑌)) |
| 13 | rexn0 4462 | . . 3 ⊢ (∃𝑦 ∈ ( L ‘𝑌)𝑋 ≤s 𝑦 → ( L ‘𝑌) ≠ ∅) | |
| 14 | rexn0 4462 | . . 3 ⊢ (∃𝑥 ∈ ( R ‘𝑋)𝑥 ≤s 𝑌 → ( R ‘𝑋) ≠ ∅) | |
| 15 | 13, 14 | orim12i 908 | . 2 ⊢ ((∃𝑦 ∈ ( L ‘𝑌)𝑋 ≤s 𝑦 ∨ ∃𝑥 ∈ ( R ‘𝑋)𝑥 ≤s 𝑌) → (( L ‘𝑌) ≠ ∅ ∨ ( R ‘𝑋) ≠ ∅)) |
| 16 | 12, 15 | syl 17 | 1 ⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ∧ 𝑋 <s 𝑌) → (( L ‘𝑌) ≠ ∅ ∨ ( R ‘𝑋) ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 ∅c0 4284 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 No csur 27549 <s cslt 27550 ≤s csle 27654 <<s csslt 27691 |s cscut 27693 L cleft 27755 R cright 27756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-1o 8388 df-2o 8389 df-no 27552 df-slt 27553 df-bday 27554 df-sle 27655 df-sslt 27692 df-scut 27694 df-made 27757 df-old 27758 df-left 27760 df-right 27761 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |