MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sltn0 Structured version   Visualization version   GIF version

Theorem sltn0 27824
Description: If 𝑋 is less than 𝑌, then either ( L ‘𝑌) or ( R ‘𝑋) is non-empty. (Contributed by Scott Fenton, 10-Dec-2024.)
Assertion
Ref Expression
sltn0 ((𝑋 No 𝑌 No 𝑋 <s 𝑌) → (( L ‘𝑌) ≠ ∅ ∨ ( R ‘𝑋) ≠ ∅))

Proof of Theorem sltn0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lltropt 27791 . . . . 5 ( L ‘𝑋) <<s ( R ‘𝑋)
21a1i 11 . . . 4 ((𝑋 No 𝑌 No ) → ( L ‘𝑋) <<s ( R ‘𝑋))
3 lltropt 27791 . . . . 5 ( L ‘𝑌) <<s ( R ‘𝑌)
43a1i 11 . . . 4 ((𝑋 No 𝑌 No ) → ( L ‘𝑌) <<s ( R ‘𝑌))
5 lrcut 27822 . . . . . 6 (𝑋 No → (( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋)
65eqcomd 2736 . . . . 5 (𝑋 No 𝑋 = (( L ‘𝑋) |s ( R ‘𝑋)))
76adantr 480 . . . 4 ((𝑋 No 𝑌 No ) → 𝑋 = (( L ‘𝑋) |s ( R ‘𝑋)))
8 lrcut 27822 . . . . . 6 (𝑌 No → (( L ‘𝑌) |s ( R ‘𝑌)) = 𝑌)
98eqcomd 2736 . . . . 5 (𝑌 No 𝑌 = (( L ‘𝑌) |s ( R ‘𝑌)))
109adantl 481 . . . 4 ((𝑋 No 𝑌 No ) → 𝑌 = (( L ‘𝑌) |s ( R ‘𝑌)))
11 sltrec 27739 . . . 4 (((( L ‘𝑋) <<s ( R ‘𝑋) ∧ ( L ‘𝑌) <<s ( R ‘𝑌)) ∧ (𝑋 = (( L ‘𝑋) |s ( R ‘𝑋)) ∧ 𝑌 = (( L ‘𝑌) |s ( R ‘𝑌)))) → (𝑋 <s 𝑌 ↔ (∃𝑦 ∈ ( L ‘𝑌)𝑋 ≤s 𝑦 ∨ ∃𝑥 ∈ ( R ‘𝑋)𝑥 ≤s 𝑌)))
122, 4, 7, 10, 11syl22anc 838 . . 3 ((𝑋 No 𝑌 No ) → (𝑋 <s 𝑌 ↔ (∃𝑦 ∈ ( L ‘𝑌)𝑋 ≤s 𝑦 ∨ ∃𝑥 ∈ ( R ‘𝑋)𝑥 ≤s 𝑌)))
1312biimp3a 1471 . 2 ((𝑋 No 𝑌 No 𝑋 <s 𝑌) → (∃𝑦 ∈ ( L ‘𝑌)𝑋 ≤s 𝑦 ∨ ∃𝑥 ∈ ( R ‘𝑋)𝑥 ≤s 𝑌))
14 rexn0 4477 . . 3 (∃𝑦 ∈ ( L ‘𝑌)𝑋 ≤s 𝑦 → ( L ‘𝑌) ≠ ∅)
15 rexn0 4477 . . 3 (∃𝑥 ∈ ( R ‘𝑋)𝑥 ≤s 𝑌 → ( R ‘𝑋) ≠ ∅)
1614, 15orim12i 908 . 2 ((∃𝑦 ∈ ( L ‘𝑌)𝑋 ≤s 𝑦 ∨ ∃𝑥 ∈ ( R ‘𝑋)𝑥 ≤s 𝑌) → (( L ‘𝑌) ≠ ∅ ∨ ( R ‘𝑋) ≠ ∅))
1713, 16syl 17 1 ((𝑋 No 𝑌 No 𝑋 <s 𝑌) → (( L ‘𝑌) ≠ ∅ ∨ ( R ‘𝑋) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054  c0 4299   class class class wbr 5110  cfv 6514  (class class class)co 7390   No csur 27558   <s cslt 27559   ≤s csle 27663   <<s csslt 27699   |s cscut 27701   L cleft 27760   R cright 27761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-1o 8437  df-2o 8438  df-no 27561  df-slt 27562  df-bday 27563  df-sle 27664  df-sslt 27700  df-scut 27702  df-made 27762  df-old 27763  df-left 27765  df-right 27766
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator