![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sltn0 | Structured version Visualization version GIF version |
Description: If ð is less than ð, then either ( L âð) or ( R âð) is non-empty. (Contributed by Scott Fenton, 10-Dec-2024.) |
Ref | Expression |
---|---|
sltn0 | âĒ ((ð â No â§ ð â No â§ ð <s ð) â (( L âð) â â âĻ ( R âð) â â )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lltropt 27711 | . . . . 5 âĒ ( L âð) <<s ( R âð) | |
2 | 1 | a1i 11 | . . . 4 âĒ ((ð â No â§ ð â No ) â ( L âð) <<s ( R âð)) |
3 | lltropt 27711 | . . . . 5 âĒ ( L âð) <<s ( R âð) | |
4 | 3 | a1i 11 | . . . 4 âĒ ((ð â No â§ ð â No ) â ( L âð) <<s ( R âð)) |
5 | lrcut 27741 | . . . . . 6 âĒ (ð â No â (( L âð) |s ( R âð)) = ð) | |
6 | 5 | eqcomd 2737 | . . . . 5 âĒ (ð â No â ð = (( L âð) |s ( R âð))) |
7 | 6 | adantr 480 | . . . 4 âĒ ((ð â No â§ ð â No ) â ð = (( L âð) |s ( R âð))) |
8 | lrcut 27741 | . . . . . 6 âĒ (ð â No â (( L âð) |s ( R âð)) = ð) | |
9 | 8 | eqcomd 2737 | . . . . 5 âĒ (ð â No â ð = (( L âð) |s ( R âð))) |
10 | 9 | adantl 481 | . . . 4 âĒ ((ð â No â§ ð â No ) â ð = (( L âð) |s ( R âð))) |
11 | sltrec 27665 | . . . 4 âĒ (((( L âð) <<s ( R âð) â§ ( L âð) <<s ( R âð)) â§ (ð = (( L âð) |s ( R âð)) â§ ð = (( L âð) |s ( R âð)))) â (ð <s ð â (âðĶ â ( L âð)ð âĪs ðĶ âĻ âðĨ â ( R âð)ðĨ âĪs ð))) | |
12 | 2, 4, 7, 10, 11 | syl22anc 836 | . . 3 âĒ ((ð â No â§ ð â No ) â (ð <s ð â (âðĶ â ( L âð)ð âĪs ðĶ âĻ âðĨ â ( R âð)ðĨ âĪs ð))) |
13 | 12 | biimp3a 1468 | . 2 âĒ ((ð â No â§ ð â No â§ ð <s ð) â (âðĶ â ( L âð)ð âĪs ðĶ âĻ âðĨ â ( R âð)ðĨ âĪs ð)) |
14 | rexn0 4510 | . . 3 âĒ (âðĶ â ( L âð)ð âĪs ðĶ â ( L âð) â â ) | |
15 | rexn0 4510 | . . 3 âĒ (âðĨ â ( R âð)ðĨ âĪs ð â ( R âð) â â ) | |
16 | 14, 15 | orim12i 906 | . 2 âĒ ((âðĶ â ( L âð)ð âĪs ðĶ âĻ âðĨ â ( R âð)ðĨ âĪs ð) â (( L âð) â â âĻ ( R âð) â â )) |
17 | 13, 16 | syl 17 | 1 âĒ ((ð â No â§ ð â No â§ ð <s ð) â (( L âð) â â âĻ ( R âð) â â )) |
Colors of variables: wff setvar class |
Syntax hints: â wi 4 â wb 205 â§ wa 395 âĻ wo 844 â§ w3a 1086 = wceq 1540 â wcel 2105 â wne 2939 âwrex 3069 â c0 4322 class class class wbr 5148 âcfv 6543 (class class class)co 7412 No csur 27485 <s cslt 27486 âĪs csle 27589 <<s csslt 27625 |s cscut 27627 L cleft 27684 R cright 27685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-1o 8472 df-2o 8473 df-no 27488 df-slt 27489 df-bday 27490 df-sle 27590 df-sslt 27626 df-scut 27628 df-made 27686 df-old 27687 df-left 27689 df-right 27690 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |