| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sltn0 | Structured version Visualization version GIF version | ||
| Description: If 𝑋 is less than 𝑌, then either ( L ‘𝑌) or ( R ‘𝑋) is non-empty. (Contributed by Scott Fenton, 10-Dec-2024.) |
| Ref | Expression |
|---|---|
| sltn0 | ⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ∧ 𝑋 <s 𝑌) → (( L ‘𝑌) ≠ ∅ ∨ ( R ‘𝑋) ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lltropt 27760 | . . . . 5 ⊢ ( L ‘𝑋) <<s ( R ‘𝑋) | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ) → ( L ‘𝑋) <<s ( R ‘𝑋)) |
| 3 | lltropt 27760 | . . . . 5 ⊢ ( L ‘𝑌) <<s ( R ‘𝑌) | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ) → ( L ‘𝑌) <<s ( R ‘𝑌)) |
| 5 | lrcut 27791 | . . . . . 6 ⊢ (𝑋 ∈ No → (( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋) | |
| 6 | 5 | eqcomd 2735 | . . . . 5 ⊢ (𝑋 ∈ No → 𝑋 = (( L ‘𝑋) |s ( R ‘𝑋))) |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ) → 𝑋 = (( L ‘𝑋) |s ( R ‘𝑋))) |
| 8 | lrcut 27791 | . . . . . 6 ⊢ (𝑌 ∈ No → (( L ‘𝑌) |s ( R ‘𝑌)) = 𝑌) | |
| 9 | 8 | eqcomd 2735 | . . . . 5 ⊢ (𝑌 ∈ No → 𝑌 = (( L ‘𝑌) |s ( R ‘𝑌))) |
| 10 | 9 | adantl 481 | . . . 4 ⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ) → 𝑌 = (( L ‘𝑌) |s ( R ‘𝑌))) |
| 11 | sltrec 27708 | . . . 4 ⊢ (((( L ‘𝑋) <<s ( R ‘𝑋) ∧ ( L ‘𝑌) <<s ( R ‘𝑌)) ∧ (𝑋 = (( L ‘𝑋) |s ( R ‘𝑋)) ∧ 𝑌 = (( L ‘𝑌) |s ( R ‘𝑌)))) → (𝑋 <s 𝑌 ↔ (∃𝑦 ∈ ( L ‘𝑌)𝑋 ≤s 𝑦 ∨ ∃𝑥 ∈ ( R ‘𝑋)𝑥 ≤s 𝑌))) | |
| 12 | 2, 4, 7, 10, 11 | syl22anc 838 | . . 3 ⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ) → (𝑋 <s 𝑌 ↔ (∃𝑦 ∈ ( L ‘𝑌)𝑋 ≤s 𝑦 ∨ ∃𝑥 ∈ ( R ‘𝑋)𝑥 ≤s 𝑌))) |
| 13 | 12 | biimp3a 1471 | . 2 ⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ∧ 𝑋 <s 𝑌) → (∃𝑦 ∈ ( L ‘𝑌)𝑋 ≤s 𝑦 ∨ ∃𝑥 ∈ ( R ‘𝑋)𝑥 ≤s 𝑌)) |
| 14 | rexn0 4470 | . . 3 ⊢ (∃𝑦 ∈ ( L ‘𝑌)𝑋 ≤s 𝑦 → ( L ‘𝑌) ≠ ∅) | |
| 15 | rexn0 4470 | . . 3 ⊢ (∃𝑥 ∈ ( R ‘𝑋)𝑥 ≤s 𝑌 → ( R ‘𝑋) ≠ ∅) | |
| 16 | 14, 15 | orim12i 908 | . 2 ⊢ ((∃𝑦 ∈ ( L ‘𝑌)𝑋 ≤s 𝑦 ∨ ∃𝑥 ∈ ( R ‘𝑋)𝑥 ≤s 𝑌) → (( L ‘𝑌) ≠ ∅ ∨ ( R ‘𝑋) ≠ ∅)) |
| 17 | 13, 16 | syl 17 | 1 ⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ∧ 𝑋 <s 𝑌) → (( L ‘𝑌) ≠ ∅ ∨ ( R ‘𝑋) ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 ∅c0 4292 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 No csur 27527 <s cslt 27528 ≤s csle 27632 <<s csslt 27668 |s cscut 27670 L cleft 27729 R cright 27730 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-1o 8411 df-2o 8412 df-no 27530 df-slt 27531 df-bday 27532 df-sle 27633 df-sslt 27669 df-scut 27671 df-made 27731 df-old 27732 df-left 27734 df-right 27735 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |