Step | Hyp | Ref
| Expression |
1 | | simpr 489 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) → ∪
𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) |
2 | | simplr1 1213 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) → (𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅) |
3 | | n0 4246 |
. . . . . . . . . . 11
⊢ ((𝑢 ∩ ∪ 𝑘 ∈ 𝐴 𝐵) ≠ ∅ ↔ ∃𝑣 𝑣 ∈ (𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵)) |
4 | | elinel2 4102 |
. . . . . . . . . . . . 13
⊢ (𝑣 ∈ (𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) → 𝑣 ∈ ∪
𝑘 ∈ 𝐴 𝐵) |
5 | | eliun 4888 |
. . . . . . . . . . . . . 14
⊢ (𝑣 ∈ ∪ 𝑘 ∈ 𝐴 𝐵 ↔ ∃𝑘 ∈ 𝐴 𝑣 ∈ 𝐵) |
6 | | rexn0 4404 |
. . . . . . . . . . . . . 14
⊢
(∃𝑘 ∈
𝐴 𝑣 ∈ 𝐵 → 𝐴 ≠ ∅) |
7 | 5, 6 | sylbi 220 |
. . . . . . . . . . . . 13
⊢ (𝑣 ∈ ∪ 𝑘 ∈ 𝐴 𝐵 → 𝐴 ≠ ∅) |
8 | 4, 7 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑣 ∈ (𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) → 𝐴 ≠ ∅) |
9 | 8 | exlimiv 1932 |
. . . . . . . . . . 11
⊢
(∃𝑣 𝑣 ∈ (𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) → 𝐴 ≠ ∅) |
10 | 3, 9 | sylbi 220 |
. . . . . . . . . 10
⊢ ((𝑢 ∩ ∪ 𝑘 ∈ 𝐴 𝐵) ≠ ∅ → 𝐴 ≠ ∅) |
11 | 2, 10 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) → 𝐴 ≠ ∅) |
12 | | simplll 775 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) → 𝜑) |
13 | | iunconn.4 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑃 ∈ 𝐵) |
14 | 13 | ralrimiva 3114 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝑃 ∈ 𝐵) |
15 | 12, 14 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) → ∀𝑘 ∈ 𝐴 𝑃 ∈ 𝐵) |
16 | | r19.2z 4389 |
. . . . . . . . 9
⊢ ((𝐴 ≠ ∅ ∧
∀𝑘 ∈ 𝐴 𝑃 ∈ 𝐵) → ∃𝑘 ∈ 𝐴 𝑃 ∈ 𝐵) |
17 | 11, 15, 16 | syl2anc 588 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) → ∃𝑘 ∈ 𝐴 𝑃 ∈ 𝐵) |
18 | | eliun 4888 |
. . . . . . . 8
⊢ (𝑃 ∈ ∪ 𝑘 ∈ 𝐴 𝐵 ↔ ∃𝑘 ∈ 𝐴 𝑃 ∈ 𝐵) |
19 | 17, 18 | sylibr 237 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) → 𝑃 ∈ ∪
𝑘 ∈ 𝐴 𝐵) |
20 | 1, 19 | sseldd 3894 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) → 𝑃 ∈ (𝑢 ∪ 𝑣)) |
21 | | elun 4055 |
. . . . . 6
⊢ (𝑃 ∈ (𝑢 ∪ 𝑣) ↔ (𝑃 ∈ 𝑢 ∨ 𝑃 ∈ 𝑣)) |
22 | 20, 21 | sylib 221 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) → (𝑃 ∈ 𝑢 ∨ 𝑃 ∈ 𝑣)) |
23 | | iunconn.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
24 | 12, 23 | syl 17 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) → 𝐽 ∈ (TopOn‘𝑋)) |
25 | | iunconn.3 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ 𝑋) |
26 | 12, 25 | sylan 584 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ 𝑋) |
27 | 12, 13 | sylan 584 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) ∧ 𝑘 ∈ 𝐴) → 𝑃 ∈ 𝐵) |
28 | | iunconn.5 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐽 ↾t 𝐵) ∈ Conn) |
29 | 12, 28 | sylan 584 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) ∧ 𝑘 ∈ 𝐴) → (𝐽 ↾t 𝐵) ∈ Conn) |
30 | | simpllr 776 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) → (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) |
31 | 30 | simpld 499 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) → 𝑢 ∈ 𝐽) |
32 | 30 | simprd 500 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) → 𝑣 ∈ 𝐽) |
33 | | simplr2 1214 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) → (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅) |
34 | | simplr3 1215 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) → (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵)) |
35 | | nfv 1916 |
. . . . . . . . 9
⊢
Ⅎ𝑘(𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) |
36 | | nfcv 2920 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘𝑢 |
37 | | nfiu1 4918 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘∪ 𝑘 ∈ 𝐴 𝐵 |
38 | 36, 37 | nfin 4122 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘(𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) |
39 | | nfcv 2920 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘∅ |
40 | 38, 39 | nfne 3052 |
. . . . . . . . . 10
⊢
Ⅎ𝑘(𝑢 ∩ ∪ 𝑘 ∈ 𝐴 𝐵) ≠ ∅ |
41 | | nfcv 2920 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘𝑣 |
42 | 41, 37 | nfin 4122 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘(𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) |
43 | 42, 39 | nfne 3052 |
. . . . . . . . . 10
⊢
Ⅎ𝑘(𝑣 ∩ ∪ 𝑘 ∈ 𝐴 𝐵) ≠ ∅ |
44 | | nfcv 2920 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘(𝑢 ∩ 𝑣) |
45 | | nfcv 2920 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘𝑋 |
46 | 45, 37 | nfdif 4032 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘(𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵) |
47 | 44, 46 | nfss 3885 |
. . . . . . . . . 10
⊢
Ⅎ𝑘(𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵) |
48 | 40, 43, 47 | nf3an 1903 |
. . . . . . . . 9
⊢
Ⅎ𝑘((𝑢 ∩ ∪ 𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵)) |
49 | 35, 48 | nfan 1901 |
. . . . . . . 8
⊢
Ⅎ𝑘((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) |
50 | 36, 41 | nfun 4071 |
. . . . . . . . 9
⊢
Ⅎ𝑘(𝑢 ∪ 𝑣) |
51 | 37, 50 | nfss 3885 |
. . . . . . . 8
⊢
Ⅎ𝑘∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣) |
52 | 49, 51 | nfan 1901 |
. . . . . . 7
⊢
Ⅎ𝑘(((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) |
53 | 24, 26, 27, 29, 31, 32, 33, 34, 1, 52 | iunconnlem 22120 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) → ¬ 𝑃 ∈ 𝑢) |
54 | | incom 4107 |
. . . . . . . 8
⊢ (𝑣 ∩ 𝑢) = (𝑢 ∩ 𝑣) |
55 | 54, 34 | eqsstrid 3941 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) → (𝑣 ∩ 𝑢) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵)) |
56 | | uncom 4059 |
. . . . . . . 8
⊢ (𝑢 ∪ 𝑣) = (𝑣 ∪ 𝑢) |
57 | 1, 56 | sseqtrdi 3943 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) → ∪
𝑘 ∈ 𝐴 𝐵 ⊆ (𝑣 ∪ 𝑢)) |
58 | 24, 26, 27, 29, 32, 31, 2, 55, 57, 52 | iunconnlem 22120 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) → ¬ 𝑃 ∈ 𝑣) |
59 | | ioran 982 |
. . . . . 6
⊢ (¬
(𝑃 ∈ 𝑢 ∨ 𝑃 ∈ 𝑣) ↔ (¬ 𝑃 ∈ 𝑢 ∧ ¬ 𝑃 ∈ 𝑣)) |
60 | 53, 58, 59 | sylanbrc 587 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) → ¬ (𝑃 ∈ 𝑢 ∨ 𝑃 ∈ 𝑣)) |
61 | 22, 60 | pm2.65da 817 |
. . . 4
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) → ¬ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) |
62 | 61 | ex 417 |
. . 3
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) → (((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵)) → ¬ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣))) |
63 | 62 | ralrimivva 3121 |
. 2
⊢ (𝜑 → ∀𝑢 ∈ 𝐽 ∀𝑣 ∈ 𝐽 (((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵)) → ¬ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣))) |
64 | 25 | ralrimiva 3114 |
. . . 4
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ⊆ 𝑋) |
65 | | iunss 4935 |
. . . 4
⊢ (∪ 𝑘 ∈ 𝐴 𝐵 ⊆ 𝑋 ↔ ∀𝑘 ∈ 𝐴 𝐵 ⊆ 𝑋) |
66 | 64, 65 | sylibr 237 |
. . 3
⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ 𝑋) |
67 | | connsub 22114 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ 𝑋) → ((𝐽 ↾t ∪ 𝑘 ∈ 𝐴 𝐵) ∈ Conn ↔ ∀𝑢 ∈ 𝐽 ∀𝑣 ∈ 𝐽 (((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵)) → ¬ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)))) |
68 | 23, 66, 67 | syl2anc 588 |
. 2
⊢ (𝜑 → ((𝐽 ↾t ∪ 𝑘 ∈ 𝐴 𝐵) ∈ Conn ↔ ∀𝑢 ∈ 𝐽 ∀𝑣 ∈ 𝐽 (((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵)) → ¬ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)))) |
69 | 63, 68 | mpbird 260 |
1
⊢ (𝜑 → (𝐽 ↾t ∪ 𝑘 ∈ 𝐴 𝐵) ∈ Conn) |