MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunconn Structured version   Visualization version   GIF version

Theorem iunconn 23436
Description: The indexed union of connected overlapping subspaces sharing a common point is connected. (Contributed by Mario Carneiro, 11-Jun-2014.)
Hypotheses
Ref Expression
iunconn.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
iunconn.3 ((𝜑𝑘𝐴) → 𝐵𝑋)
iunconn.4 ((𝜑𝑘𝐴) → 𝑃𝐵)
iunconn.5 ((𝜑𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)
Assertion
Ref Expression
iunconn (𝜑 → (𝐽t 𝑘𝐴 𝐵) ∈ Conn)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐽   𝑃,𝑘   𝑘,𝑋   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem iunconn
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . 7 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))
2 simplr1 1216 . . . . . . . . . 10 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑢 𝑘𝐴 𝐵) ≠ ∅)
3 n0 4353 . . . . . . . . . . 11 ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ↔ ∃𝑣 𝑣 ∈ (𝑢 𝑘𝐴 𝐵))
4 elinel2 4202 . . . . . . . . . . . . 13 (𝑣 ∈ (𝑢 𝑘𝐴 𝐵) → 𝑣 𝑘𝐴 𝐵)
5 eliun 4995 . . . . . . . . . . . . . 14 (𝑣 𝑘𝐴 𝐵 ↔ ∃𝑘𝐴 𝑣𝐵)
6 rexn0 4511 . . . . . . . . . . . . . 14 (∃𝑘𝐴 𝑣𝐵𝐴 ≠ ∅)
75, 6sylbi 217 . . . . . . . . . . . . 13 (𝑣 𝑘𝐴 𝐵𝐴 ≠ ∅)
84, 7syl 17 . . . . . . . . . . . 12 (𝑣 ∈ (𝑢 𝑘𝐴 𝐵) → 𝐴 ≠ ∅)
98exlimiv 1930 . . . . . . . . . . 11 (∃𝑣 𝑣 ∈ (𝑢 𝑘𝐴 𝐵) → 𝐴 ≠ ∅)
103, 9sylbi 217 . . . . . . . . . 10 ((𝑢 𝑘𝐴 𝐵) ≠ ∅ → 𝐴 ≠ ∅)
112, 10syl 17 . . . . . . . . 9 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝐴 ≠ ∅)
12 simplll 775 . . . . . . . . . 10 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝜑)
13 iunconn.4 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → 𝑃𝐵)
1413ralrimiva 3146 . . . . . . . . . 10 (𝜑 → ∀𝑘𝐴 𝑃𝐵)
1512, 14syl 17 . . . . . . . . 9 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → ∀𝑘𝐴 𝑃𝐵)
16 r19.2z 4495 . . . . . . . . 9 ((𝐴 ≠ ∅ ∧ ∀𝑘𝐴 𝑃𝐵) → ∃𝑘𝐴 𝑃𝐵)
1711, 15, 16syl2anc 584 . . . . . . . 8 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → ∃𝑘𝐴 𝑃𝐵)
18 eliun 4995 . . . . . . . 8 (𝑃 𝑘𝐴 𝐵 ↔ ∃𝑘𝐴 𝑃𝐵)
1917, 18sylibr 234 . . . . . . 7 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝑃 𝑘𝐴 𝐵)
201, 19sseldd 3984 . . . . . 6 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝑃 ∈ (𝑢𝑣))
21 elun 4153 . . . . . 6 (𝑃 ∈ (𝑢𝑣) ↔ (𝑃𝑢𝑃𝑣))
2220, 21sylib 218 . . . . 5 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑃𝑢𝑃𝑣))
23 iunconn.2 . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘𝑋))
2412, 23syl 17 . . . . . . 7 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝐽 ∈ (TopOn‘𝑋))
25 iunconn.3 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵𝑋)
2612, 25sylan 580 . . . . . . 7 (((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) ∧ 𝑘𝐴) → 𝐵𝑋)
2712, 13sylan 580 . . . . . . 7 (((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) ∧ 𝑘𝐴) → 𝑃𝐵)
28 iunconn.5 . . . . . . . 8 ((𝜑𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)
2912, 28sylan 580 . . . . . . 7 (((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) ∧ 𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)
30 simpllr 776 . . . . . . . 8 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑢𝐽𝑣𝐽))
3130simpld 494 . . . . . . 7 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝑢𝐽)
3230simprd 495 . . . . . . 7 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝑣𝐽)
33 simplr2 1217 . . . . . . 7 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑣 𝑘𝐴 𝐵) ≠ ∅)
34 simplr3 1218 . . . . . . 7 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))
35 nfv 1914 . . . . . . . . 9 𝑘(𝜑 ∧ (𝑢𝐽𝑣𝐽))
36 nfcv 2905 . . . . . . . . . . . 12 𝑘𝑢
37 nfiu1 5027 . . . . . . . . . . . 12 𝑘 𝑘𝐴 𝐵
3836, 37nfin 4224 . . . . . . . . . . 11 𝑘(𝑢 𝑘𝐴 𝐵)
39 nfcv 2905 . . . . . . . . . . 11 𝑘
4038, 39nfne 3043 . . . . . . . . . 10 𝑘(𝑢 𝑘𝐴 𝐵) ≠ ∅
41 nfcv 2905 . . . . . . . . . . . 12 𝑘𝑣
4241, 37nfin 4224 . . . . . . . . . . 11 𝑘(𝑣 𝑘𝐴 𝐵)
4342, 39nfne 3043 . . . . . . . . . 10 𝑘(𝑣 𝑘𝐴 𝐵) ≠ ∅
44 nfcv 2905 . . . . . . . . . . 11 𝑘(𝑢𝑣)
45 nfcv 2905 . . . . . . . . . . . 12 𝑘𝑋
4645, 37nfdif 4129 . . . . . . . . . . 11 𝑘(𝑋 𝑘𝐴 𝐵)
4744, 46nfss 3976 . . . . . . . . . 10 𝑘(𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)
4840, 43, 47nf3an 1901 . . . . . . . . 9 𝑘((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))
4935, 48nfan 1899 . . . . . . . 8 𝑘((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)))
5036, 41nfun 4170 . . . . . . . . 9 𝑘(𝑢𝑣)
5137, 50nfss 3976 . . . . . . . 8 𝑘 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)
5249, 51nfan 1899 . . . . . . 7 𝑘(((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))
5324, 26, 27, 29, 31, 32, 33, 34, 1, 52iunconnlem 23435 . . . . . 6 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → ¬ 𝑃𝑢)
54 incom 4209 . . . . . . . 8 (𝑣𝑢) = (𝑢𝑣)
5554, 34eqsstrid 4022 . . . . . . 7 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑣𝑢) ⊆ (𝑋 𝑘𝐴 𝐵))
56 uncom 4158 . . . . . . . 8 (𝑢𝑣) = (𝑣𝑢)
571, 56sseqtrdi 4024 . . . . . . 7 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝑘𝐴 𝐵 ⊆ (𝑣𝑢))
5824, 26, 27, 29, 32, 31, 2, 55, 57, 52iunconnlem 23435 . . . . . 6 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → ¬ 𝑃𝑣)
59 ioran 986 . . . . . 6 (¬ (𝑃𝑢𝑃𝑣) ↔ (¬ 𝑃𝑢 ∧ ¬ 𝑃𝑣))
6053, 58, 59sylanbrc 583 . . . . 5 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → ¬ (𝑃𝑢𝑃𝑣))
6122, 60pm2.65da 817 . . . 4 (((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))
6261ex 412 . . 3 ((𝜑 ∧ (𝑢𝐽𝑣𝐽)) → (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
6362ralrimivva 3202 . 2 (𝜑 → ∀𝑢𝐽𝑣𝐽 (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
6425ralrimiva 3146 . . . 4 (𝜑 → ∀𝑘𝐴 𝐵𝑋)
65 iunss 5045 . . . 4 ( 𝑘𝐴 𝐵𝑋 ↔ ∀𝑘𝐴 𝐵𝑋)
6664, 65sylibr 234 . . 3 (𝜑 𝑘𝐴 𝐵𝑋)
67 connsub 23429 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘𝐴 𝐵𝑋) → ((𝐽t 𝑘𝐴 𝐵) ∈ Conn ↔ ∀𝑢𝐽𝑣𝐽 (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))))
6823, 66, 67syl2anc 584 . 2 (𝜑 → ((𝐽t 𝑘𝐴 𝐵) ∈ Conn ↔ ∀𝑢𝐽𝑣𝐽 (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))))
6963, 68mpbird 257 1 (𝜑 → (𝐽t 𝑘𝐴 𝐵) ∈ Conn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  w3a 1087  wex 1779  wcel 2108  wne 2940  wral 3061  wrex 3070  cdif 3948  cun 3949  cin 3950  wss 3951  c0 4333   ciun 4991  cfv 6561  (class class class)co 7431  t crest 17465  TopOnctopon 22916  Conncconn 23419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-en 8986  df-fin 8989  df-fi 9451  df-rest 17467  df-topgen 17488  df-top 22900  df-topon 22917  df-bases 22953  df-cld 23027  df-conn 23420
This theorem is referenced by:  unconn  23437  conncompconn  23440
  Copyright terms: Public domain W3C validator