MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunconn Structured version   Visualization version   GIF version

Theorem iunconn 22487
Description: The indexed union of connected overlapping subspaces sharing a common point is connected. (Contributed by Mario Carneiro, 11-Jun-2014.)
Hypotheses
Ref Expression
iunconn.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
iunconn.3 ((𝜑𝑘𝐴) → 𝐵𝑋)
iunconn.4 ((𝜑𝑘𝐴) → 𝑃𝐵)
iunconn.5 ((𝜑𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)
Assertion
Ref Expression
iunconn (𝜑 → (𝐽t 𝑘𝐴 𝐵) ∈ Conn)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐽   𝑃,𝑘   𝑘,𝑋   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem iunconn
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . 7 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))
2 simplr1 1213 . . . . . . . . . 10 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑢 𝑘𝐴 𝐵) ≠ ∅)
3 n0 4277 . . . . . . . . . . 11 ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ↔ ∃𝑣 𝑣 ∈ (𝑢 𝑘𝐴 𝐵))
4 elinel2 4126 . . . . . . . . . . . . 13 (𝑣 ∈ (𝑢 𝑘𝐴 𝐵) → 𝑣 𝑘𝐴 𝐵)
5 eliun 4925 . . . . . . . . . . . . . 14 (𝑣 𝑘𝐴 𝐵 ↔ ∃𝑘𝐴 𝑣𝐵)
6 rexn0 4438 . . . . . . . . . . . . . 14 (∃𝑘𝐴 𝑣𝐵𝐴 ≠ ∅)
75, 6sylbi 216 . . . . . . . . . . . . 13 (𝑣 𝑘𝐴 𝐵𝐴 ≠ ∅)
84, 7syl 17 . . . . . . . . . . . 12 (𝑣 ∈ (𝑢 𝑘𝐴 𝐵) → 𝐴 ≠ ∅)
98exlimiv 1934 . . . . . . . . . . 11 (∃𝑣 𝑣 ∈ (𝑢 𝑘𝐴 𝐵) → 𝐴 ≠ ∅)
103, 9sylbi 216 . . . . . . . . . 10 ((𝑢 𝑘𝐴 𝐵) ≠ ∅ → 𝐴 ≠ ∅)
112, 10syl 17 . . . . . . . . 9 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝐴 ≠ ∅)
12 simplll 771 . . . . . . . . . 10 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝜑)
13 iunconn.4 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → 𝑃𝐵)
1413ralrimiva 3107 . . . . . . . . . 10 (𝜑 → ∀𝑘𝐴 𝑃𝐵)
1512, 14syl 17 . . . . . . . . 9 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → ∀𝑘𝐴 𝑃𝐵)
16 r19.2z 4422 . . . . . . . . 9 ((𝐴 ≠ ∅ ∧ ∀𝑘𝐴 𝑃𝐵) → ∃𝑘𝐴 𝑃𝐵)
1711, 15, 16syl2anc 583 . . . . . . . 8 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → ∃𝑘𝐴 𝑃𝐵)
18 eliun 4925 . . . . . . . 8 (𝑃 𝑘𝐴 𝐵 ↔ ∃𝑘𝐴 𝑃𝐵)
1917, 18sylibr 233 . . . . . . 7 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝑃 𝑘𝐴 𝐵)
201, 19sseldd 3918 . . . . . 6 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝑃 ∈ (𝑢𝑣))
21 elun 4079 . . . . . 6 (𝑃 ∈ (𝑢𝑣) ↔ (𝑃𝑢𝑃𝑣))
2220, 21sylib 217 . . . . 5 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑃𝑢𝑃𝑣))
23 iunconn.2 . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘𝑋))
2412, 23syl 17 . . . . . . 7 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝐽 ∈ (TopOn‘𝑋))
25 iunconn.3 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵𝑋)
2612, 25sylan 579 . . . . . . 7 (((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) ∧ 𝑘𝐴) → 𝐵𝑋)
2712, 13sylan 579 . . . . . . 7 (((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) ∧ 𝑘𝐴) → 𝑃𝐵)
28 iunconn.5 . . . . . . . 8 ((𝜑𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)
2912, 28sylan 579 . . . . . . 7 (((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) ∧ 𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)
30 simpllr 772 . . . . . . . 8 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑢𝐽𝑣𝐽))
3130simpld 494 . . . . . . 7 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝑢𝐽)
3230simprd 495 . . . . . . 7 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝑣𝐽)
33 simplr2 1214 . . . . . . 7 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑣 𝑘𝐴 𝐵) ≠ ∅)
34 simplr3 1215 . . . . . . 7 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))
35 nfv 1918 . . . . . . . . 9 𝑘(𝜑 ∧ (𝑢𝐽𝑣𝐽))
36 nfcv 2906 . . . . . . . . . . . 12 𝑘𝑢
37 nfiu1 4955 . . . . . . . . . . . 12 𝑘 𝑘𝐴 𝐵
3836, 37nfin 4147 . . . . . . . . . . 11 𝑘(𝑢 𝑘𝐴 𝐵)
39 nfcv 2906 . . . . . . . . . . 11 𝑘
4038, 39nfne 3044 . . . . . . . . . 10 𝑘(𝑢 𝑘𝐴 𝐵) ≠ ∅
41 nfcv 2906 . . . . . . . . . . . 12 𝑘𝑣
4241, 37nfin 4147 . . . . . . . . . . 11 𝑘(𝑣 𝑘𝐴 𝐵)
4342, 39nfne 3044 . . . . . . . . . 10 𝑘(𝑣 𝑘𝐴 𝐵) ≠ ∅
44 nfcv 2906 . . . . . . . . . . 11 𝑘(𝑢𝑣)
45 nfcv 2906 . . . . . . . . . . . 12 𝑘𝑋
4645, 37nfdif 4056 . . . . . . . . . . 11 𝑘(𝑋 𝑘𝐴 𝐵)
4744, 46nfss 3909 . . . . . . . . . 10 𝑘(𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)
4840, 43, 47nf3an 1905 . . . . . . . . 9 𝑘((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))
4935, 48nfan 1903 . . . . . . . 8 𝑘((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)))
5036, 41nfun 4095 . . . . . . . . 9 𝑘(𝑢𝑣)
5137, 50nfss 3909 . . . . . . . 8 𝑘 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)
5249, 51nfan 1903 . . . . . . 7 𝑘(((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))
5324, 26, 27, 29, 31, 32, 33, 34, 1, 52iunconnlem 22486 . . . . . 6 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → ¬ 𝑃𝑢)
54 incom 4131 . . . . . . . 8 (𝑣𝑢) = (𝑢𝑣)
5554, 34eqsstrid 3965 . . . . . . 7 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑣𝑢) ⊆ (𝑋 𝑘𝐴 𝐵))
56 uncom 4083 . . . . . . . 8 (𝑢𝑣) = (𝑣𝑢)
571, 56sseqtrdi 3967 . . . . . . 7 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝑘𝐴 𝐵 ⊆ (𝑣𝑢))
5824, 26, 27, 29, 32, 31, 2, 55, 57, 52iunconnlem 22486 . . . . . 6 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → ¬ 𝑃𝑣)
59 ioran 980 . . . . . 6 (¬ (𝑃𝑢𝑃𝑣) ↔ (¬ 𝑃𝑢 ∧ ¬ 𝑃𝑣))
6053, 58, 59sylanbrc 582 . . . . 5 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → ¬ (𝑃𝑢𝑃𝑣))
6122, 60pm2.65da 813 . . . 4 (((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))
6261ex 412 . . 3 ((𝜑 ∧ (𝑢𝐽𝑣𝐽)) → (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
6362ralrimivva 3114 . 2 (𝜑 → ∀𝑢𝐽𝑣𝐽 (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
6425ralrimiva 3107 . . . 4 (𝜑 → ∀𝑘𝐴 𝐵𝑋)
65 iunss 4971 . . . 4 ( 𝑘𝐴 𝐵𝑋 ↔ ∀𝑘𝐴 𝐵𝑋)
6664, 65sylibr 233 . . 3 (𝜑 𝑘𝐴 𝐵𝑋)
67 connsub 22480 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘𝐴 𝐵𝑋) → ((𝐽t 𝑘𝐴 𝐵) ∈ Conn ↔ ∀𝑢𝐽𝑣𝐽 (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))))
6823, 66, 67syl2anc 583 . 2 (𝜑 → ((𝐽t 𝑘𝐴 𝐵) ∈ Conn ↔ ∀𝑢𝐽𝑣𝐽 (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))))
6963, 68mpbird 256 1 (𝜑 → (𝐽t 𝑘𝐴 𝐵) ∈ Conn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085  wex 1783  wcel 2108  wne 2942  wral 3063  wrex 3064  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253   ciun 4921  cfv 6418  (class class class)co 7255  t crest 17048  TopOnctopon 21967  Conncconn 22470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-en 8692  df-fin 8695  df-fi 9100  df-rest 17050  df-topgen 17071  df-top 21951  df-topon 21968  df-bases 22004  df-cld 22078  df-conn 22471
This theorem is referenced by:  unconn  22488  conncompconn  22491
  Copyright terms: Public domain W3C validator