MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunconn Structured version   Visualization version   GIF version

Theorem iunconn 22121
Description: The indexed union of connected overlapping subspaces sharing a common point is connected. (Contributed by Mario Carneiro, 11-Jun-2014.)
Hypotheses
Ref Expression
iunconn.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
iunconn.3 ((𝜑𝑘𝐴) → 𝐵𝑋)
iunconn.4 ((𝜑𝑘𝐴) → 𝑃𝐵)
iunconn.5 ((𝜑𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)
Assertion
Ref Expression
iunconn (𝜑 → (𝐽t 𝑘𝐴 𝐵) ∈ Conn)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐽   𝑃,𝑘   𝑘,𝑋   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem iunconn
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 489 . . . . . . 7 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))
2 simplr1 1213 . . . . . . . . . 10 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑢 𝑘𝐴 𝐵) ≠ ∅)
3 n0 4246 . . . . . . . . . . 11 ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ↔ ∃𝑣 𝑣 ∈ (𝑢 𝑘𝐴 𝐵))
4 elinel2 4102 . . . . . . . . . . . . 13 (𝑣 ∈ (𝑢 𝑘𝐴 𝐵) → 𝑣 𝑘𝐴 𝐵)
5 eliun 4888 . . . . . . . . . . . . . 14 (𝑣 𝑘𝐴 𝐵 ↔ ∃𝑘𝐴 𝑣𝐵)
6 rexn0 4404 . . . . . . . . . . . . . 14 (∃𝑘𝐴 𝑣𝐵𝐴 ≠ ∅)
75, 6sylbi 220 . . . . . . . . . . . . 13 (𝑣 𝑘𝐴 𝐵𝐴 ≠ ∅)
84, 7syl 17 . . . . . . . . . . . 12 (𝑣 ∈ (𝑢 𝑘𝐴 𝐵) → 𝐴 ≠ ∅)
98exlimiv 1932 . . . . . . . . . . 11 (∃𝑣 𝑣 ∈ (𝑢 𝑘𝐴 𝐵) → 𝐴 ≠ ∅)
103, 9sylbi 220 . . . . . . . . . 10 ((𝑢 𝑘𝐴 𝐵) ≠ ∅ → 𝐴 ≠ ∅)
112, 10syl 17 . . . . . . . . 9 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝐴 ≠ ∅)
12 simplll 775 . . . . . . . . . 10 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝜑)
13 iunconn.4 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → 𝑃𝐵)
1413ralrimiva 3114 . . . . . . . . . 10 (𝜑 → ∀𝑘𝐴 𝑃𝐵)
1512, 14syl 17 . . . . . . . . 9 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → ∀𝑘𝐴 𝑃𝐵)
16 r19.2z 4389 . . . . . . . . 9 ((𝐴 ≠ ∅ ∧ ∀𝑘𝐴 𝑃𝐵) → ∃𝑘𝐴 𝑃𝐵)
1711, 15, 16syl2anc 588 . . . . . . . 8 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → ∃𝑘𝐴 𝑃𝐵)
18 eliun 4888 . . . . . . . 8 (𝑃 𝑘𝐴 𝐵 ↔ ∃𝑘𝐴 𝑃𝐵)
1917, 18sylibr 237 . . . . . . 7 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝑃 𝑘𝐴 𝐵)
201, 19sseldd 3894 . . . . . 6 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝑃 ∈ (𝑢𝑣))
21 elun 4055 . . . . . 6 (𝑃 ∈ (𝑢𝑣) ↔ (𝑃𝑢𝑃𝑣))
2220, 21sylib 221 . . . . 5 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑃𝑢𝑃𝑣))
23 iunconn.2 . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘𝑋))
2412, 23syl 17 . . . . . . 7 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝐽 ∈ (TopOn‘𝑋))
25 iunconn.3 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵𝑋)
2612, 25sylan 584 . . . . . . 7 (((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) ∧ 𝑘𝐴) → 𝐵𝑋)
2712, 13sylan 584 . . . . . . 7 (((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) ∧ 𝑘𝐴) → 𝑃𝐵)
28 iunconn.5 . . . . . . . 8 ((𝜑𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)
2912, 28sylan 584 . . . . . . 7 (((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) ∧ 𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)
30 simpllr 776 . . . . . . . 8 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑢𝐽𝑣𝐽))
3130simpld 499 . . . . . . 7 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝑢𝐽)
3230simprd 500 . . . . . . 7 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝑣𝐽)
33 simplr2 1214 . . . . . . 7 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑣 𝑘𝐴 𝐵) ≠ ∅)
34 simplr3 1215 . . . . . . 7 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))
35 nfv 1916 . . . . . . . . 9 𝑘(𝜑 ∧ (𝑢𝐽𝑣𝐽))
36 nfcv 2920 . . . . . . . . . . . 12 𝑘𝑢
37 nfiu1 4918 . . . . . . . . . . . 12 𝑘 𝑘𝐴 𝐵
3836, 37nfin 4122 . . . . . . . . . . 11 𝑘(𝑢 𝑘𝐴 𝐵)
39 nfcv 2920 . . . . . . . . . . 11 𝑘
4038, 39nfne 3052 . . . . . . . . . 10 𝑘(𝑢 𝑘𝐴 𝐵) ≠ ∅
41 nfcv 2920 . . . . . . . . . . . 12 𝑘𝑣
4241, 37nfin 4122 . . . . . . . . . . 11 𝑘(𝑣 𝑘𝐴 𝐵)
4342, 39nfne 3052 . . . . . . . . . 10 𝑘(𝑣 𝑘𝐴 𝐵) ≠ ∅
44 nfcv 2920 . . . . . . . . . . 11 𝑘(𝑢𝑣)
45 nfcv 2920 . . . . . . . . . . . 12 𝑘𝑋
4645, 37nfdif 4032 . . . . . . . . . . 11 𝑘(𝑋 𝑘𝐴 𝐵)
4744, 46nfss 3885 . . . . . . . . . 10 𝑘(𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)
4840, 43, 47nf3an 1903 . . . . . . . . 9 𝑘((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))
4935, 48nfan 1901 . . . . . . . 8 𝑘((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)))
5036, 41nfun 4071 . . . . . . . . 9 𝑘(𝑢𝑣)
5137, 50nfss 3885 . . . . . . . 8 𝑘 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)
5249, 51nfan 1901 . . . . . . 7 𝑘(((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))
5324, 26, 27, 29, 31, 32, 33, 34, 1, 52iunconnlem 22120 . . . . . 6 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → ¬ 𝑃𝑢)
54 incom 4107 . . . . . . . 8 (𝑣𝑢) = (𝑢𝑣)
5554, 34eqsstrid 3941 . . . . . . 7 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑣𝑢) ⊆ (𝑋 𝑘𝐴 𝐵))
56 uncom 4059 . . . . . . . 8 (𝑢𝑣) = (𝑣𝑢)
571, 56sseqtrdi 3943 . . . . . . 7 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝑘𝐴 𝐵 ⊆ (𝑣𝑢))
5824, 26, 27, 29, 32, 31, 2, 55, 57, 52iunconnlem 22120 . . . . . 6 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → ¬ 𝑃𝑣)
59 ioran 982 . . . . . 6 (¬ (𝑃𝑢𝑃𝑣) ↔ (¬ 𝑃𝑢 ∧ ¬ 𝑃𝑣))
6053, 58, 59sylanbrc 587 . . . . 5 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → ¬ (𝑃𝑢𝑃𝑣))
6122, 60pm2.65da 817 . . . 4 (((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))
6261ex 417 . . 3 ((𝜑 ∧ (𝑢𝐽𝑣𝐽)) → (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
6362ralrimivva 3121 . 2 (𝜑 → ∀𝑢𝐽𝑣𝐽 (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
6425ralrimiva 3114 . . . 4 (𝜑 → ∀𝑘𝐴 𝐵𝑋)
65 iunss 4935 . . . 4 ( 𝑘𝐴 𝐵𝑋 ↔ ∀𝑘𝐴 𝐵𝑋)
6664, 65sylibr 237 . . 3 (𝜑 𝑘𝐴 𝐵𝑋)
67 connsub 22114 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘𝐴 𝐵𝑋) → ((𝐽t 𝑘𝐴 𝐵) ∈ Conn ↔ ∀𝑢𝐽𝑣𝐽 (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))))
6823, 66, 67syl2anc 588 . 2 (𝜑 → ((𝐽t 𝑘𝐴 𝐵) ∈ Conn ↔ ∀𝑢𝐽𝑣𝐽 (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))))
6963, 68mpbird 260 1 (𝜑 → (𝐽t 𝑘𝐴 𝐵) ∈ Conn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 400  wo 845  w3a 1085  wex 1782  wcel 2112  wne 2952  wral 3071  wrex 3072  cdif 3856  cun 3857  cin 3858  wss 3859  c0 4226   ciun 4884  cfv 6336  (class class class)co 7151  t crest 16745  TopOnctopon 21603  Conncconn 22104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-1st 7694  df-2nd 7695  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-oadd 8117  df-er 8300  df-en 8529  df-fin 8532  df-fi 8901  df-rest 16747  df-topgen 16768  df-top 21587  df-topon 21604  df-bases 21639  df-cld 21712  df-conn 22105
This theorem is referenced by:  unconn  22122  conncompconn  22125
  Copyright terms: Public domain W3C validator