MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slwn0 Structured version   Visualization version   GIF version

Theorem slwn0 19220
Description: Every finite group contains a Sylow 𝑃-subgroup. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypothesis
Ref Expression
slwn0.1 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
slwn0 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → (𝑃 pSyl 𝐺) ≠ ∅)

Proof of Theorem slwn0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . 5 (0g𝐺) = (0g𝐺)
210subg 18780 . . . 4 (𝐺 ∈ Grp → {(0g𝐺)} ∈ (SubGrp‘𝐺))
323ad2ant1 1132 . . 3 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → {(0g𝐺)} ∈ (SubGrp‘𝐺))
4 simp2 1136 . . 3 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → 𝑋 ∈ Fin)
51pgp0 19201 . . . 4 ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → 𝑃 pGrp (𝐺s {(0g𝐺)}))
653adant2 1130 . . 3 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → 𝑃 pGrp (𝐺s {(0g𝐺)}))
7 slwn0.1 . . . 4 𝑋 = (Base‘𝐺)
8 eqid 2738 . . . 4 (𝐺s {(0g𝐺)}) = (𝐺s {(0g𝐺)})
9 eqid 2738 . . . 4 (𝑥 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ {(0g𝐺)} ⊆ 𝑦)} ↦ (♯‘𝑥)) = (𝑥 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ {(0g𝐺)} ⊆ 𝑦)} ↦ (♯‘𝑥))
107, 8, 9pgpssslw 19219 . . 3 (({(0g𝐺)} ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp (𝐺s {(0g𝐺)})) → ∃𝑧 ∈ (𝑃 pSyl 𝐺){(0g𝐺)} ⊆ 𝑧)
113, 4, 6, 10syl3anc 1370 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → ∃𝑧 ∈ (𝑃 pSyl 𝐺){(0g𝐺)} ⊆ 𝑧)
12 rexn0 4441 . 2 (∃𝑧 ∈ (𝑃 pSyl 𝐺){(0g𝐺)} ⊆ 𝑧 → (𝑃 pSyl 𝐺) ≠ ∅)
1311, 12syl 17 1 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → (𝑃 pSyl 𝐺) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065  {crab 3068  wss 3887  c0 4256  {csn 4561   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  Fincfn 8733  chash 14044  cprime 16376  Basecbs 16912  s cress 16941  0gc0g 17150  Grpcgrp 18577  SubGrpcsubg 18749   pGrp cpgp 19134   pSyl cslw 19135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-ec 8500  df-qs 8504  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-dvds 15964  df-gcd 16202  df-prm 16377  df-pc 16538  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-eqg 18754  df-od 19136  df-pgp 19138  df-slw 19139
This theorem is referenced by:  sylow3  19238
  Copyright terms: Public domain W3C validator