MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slwn0 Structured version   Visualization version   GIF version

Theorem slwn0 18388
Description: Every finite group contains a Sylow 𝑃-subgroup. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypothesis
Ref Expression
slwn0.1 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
slwn0 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → (𝑃 pSyl 𝐺) ≠ ∅)

Proof of Theorem slwn0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2825 . . . . 5 (0g𝐺) = (0g𝐺)
210subg 17977 . . . 4 (𝐺 ∈ Grp → {(0g𝐺)} ∈ (SubGrp‘𝐺))
323ad2ant1 1167 . . 3 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → {(0g𝐺)} ∈ (SubGrp‘𝐺))
4 simp2 1171 . . 3 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → 𝑋 ∈ Fin)
51pgp0 18369 . . . 4 ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → 𝑃 pGrp (𝐺s {(0g𝐺)}))
653adant2 1165 . . 3 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → 𝑃 pGrp (𝐺s {(0g𝐺)}))
7 slwn0.1 . . . 4 𝑋 = (Base‘𝐺)
8 eqid 2825 . . . 4 (𝐺s {(0g𝐺)}) = (𝐺s {(0g𝐺)})
9 eqid 2825 . . . 4 (𝑥 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ {(0g𝐺)} ⊆ 𝑦)} ↦ (♯‘𝑥)) = (𝑥 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ {(0g𝐺)} ⊆ 𝑦)} ↦ (♯‘𝑥))
107, 8, 9pgpssslw 18387 . . 3 (({(0g𝐺)} ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp (𝐺s {(0g𝐺)})) → ∃𝑧 ∈ (𝑃 pSyl 𝐺){(0g𝐺)} ⊆ 𝑧)
113, 4, 6, 10syl3anc 1494 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → ∃𝑧 ∈ (𝑃 pSyl 𝐺){(0g𝐺)} ⊆ 𝑧)
12 rexn0 4298 . 2 (∃𝑧 ∈ (𝑃 pSyl 𝐺){(0g𝐺)} ⊆ 𝑧 → (𝑃 pSyl 𝐺) ≠ ∅)
1311, 12syl 17 1 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → (𝑃 pSyl 𝐺) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1111   = wceq 1656  wcel 2164  wne 2999  wrex 3118  {crab 3121  wss 3798  c0 4146  {csn 4399   class class class wbr 4875  cmpt 4954  cfv 6127  (class class class)co 6910  Fincfn 8228  chash 13417  cprime 15764  Basecbs 16229  s cress 16230  0gc0g 16460  Grpcgrp 17783  SubGrpcsubg 17946   pGrp cpgp 18304   pSyl cslw 18305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-inf2 8822  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-disj 4844  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-se 5306  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-isom 6136  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-2o 7832  df-oadd 7835  df-omul 7836  df-er 8014  df-ec 8016  df-qs 8020  df-map 8129  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-sup 8623  df-inf 8624  df-oi 8691  df-card 9085  df-acn 9088  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-n0 11626  df-xnn0 11698  df-z 11712  df-uz 11976  df-q 12079  df-rp 12120  df-fz 12627  df-fzo 12768  df-fl 12895  df-mod 12971  df-seq 13103  df-exp 13162  df-hash 13418  df-cj 14223  df-re 14224  df-im 14225  df-sqrt 14359  df-abs 14360  df-clim 14603  df-sum 14801  df-dvds 15365  df-gcd 15597  df-prm 15765  df-pc 15920  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-ress 16237  df-plusg 16325  df-0g 16462  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-grp 17786  df-minusg 17787  df-sbg 17788  df-mulg 17902  df-subg 17949  df-eqg 17951  df-od 18306  df-pgp 18308  df-slw 18309
This theorem is referenced by:  sylow3  18406
  Copyright terms: Public domain W3C validator