![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > slwn0 | Structured version Visualization version GIF version |
Description: Every finite group contains a Sylow 𝑃-subgroup. (Contributed by Mario Carneiro, 16-Jan-2015.) |
Ref | Expression |
---|---|
slwn0.1 | ⊢ 𝑋 = (Base‘𝐺) |
Ref | Expression |
---|---|
slwn0 | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → (𝑃 pSyl 𝐺) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
2 | 1 | 0subg 19067 | . . . 4 ⊢ (𝐺 ∈ Grp → {(0g‘𝐺)} ∈ (SubGrp‘𝐺)) |
3 | 2 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → {(0g‘𝐺)} ∈ (SubGrp‘𝐺)) |
4 | simp2 1137 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → 𝑋 ∈ Fin) | |
5 | 1 | pgp0 19505 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → 𝑃 pGrp (𝐺 ↾s {(0g‘𝐺)})) |
6 | 5 | 3adant2 1131 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → 𝑃 pGrp (𝐺 ↾s {(0g‘𝐺)})) |
7 | slwn0.1 | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
8 | eqid 2732 | . . . 4 ⊢ (𝐺 ↾s {(0g‘𝐺)}) = (𝐺 ↾s {(0g‘𝐺)}) | |
9 | eqid 2732 | . . . 4 ⊢ (𝑥 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺 ↾s 𝑦) ∧ {(0g‘𝐺)} ⊆ 𝑦)} ↦ (♯‘𝑥)) = (𝑥 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺 ↾s 𝑦) ∧ {(0g‘𝐺)} ⊆ 𝑦)} ↦ (♯‘𝑥)) | |
10 | 7, 8, 9 | pgpssslw 19523 | . . 3 ⊢ (({(0g‘𝐺)} ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp (𝐺 ↾s {(0g‘𝐺)})) → ∃𝑧 ∈ (𝑃 pSyl 𝐺){(0g‘𝐺)} ⊆ 𝑧) |
11 | 3, 4, 6, 10 | syl3anc 1371 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → ∃𝑧 ∈ (𝑃 pSyl 𝐺){(0g‘𝐺)} ⊆ 𝑧) |
12 | rexn0 4510 | . 2 ⊢ (∃𝑧 ∈ (𝑃 pSyl 𝐺){(0g‘𝐺)} ⊆ 𝑧 → (𝑃 pSyl 𝐺) ≠ ∅) | |
13 | 11, 12 | syl 17 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → (𝑃 pSyl 𝐺) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∃wrex 3070 {crab 3432 ⊆ wss 3948 ∅c0 4322 {csn 4628 class class class wbr 5148 ↦ cmpt 5231 ‘cfv 6543 (class class class)co 7411 Fincfn 8941 ♯chash 14294 ℙcprime 16612 Basecbs 17148 ↾s cress 17177 0gc0g 17389 Grpcgrp 18855 SubGrpcsubg 19036 pGrp cpgp 19435 pSyl cslw 19436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-inf2 9638 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-disj 5114 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-2o 8469 df-oadd 8472 df-omul 8473 df-er 8705 df-ec 8707 df-qs 8711 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-inf 9440 df-oi 9507 df-card 9936 df-acn 9939 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-xnn0 12549 df-z 12563 df-uz 12827 df-q 12937 df-rp 12979 df-fz 13489 df-fzo 13632 df-fl 13761 df-mod 13839 df-seq 13971 df-exp 14032 df-hash 14295 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-clim 15436 df-sum 15637 df-dvds 16202 df-gcd 16440 df-prm 16613 df-pc 16774 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-0g 17391 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-submnd 18706 df-grp 18858 df-minusg 18859 df-sbg 18860 df-mulg 18987 df-subg 19039 df-eqg 19041 df-od 19437 df-pgp 19439 df-slw 19440 |
This theorem is referenced by: sylow3 19542 |
Copyright terms: Public domain | W3C validator |