Proof of Theorem hoidmvval0
| Step | Hyp | Ref
| Expression |
| 1 | | id 22 |
. 2
⊢ (𝜑 → 𝜑) |
| 2 | | hoidmvval0.j |
. . 3
⊢ (𝜑 → ∃𝑗 ∈ 𝑋 (𝐵‘𝑗) ≤ (𝐴‘𝑗)) |
| 3 | | fveq2 6906 |
. . . . . 6
⊢ (𝑘 = 𝑗 → (𝐵‘𝑘) = (𝐵‘𝑗)) |
| 4 | | fveq2 6906 |
. . . . . 6
⊢ (𝑘 = 𝑗 → (𝐴‘𝑘) = (𝐴‘𝑗)) |
| 5 | 3, 4 | breq12d 5156 |
. . . . 5
⊢ (𝑘 = 𝑗 → ((𝐵‘𝑘) ≤ (𝐴‘𝑘) ↔ (𝐵‘𝑗) ≤ (𝐴‘𝑗))) |
| 6 | 5 | cbvrexvw 3238 |
. . . 4
⊢
(∃𝑘 ∈
𝑋 (𝐵‘𝑘) ≤ (𝐴‘𝑘) ↔ ∃𝑗 ∈ 𝑋 (𝐵‘𝑗) ≤ (𝐴‘𝑗)) |
| 7 | | rexn0 4511 |
. . . 4
⊢
(∃𝑘 ∈
𝑋 (𝐵‘𝑘) ≤ (𝐴‘𝑘) → 𝑋 ≠ ∅) |
| 8 | 6, 7 | sylbir 235 |
. . 3
⊢
(∃𝑗 ∈
𝑋 (𝐵‘𝑗) ≤ (𝐴‘𝑗) → 𝑋 ≠ ∅) |
| 9 | 2, 8 | syl 17 |
. 2
⊢ (𝜑 → 𝑋 ≠ ∅) |
| 10 | | hoidmvval0.l |
. . . 4
⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
| 11 | | hoidmvval0.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ Fin) |
| 12 | 11 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → 𝑋 ∈ Fin) |
| 13 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → 𝑋 ≠ ∅) |
| 14 | | hoidmvval0.a |
. . . . 5
⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
| 15 | 14 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → 𝐴:𝑋⟶ℝ) |
| 16 | | hoidmvval0.b |
. . . . 5
⊢ (𝜑 → 𝐵:𝑋⟶ℝ) |
| 17 | 16 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → 𝐵:𝑋⟶ℝ) |
| 18 | 10, 12, 13, 15, 17 | hoidmvn0val 46599 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → (𝐴(𝐿‘𝑋)𝐵) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
| 19 | 2 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → ∃𝑗 ∈ 𝑋 (𝐵‘𝑗) ≤ (𝐴‘𝑗)) |
| 20 | | hoidmvval0.p |
. . . . . 6
⊢
Ⅎ𝑗𝜑 |
| 21 | | nfv 1914 |
. . . . . 6
⊢
Ⅎ𝑗 𝑋 ≠ ∅ |
| 22 | 20, 21 | nfan 1899 |
. . . . 5
⊢
Ⅎ𝑗(𝜑 ∧ 𝑋 ≠ ∅) |
| 23 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑗∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = 0 |
| 24 | | nfv 1914 |
. . . . . . . 8
⊢
Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑋 ∧ (𝐵‘𝑗) ≤ (𝐴‘𝑗)) |
| 25 | | nfcv 2905 |
. . . . . . . 8
⊢
Ⅎ𝑘(vol‘((𝐴‘𝑗)[,)(𝐵‘𝑗))) |
| 26 | 11 | 3ad2ant1 1134 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋 ∧ (𝐵‘𝑗) ≤ (𝐴‘𝑗)) → 𝑋 ∈ Fin) |
| 27 | 14 | ffvelcdmda 7104 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ∈ ℝ) |
| 28 | 16 | ffvelcdmda 7104 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑘) ∈ ℝ) |
| 29 | | volicore 46596 |
. . . . . . . . . . 11
⊢ (((𝐴‘𝑘) ∈ ℝ ∧ (𝐵‘𝑘) ∈ ℝ) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ ℝ) |
| 30 | 27, 28, 29 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ ℝ) |
| 31 | 30 | recnd 11289 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ ℂ) |
| 32 | 31 | 3ad2antl1 1186 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑋 ∧ (𝐵‘𝑗) ≤ (𝐴‘𝑗)) ∧ 𝑘 ∈ 𝑋) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ ℂ) |
| 33 | 4, 3 | oveq12d 7449 |
. . . . . . . . 9
⊢ (𝑘 = 𝑗 → ((𝐴‘𝑘)[,)(𝐵‘𝑘)) = ((𝐴‘𝑗)[,)(𝐵‘𝑗))) |
| 34 | 33 | fveq2d 6910 |
. . . . . . . 8
⊢ (𝑘 = 𝑗 → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = (vol‘((𝐴‘𝑗)[,)(𝐵‘𝑗)))) |
| 35 | | simp2 1138 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋 ∧ (𝐵‘𝑗) ≤ (𝐴‘𝑗)) → 𝑗 ∈ 𝑋) |
| 36 | 14 | ffvelcdmda 7104 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (𝐴‘𝑗) ∈ ℝ) |
| 37 | 36 | 3adant3 1133 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋 ∧ (𝐵‘𝑗) ≤ (𝐴‘𝑗)) → (𝐴‘𝑗) ∈ ℝ) |
| 38 | 16 | ffvelcdmda 7104 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (𝐵‘𝑗) ∈ ℝ) |
| 39 | 38 | 3adant3 1133 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋 ∧ (𝐵‘𝑗) ≤ (𝐴‘𝑗)) → (𝐵‘𝑗) ∈ ℝ) |
| 40 | | volico 45998 |
. . . . . . . . . 10
⊢ (((𝐴‘𝑗) ∈ ℝ ∧ (𝐵‘𝑗) ∈ ℝ) → (vol‘((𝐴‘𝑗)[,)(𝐵‘𝑗))) = if((𝐴‘𝑗) < (𝐵‘𝑗), ((𝐵‘𝑗) − (𝐴‘𝑗)), 0)) |
| 41 | 37, 39, 40 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋 ∧ (𝐵‘𝑗) ≤ (𝐴‘𝑗)) → (vol‘((𝐴‘𝑗)[,)(𝐵‘𝑗))) = if((𝐴‘𝑗) < (𝐵‘𝑗), ((𝐵‘𝑗) − (𝐴‘𝑗)), 0)) |
| 42 | | simp3 1139 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋 ∧ (𝐵‘𝑗) ≤ (𝐴‘𝑗)) → (𝐵‘𝑗) ≤ (𝐴‘𝑗)) |
| 43 | 39, 37 | lenltd 11407 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋 ∧ (𝐵‘𝑗) ≤ (𝐴‘𝑗)) → ((𝐵‘𝑗) ≤ (𝐴‘𝑗) ↔ ¬ (𝐴‘𝑗) < (𝐵‘𝑗))) |
| 44 | 42, 43 | mpbid 232 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋 ∧ (𝐵‘𝑗) ≤ (𝐴‘𝑗)) → ¬ (𝐴‘𝑗) < (𝐵‘𝑗)) |
| 45 | 44 | iffalsed 4536 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋 ∧ (𝐵‘𝑗) ≤ (𝐴‘𝑗)) → if((𝐴‘𝑗) < (𝐵‘𝑗), ((𝐵‘𝑗) − (𝐴‘𝑗)), 0) = 0) |
| 46 | 41, 45 | eqtrd 2777 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋 ∧ (𝐵‘𝑗) ≤ (𝐴‘𝑗)) → (vol‘((𝐴‘𝑗)[,)(𝐵‘𝑗))) = 0) |
| 47 | 24, 25, 26, 32, 34, 35, 46 | fprod0 45611 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋 ∧ (𝐵‘𝑗) ≤ (𝐴‘𝑗)) → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = 0) |
| 48 | 47 | 3adant1r 1178 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑗 ∈ 𝑋 ∧ (𝐵‘𝑗) ≤ (𝐴‘𝑗)) → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = 0) |
| 49 | 48 | 3exp 1120 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → (𝑗 ∈ 𝑋 → ((𝐵‘𝑗) ≤ (𝐴‘𝑗) → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = 0))) |
| 50 | 22, 23, 49 | rexlimd 3266 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → (∃𝑗 ∈ 𝑋 (𝐵‘𝑗) ≤ (𝐴‘𝑗) → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = 0)) |
| 51 | 19, 50 | mpd 15 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = 0) |
| 52 | | eqidd 2738 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → 0 =
0) |
| 53 | 18, 51, 52 | 3eqtrd 2781 |
. 2
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → (𝐴(𝐿‘𝑋)𝐵) = 0) |
| 54 | 1, 9, 53 | syl2anc 584 |
1
⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐵) = 0) |