Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoidmvval0 Structured version   Visualization version   GIF version

Theorem hoidmvval0 43083
 Description: The dimensional volume of the (half-open interval) empty set. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hoidmvval0.p 𝑗𝜑
hoidmvval0.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
hoidmvval0.x (𝜑𝑋 ∈ Fin)
hoidmvval0.a (𝜑𝐴:𝑋⟶ℝ)
hoidmvval0.b (𝜑𝐵:𝑋⟶ℝ)
hoidmvval0.j (𝜑 → ∃𝑗𝑋 (𝐵𝑗) ≤ (𝐴𝑗))
Assertion
Ref Expression
hoidmvval0 (𝜑 → (𝐴(𝐿𝑋)𝐵) = 0)
Distinct variable groups:   𝐴,𝑎,𝑏,𝑘   𝐴,𝑗,𝑘   𝐵,𝑎,𝑏,𝑘   𝐵,𝑗   𝑋,𝑎,𝑏,𝑘,𝑥   𝑗,𝑋   𝜑,𝑎,𝑏,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑗)   𝐴(𝑥)   𝐵(𝑥)   𝐿(𝑥,𝑗,𝑘,𝑎,𝑏)

Proof of Theorem hoidmvval0
StepHypRef Expression
1 id 22 . 2 (𝜑𝜑)
2 hoidmvval0.j . . 3 (𝜑 → ∃𝑗𝑋 (𝐵𝑗) ≤ (𝐴𝑗))
3 fveq2 6653 . . . . . 6 (𝑘 = 𝑗 → (𝐵𝑘) = (𝐵𝑗))
4 fveq2 6653 . . . . . 6 (𝑘 = 𝑗 → (𝐴𝑘) = (𝐴𝑗))
53, 4breq12d 5062 . . . . 5 (𝑘 = 𝑗 → ((𝐵𝑘) ≤ (𝐴𝑘) ↔ (𝐵𝑗) ≤ (𝐴𝑗)))
65cbvrexvw 3435 . . . 4 (∃𝑘𝑋 (𝐵𝑘) ≤ (𝐴𝑘) ↔ ∃𝑗𝑋 (𝐵𝑗) ≤ (𝐴𝑗))
7 rexn0 4435 . . . 4 (∃𝑘𝑋 (𝐵𝑘) ≤ (𝐴𝑘) → 𝑋 ≠ ∅)
86, 7sylbir 238 . . 3 (∃𝑗𝑋 (𝐵𝑗) ≤ (𝐴𝑗) → 𝑋 ≠ ∅)
92, 8syl 17 . 2 (𝜑𝑋 ≠ ∅)
10 hoidmvval0.l . . . 4 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
11 hoidmvval0.x . . . . 5 (𝜑𝑋 ∈ Fin)
1211adantr 484 . . . 4 ((𝜑𝑋 ≠ ∅) → 𝑋 ∈ Fin)
13 simpr 488 . . . 4 ((𝜑𝑋 ≠ ∅) → 𝑋 ≠ ∅)
14 hoidmvval0.a . . . . 5 (𝜑𝐴:𝑋⟶ℝ)
1514adantr 484 . . . 4 ((𝜑𝑋 ≠ ∅) → 𝐴:𝑋⟶ℝ)
16 hoidmvval0.b . . . . 5 (𝜑𝐵:𝑋⟶ℝ)
1716adantr 484 . . . 4 ((𝜑𝑋 ≠ ∅) → 𝐵:𝑋⟶ℝ)
1810, 12, 13, 15, 17hoidmvn0val 43080 . . 3 ((𝜑𝑋 ≠ ∅) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
192adantr 484 . . . 4 ((𝜑𝑋 ≠ ∅) → ∃𝑗𝑋 (𝐵𝑗) ≤ (𝐴𝑗))
20 hoidmvval0.p . . . . . 6 𝑗𝜑
21 nfv 1916 . . . . . 6 𝑗 𝑋 ≠ ∅
2220, 21nfan 1901 . . . . 5 𝑗(𝜑𝑋 ≠ ∅)
23 nfv 1916 . . . . 5 𝑗𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0
24 nfv 1916 . . . . . . . 8 𝑘(𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗))
25 nfcv 2980 . . . . . . . 8 𝑘(vol‘((𝐴𝑗)[,)(𝐵𝑗)))
26113ad2ant1 1130 . . . . . . . 8 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → 𝑋 ∈ Fin)
2714ffvelrnda 6834 . . . . . . . . . . 11 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
2816ffvelrnda 6834 . . . . . . . . . . 11 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
29 volicore 43077 . . . . . . . . . . 11 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
3027, 28, 29syl2anc 587 . . . . . . . . . 10 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
3130recnd 10656 . . . . . . . . 9 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℂ)
32313ad2antl1 1182 . . . . . . . 8 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) ∧ 𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℂ)
334, 3oveq12d 7158 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝐴𝑘)[,)(𝐵𝑘)) = ((𝐴𝑗)[,)(𝐵𝑗)))
3433fveq2d 6657 . . . . . . . 8 (𝑘 = 𝑗 → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘((𝐴𝑗)[,)(𝐵𝑗))))
35 simp2 1134 . . . . . . . 8 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → 𝑗𝑋)
3614ffvelrnda 6834 . . . . . . . . . . 11 ((𝜑𝑗𝑋) → (𝐴𝑗) ∈ ℝ)
37363adant3 1129 . . . . . . . . . 10 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → (𝐴𝑗) ∈ ℝ)
3816ffvelrnda 6834 . . . . . . . . . . 11 ((𝜑𝑗𝑋) → (𝐵𝑗) ∈ ℝ)
39383adant3 1129 . . . . . . . . . 10 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → (𝐵𝑗) ∈ ℝ)
40 volico 42482 . . . . . . . . . 10 (((𝐴𝑗) ∈ ℝ ∧ (𝐵𝑗) ∈ ℝ) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = if((𝐴𝑗) < (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0))
4137, 39, 40syl2anc 587 . . . . . . . . 9 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = if((𝐴𝑗) < (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0))
42 simp3 1135 . . . . . . . . . . 11 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → (𝐵𝑗) ≤ (𝐴𝑗))
4339, 37lenltd 10773 . . . . . . . . . . 11 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → ((𝐵𝑗) ≤ (𝐴𝑗) ↔ ¬ (𝐴𝑗) < (𝐵𝑗)))
4442, 43mpbid 235 . . . . . . . . . 10 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → ¬ (𝐴𝑗) < (𝐵𝑗))
4544iffalsed 4459 . . . . . . . . 9 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → if((𝐴𝑗) < (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0) = 0)
4641, 45eqtrd 2859 . . . . . . . 8 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = 0)
4724, 25, 26, 32, 34, 35, 46fprod0 42095 . . . . . . 7 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
48473adant1r 1174 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ 𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
49483exp 1116 . . . . 5 ((𝜑𝑋 ≠ ∅) → (𝑗𝑋 → ((𝐵𝑗) ≤ (𝐴𝑗) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)))
5022, 23, 49rexlimd 3309 . . . 4 ((𝜑𝑋 ≠ ∅) → (∃𝑗𝑋 (𝐵𝑗) ≤ (𝐴𝑗) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0))
5119, 50mpd 15 . . 3 ((𝜑𝑋 ≠ ∅) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
52 eqidd 2825 . . 3 ((𝜑𝑋 ≠ ∅) → 0 = 0)
5318, 51, 523eqtrd 2863 . 2 ((𝜑𝑋 ≠ ∅) → (𝐴(𝐿𝑋)𝐵) = 0)
541, 9, 53syl2anc 587 1 (𝜑 → (𝐴(𝐿𝑋)𝐵) = 0)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538  Ⅎwnf 1785   ∈ wcel 2115   ≠ wne 3013  ∃wrex 3133  ∅c0 4274  ifcif 4448   class class class wbr 5049   ↦ cmpt 5129  ⟶wf 6334  ‘cfv 6338  (class class class)co 7140   ∈ cmpo 7142   ↑m cmap 8391  Fincfn 8494  ℂcc 10522  ℝcr 10523  0cc0 10524   < clt 10662   ≤ cle 10663   − cmin 10857  [,)cico 12728  ∏cprod 15250  volcvol 24058 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5173  ax-sep 5186  ax-nul 5193  ax-pow 5249  ax-pr 5313  ax-un 7446  ax-inf2 9090  ax-cnex 10580  ax-resscn 10581  ax-1cn 10582  ax-icn 10583  ax-addcl 10584  ax-addrcl 10585  ax-mulcl 10586  ax-mulrcl 10587  ax-mulcom 10588  ax-addass 10589  ax-mulass 10590  ax-distr 10591  ax-i2m1 10592  ax-1ne0 10593  ax-1rid 10594  ax-rnegex 10595  ax-rrecex 10596  ax-cnre 10597  ax-pre-lttri 10598  ax-pre-lttrn 10599  ax-pre-ltadd 10600  ax-pre-mulgt0 10601  ax-pre-sup 10602 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4822  df-int 4860  df-iun 4904  df-br 5050  df-opab 5112  df-mpt 5130  df-tr 5156  df-id 5443  df-eprel 5448  df-po 5457  df-so 5458  df-fr 5497  df-se 5498  df-we 5499  df-xp 5544  df-rel 5545  df-cnv 5546  df-co 5547  df-dm 5548  df-rn 5549  df-res 5550  df-ima 5551  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6297  df-fun 6340  df-fn 6341  df-f 6342  df-f1 6343  df-fo 6344  df-f1o 6345  df-fv 6346  df-isom 6347  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7394  df-om 7566  df-1st 7674  df-2nd 7675  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-2o 8088  df-oadd 8091  df-er 8274  df-map 8393  df-pm 8394  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-fi 8861  df-sup 8892  df-inf 8893  df-oi 8960  df-dju 9316  df-card 9354  df-pnf 10664  df-mnf 10665  df-xr 10666  df-ltxr 10667  df-le 10668  df-sub 10859  df-neg 10860  df-div 11285  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-clim 14836  df-rlim 14837  df-sum 15034  df-prod 15251  df-rest 16687  df-topgen 16708  df-psmet 20525  df-xmet 20526  df-met 20527  df-bl 20528  df-mopn 20529  df-top 21490  df-topon 21507  df-bases 21542  df-cmp 21983  df-ovol 24059  df-vol 24060 This theorem is referenced by:  hoidmvval0b  43086  hoidmvlelem5  43095
 Copyright terms: Public domain W3C validator