Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoidmvval0 Structured version   Visualization version   GIF version

Theorem hoidmvval0 44085
Description: The dimensional volume of the (half-open interval) empty set. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hoidmvval0.p 𝑗𝜑
hoidmvval0.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
hoidmvval0.x (𝜑𝑋 ∈ Fin)
hoidmvval0.a (𝜑𝐴:𝑋⟶ℝ)
hoidmvval0.b (𝜑𝐵:𝑋⟶ℝ)
hoidmvval0.j (𝜑 → ∃𝑗𝑋 (𝐵𝑗) ≤ (𝐴𝑗))
Assertion
Ref Expression
hoidmvval0 (𝜑 → (𝐴(𝐿𝑋)𝐵) = 0)
Distinct variable groups:   𝐴,𝑎,𝑏,𝑘   𝐴,𝑗,𝑘   𝐵,𝑎,𝑏,𝑘   𝐵,𝑗   𝑋,𝑎,𝑏,𝑘,𝑥   𝑗,𝑋   𝜑,𝑎,𝑏,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑗)   𝐴(𝑥)   𝐵(𝑥)   𝐿(𝑥,𝑗,𝑘,𝑎,𝑏)

Proof of Theorem hoidmvval0
StepHypRef Expression
1 id 22 . 2 (𝜑𝜑)
2 hoidmvval0.j . . 3 (𝜑 → ∃𝑗𝑋 (𝐵𝑗) ≤ (𝐴𝑗))
3 fveq2 6768 . . . . . 6 (𝑘 = 𝑗 → (𝐵𝑘) = (𝐵𝑗))
4 fveq2 6768 . . . . . 6 (𝑘 = 𝑗 → (𝐴𝑘) = (𝐴𝑗))
53, 4breq12d 5088 . . . . 5 (𝑘 = 𝑗 → ((𝐵𝑘) ≤ (𝐴𝑘) ↔ (𝐵𝑗) ≤ (𝐴𝑗)))
65cbvrexvw 3383 . . . 4 (∃𝑘𝑋 (𝐵𝑘) ≤ (𝐴𝑘) ↔ ∃𝑗𝑋 (𝐵𝑗) ≤ (𝐴𝑗))
7 rexn0 4443 . . . 4 (∃𝑘𝑋 (𝐵𝑘) ≤ (𝐴𝑘) → 𝑋 ≠ ∅)
86, 7sylbir 234 . . 3 (∃𝑗𝑋 (𝐵𝑗) ≤ (𝐴𝑗) → 𝑋 ≠ ∅)
92, 8syl 17 . 2 (𝜑𝑋 ≠ ∅)
10 hoidmvval0.l . . . 4 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
11 hoidmvval0.x . . . . 5 (𝜑𝑋 ∈ Fin)
1211adantr 481 . . . 4 ((𝜑𝑋 ≠ ∅) → 𝑋 ∈ Fin)
13 simpr 485 . . . 4 ((𝜑𝑋 ≠ ∅) → 𝑋 ≠ ∅)
14 hoidmvval0.a . . . . 5 (𝜑𝐴:𝑋⟶ℝ)
1514adantr 481 . . . 4 ((𝜑𝑋 ≠ ∅) → 𝐴:𝑋⟶ℝ)
16 hoidmvval0.b . . . . 5 (𝜑𝐵:𝑋⟶ℝ)
1716adantr 481 . . . 4 ((𝜑𝑋 ≠ ∅) → 𝐵:𝑋⟶ℝ)
1810, 12, 13, 15, 17hoidmvn0val 44082 . . 3 ((𝜑𝑋 ≠ ∅) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
192adantr 481 . . . 4 ((𝜑𝑋 ≠ ∅) → ∃𝑗𝑋 (𝐵𝑗) ≤ (𝐴𝑗))
20 hoidmvval0.p . . . . . 6 𝑗𝜑
21 nfv 1917 . . . . . 6 𝑗 𝑋 ≠ ∅
2220, 21nfan 1902 . . . . 5 𝑗(𝜑𝑋 ≠ ∅)
23 nfv 1917 . . . . 5 𝑗𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0
24 nfv 1917 . . . . . . . 8 𝑘(𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗))
25 nfcv 2907 . . . . . . . 8 𝑘(vol‘((𝐴𝑗)[,)(𝐵𝑗)))
26113ad2ant1 1132 . . . . . . . 8 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → 𝑋 ∈ Fin)
2714ffvelrnda 6955 . . . . . . . . . . 11 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
2816ffvelrnda 6955 . . . . . . . . . . 11 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
29 volicore 44079 . . . . . . . . . . 11 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
3027, 28, 29syl2anc 584 . . . . . . . . . 10 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
3130recnd 10992 . . . . . . . . 9 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℂ)
32313ad2antl1 1184 . . . . . . . 8 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) ∧ 𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℂ)
334, 3oveq12d 7287 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝐴𝑘)[,)(𝐵𝑘)) = ((𝐴𝑗)[,)(𝐵𝑗)))
3433fveq2d 6772 . . . . . . . 8 (𝑘 = 𝑗 → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘((𝐴𝑗)[,)(𝐵𝑗))))
35 simp2 1136 . . . . . . . 8 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → 𝑗𝑋)
3614ffvelrnda 6955 . . . . . . . . . . 11 ((𝜑𝑗𝑋) → (𝐴𝑗) ∈ ℝ)
37363adant3 1131 . . . . . . . . . 10 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → (𝐴𝑗) ∈ ℝ)
3816ffvelrnda 6955 . . . . . . . . . . 11 ((𝜑𝑗𝑋) → (𝐵𝑗) ∈ ℝ)
39383adant3 1131 . . . . . . . . . 10 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → (𝐵𝑗) ∈ ℝ)
40 volico 43484 . . . . . . . . . 10 (((𝐴𝑗) ∈ ℝ ∧ (𝐵𝑗) ∈ ℝ) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = if((𝐴𝑗) < (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0))
4137, 39, 40syl2anc 584 . . . . . . . . 9 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = if((𝐴𝑗) < (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0))
42 simp3 1137 . . . . . . . . . . 11 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → (𝐵𝑗) ≤ (𝐴𝑗))
4339, 37lenltd 11110 . . . . . . . . . . 11 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → ((𝐵𝑗) ≤ (𝐴𝑗) ↔ ¬ (𝐴𝑗) < (𝐵𝑗)))
4442, 43mpbid 231 . . . . . . . . . 10 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → ¬ (𝐴𝑗) < (𝐵𝑗))
4544iffalsed 4472 . . . . . . . . 9 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → if((𝐴𝑗) < (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0) = 0)
4641, 45eqtrd 2778 . . . . . . . 8 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = 0)
4724, 25, 26, 32, 34, 35, 46fprod0 43097 . . . . . . 7 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
48473adant1r 1176 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ 𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
49483exp 1118 . . . . 5 ((𝜑𝑋 ≠ ∅) → (𝑗𝑋 → ((𝐵𝑗) ≤ (𝐴𝑗) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)))
5022, 23, 49rexlimd 3249 . . . 4 ((𝜑𝑋 ≠ ∅) → (∃𝑗𝑋 (𝐵𝑗) ≤ (𝐴𝑗) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0))
5119, 50mpd 15 . . 3 ((𝜑𝑋 ≠ ∅) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
52 eqidd 2739 . . 3 ((𝜑𝑋 ≠ ∅) → 0 = 0)
5318, 51, 523eqtrd 2782 . 2 ((𝜑𝑋 ≠ ∅) → (𝐴(𝐿𝑋)𝐵) = 0)
541, 9, 53syl2anc 584 1 (𝜑 → (𝐴(𝐿𝑋)𝐵) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wnf 1786  wcel 2106  wne 2943  wrex 3065  c0 4258  ifcif 4461   class class class wbr 5075  cmpt 5158  wf 6424  cfv 6428  (class class class)co 7269  cmpo 7271  m cmap 8604  Fincfn 8722  cc 10858  cr 10859  0cc0 10860   < clt 10998  cle 10999  cmin 11194  [,)cico 13070  cprod 15604  volcvol 24616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5210  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7580  ax-inf2 9388  ax-cnex 10916  ax-resscn 10917  ax-1cn 10918  ax-icn 10919  ax-addcl 10920  ax-addrcl 10921  ax-mulcl 10922  ax-mulrcl 10923  ax-mulcom 10924  ax-addass 10925  ax-mulass 10926  ax-distr 10927  ax-i2m1 10928  ax-1ne0 10929  ax-1rid 10930  ax-rnegex 10931  ax-rrecex 10932  ax-cnre 10933  ax-pre-lttri 10934  ax-pre-lttrn 10935  ax-pre-ltadd 10936  ax-pre-mulgt0 10937  ax-pre-sup 10938
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-int 4882  df-iun 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5486  df-eprel 5492  df-po 5500  df-so 5501  df-fr 5541  df-se 5542  df-we 5543  df-xp 5592  df-rel 5593  df-cnv 5594  df-co 5595  df-dm 5596  df-rn 5597  df-res 5598  df-ima 5599  df-pred 6197  df-ord 6264  df-on 6265  df-lim 6266  df-suc 6267  df-iota 6386  df-fun 6430  df-fn 6431  df-f 6432  df-f1 6433  df-fo 6434  df-f1o 6435  df-fv 6436  df-isom 6437  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-of 7525  df-om 7705  df-1st 7822  df-2nd 7823  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-1o 8286  df-2o 8287  df-er 8487  df-map 8606  df-pm 8607  df-en 8723  df-dom 8724  df-sdom 8725  df-fin 8726  df-fi 9159  df-sup 9190  df-inf 9191  df-oi 9258  df-dju 9648  df-card 9686  df-pnf 11000  df-mnf 11001  df-xr 11002  df-ltxr 11003  df-le 11004  df-sub 11196  df-neg 11197  df-div 11622  df-nn 11963  df-2 12025  df-3 12026  df-n0 12223  df-z 12309  df-uz 12572  df-q 12678  df-rp 12720  df-xneg 12837  df-xadd 12838  df-xmul 12839  df-ioo 13072  df-ico 13074  df-icc 13075  df-fz 13229  df-fzo 13372  df-fl 13501  df-seq 13711  df-exp 13772  df-hash 14034  df-cj 14799  df-re 14800  df-im 14801  df-sqrt 14935  df-abs 14936  df-clim 15186  df-rlim 15187  df-sum 15387  df-prod 15605  df-rest 17122  df-topgen 17143  df-psmet 20578  df-xmet 20579  df-met 20580  df-bl 20581  df-mopn 20582  df-top 22032  df-topon 22049  df-bases 22085  df-cmp 22527  df-ovol 24617  df-vol 24618
This theorem is referenced by:  hoidmvval0b  44088  hoidmvlelem5  44097
  Copyright terms: Public domain W3C validator