Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoidmvval0 Structured version   Visualization version   GIF version

Theorem hoidmvval0 44818
Description: The dimensional volume of the (half-open interval) empty set. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hoidmvval0.p 𝑗𝜑
hoidmvval0.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
hoidmvval0.x (𝜑𝑋 ∈ Fin)
hoidmvval0.a (𝜑𝐴:𝑋⟶ℝ)
hoidmvval0.b (𝜑𝐵:𝑋⟶ℝ)
hoidmvval0.j (𝜑 → ∃𝑗𝑋 (𝐵𝑗) ≤ (𝐴𝑗))
Assertion
Ref Expression
hoidmvval0 (𝜑 → (𝐴(𝐿𝑋)𝐵) = 0)
Distinct variable groups:   𝐴,𝑎,𝑏,𝑘   𝐴,𝑗,𝑘   𝐵,𝑎,𝑏,𝑘   𝐵,𝑗   𝑋,𝑎,𝑏,𝑘,𝑥   𝑗,𝑋   𝜑,𝑎,𝑏,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑗)   𝐴(𝑥)   𝐵(𝑥)   𝐿(𝑥,𝑗,𝑘,𝑎,𝑏)

Proof of Theorem hoidmvval0
StepHypRef Expression
1 id 22 . 2 (𝜑𝜑)
2 hoidmvval0.j . . 3 (𝜑 → ∃𝑗𝑋 (𝐵𝑗) ≤ (𝐴𝑗))
3 fveq2 6842 . . . . . 6 (𝑘 = 𝑗 → (𝐵𝑘) = (𝐵𝑗))
4 fveq2 6842 . . . . . 6 (𝑘 = 𝑗 → (𝐴𝑘) = (𝐴𝑗))
53, 4breq12d 5118 . . . . 5 (𝑘 = 𝑗 → ((𝐵𝑘) ≤ (𝐴𝑘) ↔ (𝐵𝑗) ≤ (𝐴𝑗)))
65cbvrexvw 3226 . . . 4 (∃𝑘𝑋 (𝐵𝑘) ≤ (𝐴𝑘) ↔ ∃𝑗𝑋 (𝐵𝑗) ≤ (𝐴𝑗))
7 rexn0 4468 . . . 4 (∃𝑘𝑋 (𝐵𝑘) ≤ (𝐴𝑘) → 𝑋 ≠ ∅)
86, 7sylbir 234 . . 3 (∃𝑗𝑋 (𝐵𝑗) ≤ (𝐴𝑗) → 𝑋 ≠ ∅)
92, 8syl 17 . 2 (𝜑𝑋 ≠ ∅)
10 hoidmvval0.l . . . 4 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
11 hoidmvval0.x . . . . 5 (𝜑𝑋 ∈ Fin)
1211adantr 481 . . . 4 ((𝜑𝑋 ≠ ∅) → 𝑋 ∈ Fin)
13 simpr 485 . . . 4 ((𝜑𝑋 ≠ ∅) → 𝑋 ≠ ∅)
14 hoidmvval0.a . . . . 5 (𝜑𝐴:𝑋⟶ℝ)
1514adantr 481 . . . 4 ((𝜑𝑋 ≠ ∅) → 𝐴:𝑋⟶ℝ)
16 hoidmvval0.b . . . . 5 (𝜑𝐵:𝑋⟶ℝ)
1716adantr 481 . . . 4 ((𝜑𝑋 ≠ ∅) → 𝐵:𝑋⟶ℝ)
1810, 12, 13, 15, 17hoidmvn0val 44815 . . 3 ((𝜑𝑋 ≠ ∅) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
192adantr 481 . . . 4 ((𝜑𝑋 ≠ ∅) → ∃𝑗𝑋 (𝐵𝑗) ≤ (𝐴𝑗))
20 hoidmvval0.p . . . . . 6 𝑗𝜑
21 nfv 1917 . . . . . 6 𝑗 𝑋 ≠ ∅
2220, 21nfan 1902 . . . . 5 𝑗(𝜑𝑋 ≠ ∅)
23 nfv 1917 . . . . 5 𝑗𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0
24 nfv 1917 . . . . . . . 8 𝑘(𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗))
25 nfcv 2907 . . . . . . . 8 𝑘(vol‘((𝐴𝑗)[,)(𝐵𝑗)))
26113ad2ant1 1133 . . . . . . . 8 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → 𝑋 ∈ Fin)
2714ffvelcdmda 7035 . . . . . . . . . . 11 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
2816ffvelcdmda 7035 . . . . . . . . . . 11 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
29 volicore 44812 . . . . . . . . . . 11 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
3027, 28, 29syl2anc 584 . . . . . . . . . 10 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
3130recnd 11183 . . . . . . . . 9 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℂ)
32313ad2antl1 1185 . . . . . . . 8 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) ∧ 𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℂ)
334, 3oveq12d 7375 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝐴𝑘)[,)(𝐵𝑘)) = ((𝐴𝑗)[,)(𝐵𝑗)))
3433fveq2d 6846 . . . . . . . 8 (𝑘 = 𝑗 → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘((𝐴𝑗)[,)(𝐵𝑗))))
35 simp2 1137 . . . . . . . 8 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → 𝑗𝑋)
3614ffvelcdmda 7035 . . . . . . . . . . 11 ((𝜑𝑗𝑋) → (𝐴𝑗) ∈ ℝ)
37363adant3 1132 . . . . . . . . . 10 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → (𝐴𝑗) ∈ ℝ)
3816ffvelcdmda 7035 . . . . . . . . . . 11 ((𝜑𝑗𝑋) → (𝐵𝑗) ∈ ℝ)
39383adant3 1132 . . . . . . . . . 10 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → (𝐵𝑗) ∈ ℝ)
40 volico 44214 . . . . . . . . . 10 (((𝐴𝑗) ∈ ℝ ∧ (𝐵𝑗) ∈ ℝ) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = if((𝐴𝑗) < (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0))
4137, 39, 40syl2anc 584 . . . . . . . . 9 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = if((𝐴𝑗) < (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0))
42 simp3 1138 . . . . . . . . . . 11 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → (𝐵𝑗) ≤ (𝐴𝑗))
4339, 37lenltd 11301 . . . . . . . . . . 11 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → ((𝐵𝑗) ≤ (𝐴𝑗) ↔ ¬ (𝐴𝑗) < (𝐵𝑗)))
4442, 43mpbid 231 . . . . . . . . . 10 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → ¬ (𝐴𝑗) < (𝐵𝑗))
4544iffalsed 4497 . . . . . . . . 9 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → if((𝐴𝑗) < (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0) = 0)
4641, 45eqtrd 2776 . . . . . . . 8 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = 0)
4724, 25, 26, 32, 34, 35, 46fprod0 43827 . . . . . . 7 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
48473adant1r 1177 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ 𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
49483exp 1119 . . . . 5 ((𝜑𝑋 ≠ ∅) → (𝑗𝑋 → ((𝐵𝑗) ≤ (𝐴𝑗) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)))
5022, 23, 49rexlimd 3249 . . . 4 ((𝜑𝑋 ≠ ∅) → (∃𝑗𝑋 (𝐵𝑗) ≤ (𝐴𝑗) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0))
5119, 50mpd 15 . . 3 ((𝜑𝑋 ≠ ∅) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
52 eqidd 2737 . . 3 ((𝜑𝑋 ≠ ∅) → 0 = 0)
5318, 51, 523eqtrd 2780 . 2 ((𝜑𝑋 ≠ ∅) → (𝐴(𝐿𝑋)𝐵) = 0)
541, 9, 53syl2anc 584 1 (𝜑 → (𝐴(𝐿𝑋)𝐵) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wnf 1785  wcel 2106  wne 2943  wrex 3073  c0 4282  ifcif 4486   class class class wbr 5105  cmpt 5188  wf 6492  cfv 6496  (class class class)co 7357  cmpo 7359  m cmap 8765  Fincfn 8883  cc 11049  cr 11050  0cc0 11051   < clt 11189  cle 11190  cmin 11385  [,)cico 13266  cprod 15788  volcvol 24827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-rlim 15371  df-sum 15571  df-prod 15789  df-rest 17304  df-topgen 17325  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-top 22243  df-topon 22260  df-bases 22296  df-cmp 22738  df-ovol 24828  df-vol 24829
This theorem is referenced by:  hoidmvval0b  44821  hoidmvlelem5  44830
  Copyright terms: Public domain W3C validator