Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoidmvval0 Structured version   Visualization version   GIF version

Theorem hoidmvval0 46616
Description: The dimensional volume of the (half-open interval) empty set. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hoidmvval0.p 𝑗𝜑
hoidmvval0.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
hoidmvval0.x (𝜑𝑋 ∈ Fin)
hoidmvval0.a (𝜑𝐴:𝑋⟶ℝ)
hoidmvval0.b (𝜑𝐵:𝑋⟶ℝ)
hoidmvval0.j (𝜑 → ∃𝑗𝑋 (𝐵𝑗) ≤ (𝐴𝑗))
Assertion
Ref Expression
hoidmvval0 (𝜑 → (𝐴(𝐿𝑋)𝐵) = 0)
Distinct variable groups:   𝐴,𝑎,𝑏,𝑘   𝐴,𝑗,𝑘   𝐵,𝑎,𝑏,𝑘   𝐵,𝑗   𝑋,𝑎,𝑏,𝑘,𝑥   𝑗,𝑋   𝜑,𝑎,𝑏,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑗)   𝐴(𝑥)   𝐵(𝑥)   𝐿(𝑥,𝑗,𝑘,𝑎,𝑏)

Proof of Theorem hoidmvval0
StepHypRef Expression
1 id 22 . 2 (𝜑𝜑)
2 hoidmvval0.j . . 3 (𝜑 → ∃𝑗𝑋 (𝐵𝑗) ≤ (𝐴𝑗))
3 fveq2 6876 . . . . . 6 (𝑘 = 𝑗 → (𝐵𝑘) = (𝐵𝑗))
4 fveq2 6876 . . . . . 6 (𝑘 = 𝑗 → (𝐴𝑘) = (𝐴𝑗))
53, 4breq12d 5132 . . . . 5 (𝑘 = 𝑗 → ((𝐵𝑘) ≤ (𝐴𝑘) ↔ (𝐵𝑗) ≤ (𝐴𝑗)))
65cbvrexvw 3221 . . . 4 (∃𝑘𝑋 (𝐵𝑘) ≤ (𝐴𝑘) ↔ ∃𝑗𝑋 (𝐵𝑗) ≤ (𝐴𝑗))
7 rexn0 4486 . . . 4 (∃𝑘𝑋 (𝐵𝑘) ≤ (𝐴𝑘) → 𝑋 ≠ ∅)
86, 7sylbir 235 . . 3 (∃𝑗𝑋 (𝐵𝑗) ≤ (𝐴𝑗) → 𝑋 ≠ ∅)
92, 8syl 17 . 2 (𝜑𝑋 ≠ ∅)
10 hoidmvval0.l . . . 4 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
11 hoidmvval0.x . . . . 5 (𝜑𝑋 ∈ Fin)
1211adantr 480 . . . 4 ((𝜑𝑋 ≠ ∅) → 𝑋 ∈ Fin)
13 simpr 484 . . . 4 ((𝜑𝑋 ≠ ∅) → 𝑋 ≠ ∅)
14 hoidmvval0.a . . . . 5 (𝜑𝐴:𝑋⟶ℝ)
1514adantr 480 . . . 4 ((𝜑𝑋 ≠ ∅) → 𝐴:𝑋⟶ℝ)
16 hoidmvval0.b . . . . 5 (𝜑𝐵:𝑋⟶ℝ)
1716adantr 480 . . . 4 ((𝜑𝑋 ≠ ∅) → 𝐵:𝑋⟶ℝ)
1810, 12, 13, 15, 17hoidmvn0val 46613 . . 3 ((𝜑𝑋 ≠ ∅) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
192adantr 480 . . . 4 ((𝜑𝑋 ≠ ∅) → ∃𝑗𝑋 (𝐵𝑗) ≤ (𝐴𝑗))
20 hoidmvval0.p . . . . . 6 𝑗𝜑
21 nfv 1914 . . . . . 6 𝑗 𝑋 ≠ ∅
2220, 21nfan 1899 . . . . 5 𝑗(𝜑𝑋 ≠ ∅)
23 nfv 1914 . . . . 5 𝑗𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0
24 nfv 1914 . . . . . . . 8 𝑘(𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗))
25 nfcv 2898 . . . . . . . 8 𝑘(vol‘((𝐴𝑗)[,)(𝐵𝑗)))
26113ad2ant1 1133 . . . . . . . 8 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → 𝑋 ∈ Fin)
2714ffvelcdmda 7074 . . . . . . . . . . 11 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
2816ffvelcdmda 7074 . . . . . . . . . . 11 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
29 volicore 46610 . . . . . . . . . . 11 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
3027, 28, 29syl2anc 584 . . . . . . . . . 10 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
3130recnd 11263 . . . . . . . . 9 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℂ)
32313ad2antl1 1186 . . . . . . . 8 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) ∧ 𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℂ)
334, 3oveq12d 7423 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝐴𝑘)[,)(𝐵𝑘)) = ((𝐴𝑗)[,)(𝐵𝑗)))
3433fveq2d 6880 . . . . . . . 8 (𝑘 = 𝑗 → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘((𝐴𝑗)[,)(𝐵𝑗))))
35 simp2 1137 . . . . . . . 8 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → 𝑗𝑋)
3614ffvelcdmda 7074 . . . . . . . . . . 11 ((𝜑𝑗𝑋) → (𝐴𝑗) ∈ ℝ)
37363adant3 1132 . . . . . . . . . 10 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → (𝐴𝑗) ∈ ℝ)
3816ffvelcdmda 7074 . . . . . . . . . . 11 ((𝜑𝑗𝑋) → (𝐵𝑗) ∈ ℝ)
39383adant3 1132 . . . . . . . . . 10 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → (𝐵𝑗) ∈ ℝ)
40 volico 46012 . . . . . . . . . 10 (((𝐴𝑗) ∈ ℝ ∧ (𝐵𝑗) ∈ ℝ) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = if((𝐴𝑗) < (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0))
4137, 39, 40syl2anc 584 . . . . . . . . 9 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = if((𝐴𝑗) < (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0))
42 simp3 1138 . . . . . . . . . . 11 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → (𝐵𝑗) ≤ (𝐴𝑗))
4339, 37lenltd 11381 . . . . . . . . . . 11 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → ((𝐵𝑗) ≤ (𝐴𝑗) ↔ ¬ (𝐴𝑗) < (𝐵𝑗)))
4442, 43mpbid 232 . . . . . . . . . 10 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → ¬ (𝐴𝑗) < (𝐵𝑗))
4544iffalsed 4511 . . . . . . . . 9 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → if((𝐴𝑗) < (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0) = 0)
4641, 45eqtrd 2770 . . . . . . . 8 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = 0)
4724, 25, 26, 32, 34, 35, 46fprod0 45625 . . . . . . 7 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
48473adant1r 1178 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ 𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
49483exp 1119 . . . . 5 ((𝜑𝑋 ≠ ∅) → (𝑗𝑋 → ((𝐵𝑗) ≤ (𝐴𝑗) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)))
5022, 23, 49rexlimd 3249 . . . 4 ((𝜑𝑋 ≠ ∅) → (∃𝑗𝑋 (𝐵𝑗) ≤ (𝐴𝑗) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0))
5119, 50mpd 15 . . 3 ((𝜑𝑋 ≠ ∅) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
52 eqidd 2736 . . 3 ((𝜑𝑋 ≠ ∅) → 0 = 0)
5318, 51, 523eqtrd 2774 . 2 ((𝜑𝑋 ≠ ∅) → (𝐴(𝐿𝑋)𝐵) = 0)
541, 9, 53syl2anc 584 1 (𝜑 → (𝐴(𝐿𝑋)𝐵) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2108  wne 2932  wrex 3060  c0 4308  ifcif 4500   class class class wbr 5119  cmpt 5201  wf 6527  cfv 6531  (class class class)co 7405  cmpo 7407  m cmap 8840  Fincfn 8959  cc 11127  cr 11128  0cc0 11129   < clt 11269  cle 11270  cmin 11466  [,)cico 13364  cprod 15919  volcvol 25416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-rlim 15505  df-sum 15703  df-prod 15920  df-rest 17436  df-topgen 17457  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-top 22832  df-topon 22849  df-bases 22884  df-cmp 23325  df-ovol 25417  df-vol 25418
This theorem is referenced by:  hoidmvval0b  46619  hoidmvlelem5  46628
  Copyright terms: Public domain W3C validator