| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reseq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restrictions. (Contributed by NM, 7-Aug-1994.) |
| Ref | Expression |
|---|---|
| reseq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1 4166 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ (𝐶 × V)) = (𝐵 ∩ (𝐶 × V))) | |
| 2 | df-res 5635 | . 2 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
| 3 | df-res 5635 | . 2 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
| 4 | 1, 2, 3 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Vcvv 3438 ∩ cin 3904 × cxp 5621 ↾ cres 5625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-in 3912 df-res 5635 |
| This theorem is referenced by: reseq1i 5930 reseq1d 5933 imaeq1 6010 fvtresfn 6936 eqfnun 6975 frrlem1 8226 frrlem13 8238 tfrlem12 8318 pmresg 8804 resixpfo 8870 mapunen 9070 fseqenlem1 9937 axdc3lem2 10364 axdc3lem4 10366 hashf1lem1 14380 lo1eq 15493 rlimeq 15494 symgfixfo 19336 lspextmo 20978 evlseu 22006 mdetunilem3 22517 mdetunilem4 22518 mdetunilem9 22523 lmbr 23161 ptuncnv 23710 iscau 25192 plyexmo 26237 relogf1o 26491 nosupprefixmo 27628 noinfprefixmo 27629 nosupcbv 27630 nosupno 27631 nosupdm 27632 nosupfv 27634 nosupres 27635 nosupbnd1lem1 27636 nosupbnd1lem3 27638 nosupbnd1lem5 27640 nosupbnd2 27644 noinfcbv 27645 noinfno 27646 noinfdm 27647 noinffv 27649 noinfres 27650 noinfbnd1lem1 27651 noinfbnd1lem3 27653 noinfbnd1lem5 27655 noinfbnd2 27659 eulerpartlemt 34338 eulerpartlemgv 34340 eulerpartlemn 34348 eulerpart 34349 bnj1385 34798 bnj66 34826 bnj1234 34979 bnj1326 34992 bnj1463 35021 iscvm 35231 mbfresfi 37645 sdclem2 37721 isdivrngo 37929 evlselvlem 42559 evlselv 42560 mzpcompact2lem 42724 diophrw 42732 eldioph2lem1 42733 eldioph2lem2 42734 eldioph3 42739 diophin 42745 diophrex 42748 rexrabdioph 42767 2rexfrabdioph 42769 3rexfrabdioph 42770 4rexfrabdioph 42771 6rexfrabdioph 42772 7rexfrabdioph 42773 eldioph4b 42784 pwssplit4 43062 dvnprodlem1 45928 dvnprodlem3 45930 ismea 46433 isome 46476 |
| Copyright terms: Public domain | W3C validator |