| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reseq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restrictions. (Contributed by NM, 7-Aug-1994.) |
| Ref | Expression |
|---|---|
| reseq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1 4179 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ (𝐶 × V)) = (𝐵 ∩ (𝐶 × V))) | |
| 2 | df-res 5653 | . 2 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
| 3 | df-res 5653 | . 2 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
| 4 | 1, 2, 3 | 3eqtr4g 2790 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Vcvv 3450 ∩ cin 3916 × cxp 5639 ↾ cres 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-in 3924 df-res 5653 |
| This theorem is referenced by: reseq1i 5949 reseq1d 5952 imaeq1 6029 fvtresfn 6973 eqfnun 7012 frrlem1 8268 frrlem13 8280 tfrlem12 8360 pmresg 8846 resixpfo 8912 mapunen 9116 fseqenlem1 9984 axdc3lem2 10411 axdc3lem4 10413 hashf1lem1 14427 lo1eq 15541 rlimeq 15542 symgfixfo 19376 lspextmo 20970 evlseu 21997 mdetunilem3 22508 mdetunilem4 22509 mdetunilem9 22514 lmbr 23152 ptuncnv 23701 iscau 25183 plyexmo 26228 relogf1o 26482 nosupprefixmo 27619 noinfprefixmo 27620 nosupcbv 27621 nosupno 27622 nosupdm 27623 nosupfv 27625 nosupres 27626 nosupbnd1lem1 27627 nosupbnd1lem3 27629 nosupbnd1lem5 27631 nosupbnd2 27635 noinfcbv 27636 noinfno 27637 noinfdm 27638 noinffv 27640 noinfres 27641 noinfbnd1lem1 27642 noinfbnd1lem3 27644 noinfbnd1lem5 27646 noinfbnd2 27650 eulerpartlemt 34369 eulerpartlemgv 34371 eulerpartlemn 34379 eulerpart 34380 bnj1385 34829 bnj66 34857 bnj1234 35010 bnj1326 35023 bnj1463 35052 iscvm 35253 mbfresfi 37667 sdclem2 37743 isdivrngo 37951 evlselvlem 42581 evlselv 42582 mzpcompact2lem 42746 diophrw 42754 eldioph2lem1 42755 eldioph2lem2 42756 eldioph3 42761 diophin 42767 diophrex 42770 rexrabdioph 42789 2rexfrabdioph 42791 3rexfrabdioph 42792 4rexfrabdioph 42793 6rexfrabdioph 42794 7rexfrabdioph 42795 eldioph4b 42806 pwssplit4 43085 dvnprodlem1 45951 dvnprodlem3 45953 ismea 46456 isome 46499 |
| Copyright terms: Public domain | W3C validator |