| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reseq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restrictions. (Contributed by NM, 7-Aug-1994.) |
| Ref | Expression |
|---|---|
| reseq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1 4188 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ (𝐶 × V)) = (𝐵 ∩ (𝐶 × V))) | |
| 2 | df-res 5666 | . 2 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
| 3 | df-res 5666 | . 2 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
| 4 | 1, 2, 3 | 3eqtr4g 2795 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Vcvv 3459 ∩ cin 3925 × cxp 5652 ↾ cres 5656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-in 3933 df-res 5666 |
| This theorem is referenced by: reseq1i 5962 reseq1d 5965 imaeq1 6042 fvtresfn 6988 eqfnun 7027 frrlem1 8285 frrlem13 8297 wfrlem1OLD 8322 wfrlem3OLDa 8325 wfrlem15OLD 8337 tfrlem12 8403 pmresg 8884 resixpfo 8950 mapunen 9160 fseqenlem1 10038 axdc3lem2 10465 axdc3lem4 10467 hashf1lem1 14473 lo1eq 15584 rlimeq 15585 symgfixfo 19420 lspextmo 21014 evlseu 22041 mdetunilem3 22552 mdetunilem4 22553 mdetunilem9 22558 lmbr 23196 ptuncnv 23745 iscau 25228 plyexmo 26273 relogf1o 26527 nosupprefixmo 27664 noinfprefixmo 27665 nosupcbv 27666 nosupno 27667 nosupdm 27668 nosupfv 27670 nosupres 27671 nosupbnd1lem1 27672 nosupbnd1lem3 27674 nosupbnd1lem5 27676 nosupbnd2 27680 noinfcbv 27681 noinfno 27682 noinfdm 27683 noinffv 27685 noinfres 27686 noinfbnd1lem1 27687 noinfbnd1lem3 27689 noinfbnd1lem5 27691 noinfbnd2 27695 eulerpartlemt 34403 eulerpartlemgv 34405 eulerpartlemn 34413 eulerpart 34414 bnj1385 34863 bnj66 34891 bnj1234 35044 bnj1326 35057 bnj1463 35086 iscvm 35281 mbfresfi 37690 sdclem2 37766 isdivrngo 37974 evlselvlem 42609 evlselv 42610 mzpcompact2lem 42774 diophrw 42782 eldioph2lem1 42783 eldioph2lem2 42784 eldioph3 42789 diophin 42795 diophrex 42798 rexrabdioph 42817 2rexfrabdioph 42819 3rexfrabdioph 42820 4rexfrabdioph 42821 6rexfrabdioph 42822 7rexfrabdioph 42823 eldioph4b 42834 pwssplit4 43113 dvnprodlem1 45975 dvnprodlem3 45977 ismea 46480 isome 46523 |
| Copyright terms: Public domain | W3C validator |