Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reseq1 | Structured version Visualization version GIF version |
Description: Equality theorem for restrictions. (Contributed by NM, 7-Aug-1994.) |
Ref | Expression |
---|---|
reseq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 4097 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ (𝐶 × V)) = (𝐵 ∩ (𝐶 × V))) | |
2 | df-res 5538 | . 2 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
3 | df-res 5538 | . 2 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
4 | 1, 2, 3 | 3eqtr4g 2799 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 Vcvv 3399 ∩ cin 3843 × cxp 5524 ↾ cres 5528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2711 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1787 df-sb 2075 df-clab 2718 df-cleq 2731 df-clel 2812 df-rab 3063 df-in 3851 df-res 5538 |
This theorem is referenced by: reseq1i 5822 reseq1d 5825 imaeq1 5899 fvtresfn 6780 wfrlem1 7986 wfrlem3a 7989 wfrlem15 8001 tfrlem12 8057 pmresg 8483 resixpfo 8549 mapunen 8739 fseqenlem1 9527 axdc3lem2 9954 axdc3lem4 9956 axdc 10024 hashf1lem1 13909 hashf1lem1OLD 13910 lo1eq 15018 rlimeq 15019 symgfixfo 18688 lspextmo 19950 evlseu 20900 mdetunilem3 21368 mdetunilem4 21369 mdetunilem9 21374 lmbr 22012 ptuncnv 22561 iscau 24031 plyexmo 25064 relogf1o 25313 eulerpartlemt 31911 eulerpartlemgv 31913 eulerpartlemn 31921 eulerpart 31922 bnj1385 32386 bnj66 32414 bnj1234 32567 bnj1326 32580 bnj1463 32609 iscvm 32795 trpredlem1 33374 trpredtr 33377 trpredmintr 33378 frrlem1 33446 frrlem13 33458 nosupprefixmo 33549 noinfprefixmo 33550 nosupcbv 33551 nosupno 33552 nosupdm 33553 nosupfv 33555 nosupres 33556 nosupbnd1lem1 33557 nosupbnd1lem3 33559 nosupbnd1lem5 33561 nosupbnd2 33565 noinfcbv 33566 noinfno 33567 noinfdm 33568 noinffv 33570 noinfres 33571 noinfbnd1lem1 33572 noinfbnd1lem3 33574 noinfbnd1lem5 33576 noinfbnd2 33580 mbfresfi 35469 eqfnun 35526 sdclem2 35546 isdivrngo 35754 mzpcompact2lem 40168 diophrw 40176 eldioph2lem1 40177 eldioph2lem2 40178 eldioph3 40183 diophin 40189 diophrex 40192 rexrabdioph 40211 2rexfrabdioph 40213 3rexfrabdioph 40214 4rexfrabdioph 40215 6rexfrabdioph 40216 7rexfrabdioph 40217 eldioph4b 40228 pwssplit4 40509 dvnprodlem1 43052 dvnprodlem3 43054 ismea 43554 isome 43597 |
Copyright terms: Public domain | W3C validator |