| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reseq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restrictions. (Contributed by NM, 7-Aug-1994.) |
| Ref | Expression |
|---|---|
| reseq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1 4163 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ (𝐶 × V)) = (𝐵 ∩ (𝐶 × V))) | |
| 2 | df-res 5628 | . 2 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
| 3 | df-res 5628 | . 2 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
| 4 | 1, 2, 3 | 3eqtr4g 2791 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 Vcvv 3436 ∩ cin 3901 × cxp 5614 ↾ cres 5618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-in 3909 df-res 5628 |
| This theorem is referenced by: reseq1i 5924 reseq1d 5927 imaeq1 6004 fvtresfn 6931 eqfnun 6970 frrlem1 8216 frrlem13 8228 tfrlem12 8308 pmresg 8794 resixpfo 8860 mapunen 9059 fseqenlem1 9912 axdc3lem2 10339 axdc3lem4 10341 hashf1lem1 14359 lo1eq 15472 rlimeq 15473 symgfixfo 19349 lspextmo 20988 evlseu 22016 mdetunilem3 22527 mdetunilem4 22528 mdetunilem9 22533 lmbr 23171 ptuncnv 23720 iscau 25201 plyexmo 26246 relogf1o 26500 nosupprefixmo 27637 noinfprefixmo 27638 nosupcbv 27639 nosupno 27640 nosupdm 27641 nosupfv 27643 nosupres 27644 nosupbnd1lem1 27645 nosupbnd1lem3 27647 nosupbnd1lem5 27649 nosupbnd2 27653 noinfcbv 27654 noinfno 27655 noinfdm 27656 noinffv 27658 noinfres 27659 noinfbnd1lem1 27660 noinfbnd1lem3 27662 noinfbnd1lem5 27664 noinfbnd2 27668 eulerpartlemt 34379 eulerpartlemgv 34381 eulerpartlemn 34389 eulerpart 34390 bnj1385 34839 bnj66 34867 bnj1234 35020 bnj1326 35033 bnj1463 35062 iscvm 35291 mbfresfi 37705 sdclem2 37781 isdivrngo 37989 evlselvlem 42618 evlselv 42619 mzpcompact2lem 42783 diophrw 42791 eldioph2lem1 42792 eldioph2lem2 42793 eldioph3 42798 diophin 42804 diophrex 42807 rexrabdioph 42826 2rexfrabdioph 42828 3rexfrabdioph 42829 4rexfrabdioph 42830 6rexfrabdioph 42831 7rexfrabdioph 42832 eldioph4b 42843 pwssplit4 43121 dvnprodlem1 45983 dvnprodlem3 45985 ismea 46488 isome 46531 |
| Copyright terms: Public domain | W3C validator |