| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reseq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restrictions. (Contributed by NM, 7-Aug-1994.) |
| Ref | Expression |
|---|---|
| reseq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1 4162 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ (𝐶 × V)) = (𝐵 ∩ (𝐶 × V))) | |
| 2 | df-res 5631 | . 2 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
| 3 | df-res 5631 | . 2 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
| 4 | 1, 2, 3 | 3eqtr4g 2793 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 Vcvv 3437 ∩ cin 3897 × cxp 5617 ↾ cres 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-in 3905 df-res 5631 |
| This theorem is referenced by: reseq1i 5928 reseq1d 5931 imaeq1 6008 fvtresfn 6937 eqfnun 6976 frrlem1 8222 frrlem13 8234 tfrlem12 8314 pmresg 8800 resixpfo 8866 mapunen 9066 fseqenlem1 9922 axdc3lem2 10349 axdc3lem4 10351 hashf1lem1 14364 lo1eq 15477 rlimeq 15478 symgfixfo 19353 lspextmo 20992 evlseu 22019 mdetunilem3 22530 mdetunilem4 22531 mdetunilem9 22536 lmbr 23174 ptuncnv 23723 iscau 25204 plyexmo 26249 relogf1o 26503 nosupprefixmo 27640 noinfprefixmo 27641 nosupcbv 27642 nosupno 27643 nosupdm 27644 nosupfv 27646 nosupres 27647 nosupbnd1lem1 27648 nosupbnd1lem3 27650 nosupbnd1lem5 27652 nosupbnd2 27656 noinfcbv 27657 noinfno 27658 noinfdm 27659 noinffv 27661 noinfres 27662 noinfbnd1lem1 27663 noinfbnd1lem3 27665 noinfbnd1lem5 27667 noinfbnd2 27671 extvfvv 33585 extvfvcl 33587 eulerpartlemt 34405 eulerpartlemgv 34407 eulerpartlemn 34415 eulerpart 34416 bnj1385 34865 bnj66 34893 bnj1234 35046 bnj1326 35059 bnj1463 35088 iscvm 35324 mbfresfi 37726 sdclem2 37802 isdivrngo 38010 evlselvlem 42704 evlselv 42705 mzpcompact2lem 42868 diophrw 42876 eldioph2lem1 42877 eldioph2lem2 42878 eldioph3 42883 diophin 42889 diophrex 42892 rexrabdioph 42911 2rexfrabdioph 42913 3rexfrabdioph 42914 4rexfrabdioph 42915 6rexfrabdioph 42916 7rexfrabdioph 42917 eldioph4b 42928 pwssplit4 43206 dvnprodlem1 46068 dvnprodlem3 46070 ismea 46573 isome 46616 |
| Copyright terms: Public domain | W3C validator |