![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reseq1 | Structured version Visualization version GIF version |
Description: Equality theorem for restrictions. (Contributed by NM, 7-Aug-1994.) |
Ref | Expression |
---|---|
reseq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 4220 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ (𝐶 × V)) = (𝐵 ∩ (𝐶 × V))) | |
2 | df-res 5700 | . 2 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
3 | df-res 5700 | . 2 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
4 | 1, 2, 3 | 3eqtr4g 2799 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 Vcvv 3477 ∩ cin 3961 × cxp 5686 ↾ cres 5690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-in 3969 df-res 5700 |
This theorem is referenced by: reseq1i 5995 reseq1d 5998 imaeq1 6074 fvtresfn 7017 eqfnun 7056 frrlem1 8309 frrlem13 8321 wfrlem1OLD 8346 wfrlem3OLDa 8349 wfrlem15OLD 8361 tfrlem12 8427 pmresg 8908 resixpfo 8974 mapunen 9184 fseqenlem1 10061 axdc3lem2 10488 axdc3lem4 10490 axdc 10558 hashf1lem1 14490 lo1eq 15600 rlimeq 15601 symgfixfo 19471 lspextmo 21072 evlseu 22124 mdetunilem3 22635 mdetunilem4 22636 mdetunilem9 22641 lmbr 23281 ptuncnv 23830 iscau 25323 plyexmo 26369 relogf1o 26622 nosupprefixmo 27759 noinfprefixmo 27760 nosupcbv 27761 nosupno 27762 nosupdm 27763 nosupfv 27765 nosupres 27766 nosupbnd1lem1 27767 nosupbnd1lem3 27769 nosupbnd1lem5 27771 nosupbnd2 27775 noinfcbv 27776 noinfno 27777 noinfdm 27778 noinffv 27780 noinfres 27781 noinfbnd1lem1 27782 noinfbnd1lem3 27784 noinfbnd1lem5 27786 noinfbnd2 27790 eulerpartlemt 34352 eulerpartlemgv 34354 eulerpartlemn 34362 eulerpart 34363 bnj1385 34824 bnj66 34852 bnj1234 35005 bnj1326 35018 bnj1463 35047 iscvm 35243 mbfresfi 37652 sdclem2 37728 isdivrngo 37936 evlselvlem 42572 evlselv 42573 mzpcompact2lem 42738 diophrw 42746 eldioph2lem1 42747 eldioph2lem2 42748 eldioph3 42753 diophin 42759 diophrex 42762 rexrabdioph 42781 2rexfrabdioph 42783 3rexfrabdioph 42784 4rexfrabdioph 42785 6rexfrabdioph 42786 7rexfrabdioph 42787 eldioph4b 42798 pwssplit4 43077 dvnprodlem1 45901 dvnprodlem3 45903 ismea 46406 isome 46449 |
Copyright terms: Public domain | W3C validator |