| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reseq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restrictions. (Contributed by NM, 7-Aug-1994.) |
| Ref | Expression |
|---|---|
| reseq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1 4176 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ (𝐶 × V)) = (𝐵 ∩ (𝐶 × V))) | |
| 2 | df-res 5650 | . 2 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
| 3 | df-res 5650 | . 2 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
| 4 | 1, 2, 3 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Vcvv 3447 ∩ cin 3913 × cxp 5636 ↾ cres 5640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-in 3921 df-res 5650 |
| This theorem is referenced by: reseq1i 5946 reseq1d 5949 imaeq1 6026 fvtresfn 6970 eqfnun 7009 frrlem1 8265 frrlem13 8277 tfrlem12 8357 pmresg 8843 resixpfo 8909 mapunen 9110 fseqenlem1 9977 axdc3lem2 10404 axdc3lem4 10406 hashf1lem1 14420 lo1eq 15534 rlimeq 15535 symgfixfo 19369 lspextmo 20963 evlseu 21990 mdetunilem3 22501 mdetunilem4 22502 mdetunilem9 22507 lmbr 23145 ptuncnv 23694 iscau 25176 plyexmo 26221 relogf1o 26475 nosupprefixmo 27612 noinfprefixmo 27613 nosupcbv 27614 nosupno 27615 nosupdm 27616 nosupfv 27618 nosupres 27619 nosupbnd1lem1 27620 nosupbnd1lem3 27622 nosupbnd1lem5 27624 nosupbnd2 27628 noinfcbv 27629 noinfno 27630 noinfdm 27631 noinffv 27633 noinfres 27634 noinfbnd1lem1 27635 noinfbnd1lem3 27637 noinfbnd1lem5 27639 noinfbnd2 27643 eulerpartlemt 34362 eulerpartlemgv 34364 eulerpartlemn 34372 eulerpart 34373 bnj1385 34822 bnj66 34850 bnj1234 35003 bnj1326 35016 bnj1463 35045 iscvm 35246 mbfresfi 37660 sdclem2 37736 isdivrngo 37944 evlselvlem 42574 evlselv 42575 mzpcompact2lem 42739 diophrw 42747 eldioph2lem1 42748 eldioph2lem2 42749 eldioph3 42754 diophin 42760 diophrex 42763 rexrabdioph 42782 2rexfrabdioph 42784 3rexfrabdioph 42785 4rexfrabdioph 42786 6rexfrabdioph 42787 7rexfrabdioph 42788 eldioph4b 42799 pwssplit4 43078 dvnprodlem1 45944 dvnprodlem3 45946 ismea 46449 isome 46492 |
| Copyright terms: Public domain | W3C validator |