![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reseq1 | Structured version Visualization version GIF version |
Description: Equality theorem for restrictions. (Contributed by NM, 7-Aug-1994.) |
Ref | Expression |
---|---|
reseq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 4234 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ (𝐶 × V)) = (𝐵 ∩ (𝐶 × V))) | |
2 | df-res 5712 | . 2 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
3 | df-res 5712 | . 2 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
4 | 1, 2, 3 | 3eqtr4g 2805 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 Vcvv 3488 ∩ cin 3975 × cxp 5698 ↾ cres 5702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-in 3983 df-res 5712 |
This theorem is referenced by: reseq1i 6005 reseq1d 6008 imaeq1 6084 fvtresfn 7031 eqfnun 7070 frrlem1 8327 frrlem13 8339 wfrlem1OLD 8364 wfrlem3OLDa 8367 wfrlem15OLD 8379 tfrlem12 8445 pmresg 8928 resixpfo 8994 mapunen 9212 fseqenlem1 10093 axdc3lem2 10520 axdc3lem4 10522 axdc 10590 hashf1lem1 14504 lo1eq 15614 rlimeq 15615 symgfixfo 19481 lspextmo 21078 evlseu 22130 mdetunilem3 22641 mdetunilem4 22642 mdetunilem9 22647 lmbr 23287 ptuncnv 23836 iscau 25329 plyexmo 26373 relogf1o 26626 nosupprefixmo 27763 noinfprefixmo 27764 nosupcbv 27765 nosupno 27766 nosupdm 27767 nosupfv 27769 nosupres 27770 nosupbnd1lem1 27771 nosupbnd1lem3 27773 nosupbnd1lem5 27775 nosupbnd2 27779 noinfcbv 27780 noinfno 27781 noinfdm 27782 noinffv 27784 noinfres 27785 noinfbnd1lem1 27786 noinfbnd1lem3 27788 noinfbnd1lem5 27790 noinfbnd2 27794 eulerpartlemt 34336 eulerpartlemgv 34338 eulerpartlemn 34346 eulerpart 34347 bnj1385 34808 bnj66 34836 bnj1234 34989 bnj1326 35002 bnj1463 35031 iscvm 35227 mbfresfi 37626 sdclem2 37702 isdivrngo 37910 evlselvlem 42541 evlselv 42542 mzpcompact2lem 42707 diophrw 42715 eldioph2lem1 42716 eldioph2lem2 42717 eldioph3 42722 diophin 42728 diophrex 42731 rexrabdioph 42750 2rexfrabdioph 42752 3rexfrabdioph 42753 4rexfrabdioph 42754 6rexfrabdioph 42755 7rexfrabdioph 42756 eldioph4b 42767 pwssplit4 43046 dvnprodlem1 45867 dvnprodlem3 45869 ismea 46372 isome 46415 |
Copyright terms: Public domain | W3C validator |