| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnuni | Structured version Visualization version GIF version | ||
| Description: The range of a union. Part of Exercise 8 of [Enderton] p. 41. (Contributed by NM, 17-Mar-2004.) (Revised by Mario Carneiro, 29-May-2015.) |
| Ref | Expression |
|---|---|
| rnuni | ⊢ ran ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 ran 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniiun 5038 | . . 3 ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 | |
| 2 | 1 | rneqi 5928 | . 2 ⊢ ran ∪ 𝐴 = ran ∪ 𝑥 ∈ 𝐴 𝑥 |
| 3 | rniun 6147 | . 2 ⊢ ran ∪ 𝑥 ∈ 𝐴 𝑥 = ∪ 𝑥 ∈ 𝐴 ran 𝑥 | |
| 4 | 2, 3 | eqtri 2757 | 1 ⊢ ran ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 ran 𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∪ cuni 4887 ∪ ciun 4971 ran crn 5666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-11 2156 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-cnv 5673 df-dm 5675 df-rn 5676 |
| This theorem is referenced by: ackbij2 10264 axdc3lem2 10473 unirnmap 45170 unirnmapsn 45176 |
| Copyright terms: Public domain | W3C validator |