MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnuni Structured version   Visualization version   GIF version

Theorem rnuni 6123
Description: The range of a union. Part of Exercise 8 of [Enderton] p. 41. (Contributed by NM, 17-Mar-2004.) (Revised by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
rnuni ran 𝐴 = 𝑥𝐴 ran 𝑥
Distinct variable group:   𝑥,𝐴

Proof of Theorem rnuni
StepHypRef Expression
1 uniiun 5024 . . 3 𝐴 = 𝑥𝐴 𝑥
21rneqi 5903 . 2 ran 𝐴 = ran 𝑥𝐴 𝑥
3 rniun 6122 . 2 ran 𝑥𝐴 𝑥 = 𝑥𝐴 ran 𝑥
42, 3eqtri 2753 1 ran 𝐴 = 𝑥𝐴 ran 𝑥
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540   cuni 4873   ciun 4957  ran crn 5641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-cnv 5648  df-dm 5650  df-rn 5651
This theorem is referenced by:  ackbij2  10201  axdc3lem2  10410  unirnmap  45195  unirnmapsn  45201
  Copyright terms: Public domain W3C validator