| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnuni | Structured version Visualization version GIF version | ||
| Description: The range of a union. Part of Exercise 8 of [Enderton] p. 41. (Contributed by NM, 17-Mar-2004.) (Revised by Mario Carneiro, 29-May-2015.) |
| Ref | Expression |
|---|---|
| rnuni | ⊢ ran ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 ran 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniiun 5007 | . . 3 ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 | |
| 2 | 1 | rneqi 5877 | . 2 ⊢ ran ∪ 𝐴 = ran ∪ 𝑥 ∈ 𝐴 𝑥 |
| 3 | rniun 6094 | . 2 ⊢ ran ∪ 𝑥 ∈ 𝐴 𝑥 = ∪ 𝑥 ∈ 𝐴 ran 𝑥 | |
| 4 | 2, 3 | eqtri 2754 | 1 ⊢ ran ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 ran 𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∪ cuni 4859 ∪ ciun 4941 ran crn 5617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-cnv 5624 df-dm 5626 df-rn 5627 |
| This theorem is referenced by: ackbij2 10130 axdc3lem2 10339 unirnmap 45244 unirnmapsn 45250 |
| Copyright terms: Public domain | W3C validator |