MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnuni Structured version   Visualization version   GIF version

Theorem rnuni 6176
Description: The range of a union. Part of Exercise 8 of [Enderton] p. 41. (Contributed by NM, 17-Mar-2004.) (Revised by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
rnuni ran 𝐴 = 𝑥𝐴 ran 𝑥
Distinct variable group:   𝑥,𝐴

Proof of Theorem rnuni
StepHypRef Expression
1 uniiun 5066 . . 3 𝐴 = 𝑥𝐴 𝑥
21rneqi 5955 . 2 ran 𝐴 = ran 𝑥𝐴 𝑥
3 rniun 6175 . 2 ran 𝑥𝐴 𝑥 = 𝑥𝐴 ran 𝑥
42, 3eqtri 2765 1 ran 𝐴 = 𝑥𝐴 ran 𝑥
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539   cuni 4915   ciun 4999  ran crn 5694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2157  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-cnv 5701  df-dm 5703  df-rn 5704
This theorem is referenced by:  ackbij2  10289  axdc3lem2  10498  unirnmap  45180  unirnmapsn  45186
  Copyright terms: Public domain W3C validator