MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnuni Structured version   Visualization version   GIF version

Theorem rnuni 6021
Description: The range of a union. Part of Exercise 8 of [Enderton] p. 41. (Contributed by NM, 17-Mar-2004.) (Revised by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
rnuni ran 𝐴 = 𝑥𝐴 ran 𝑥
Distinct variable group:   𝑥,𝐴

Proof of Theorem rnuni
StepHypRef Expression
1 uniiun 4976 . . 3 𝐴 = 𝑥𝐴 𝑥
21rneqi 5815 . 2 ran 𝐴 = ran 𝑥𝐴 𝑥
3 rniun 6020 . 2 ran 𝑥𝐴 𝑥 = 𝑥𝐴 ran 𝑥
42, 3eqtri 2766 1 ran 𝐴 = 𝑥𝐴 ran 𝑥
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543   cuni 4828   ciun 4913  ran crn 5561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-11 2159  ax-ext 2709  ax-sep 5201  ax-nul 5208  ax-pr 5331
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2072  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3067  df-rex 3068  df-rab 3071  df-v 3417  df-dif 3878  df-un 3880  df-in 3882  df-ss 3892  df-nul 4247  df-if 4449  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4829  df-iun 4915  df-br 5063  df-opab 5125  df-cnv 5568  df-dm 5570  df-rn 5571
This theorem is referenced by:  ackbij2  9870  axdc3lem2  10078  unirnmap  42436  unirnmapsn  42442
  Copyright terms: Public domain W3C validator