MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnuni Structured version   Visualization version   GIF version

Theorem rnuni 6135
Description: The range of a union. Part of Exercise 8 of [Enderton] p. 41. (Contributed by NM, 17-Mar-2004.) (Revised by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
rnuni ran 𝐴 = 𝑥𝐴 ran 𝑥
Distinct variable group:   𝑥,𝐴

Proof of Theorem rnuni
StepHypRef Expression
1 uniiun 5032 . . 3 𝐴 = 𝑥𝐴 𝑥
21rneqi 5915 . 2 ran 𝐴 = ran 𝑥𝐴 𝑥
3 rniun 6134 . 2 ran 𝑥𝐴 𝑥 = 𝑥𝐴 ran 𝑥
42, 3eqtri 2757 1 ran 𝐴 = 𝑥𝐴 ran 𝑥
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539   cuni 4881   ciun 4965  ran crn 5653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-11 2156  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pr 5400
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-cnv 5660  df-dm 5662  df-rn 5663
This theorem is referenced by:  ackbij2  10249  axdc3lem2  10458  unirnmap  45166  unirnmapsn  45172
  Copyright terms: Public domain W3C validator