MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnuni Structured version   Visualization version   GIF version

Theorem rnuni 6041
Description: The range of a union. Part of Exercise 8 of [Enderton] p. 41. (Contributed by NM, 17-Mar-2004.) (Revised by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
rnuni ran 𝐴 = 𝑥𝐴 ran 𝑥
Distinct variable group:   𝑥,𝐴

Proof of Theorem rnuni
StepHypRef Expression
1 uniiun 4984 . . 3 𝐴 = 𝑥𝐴 𝑥
21rneqi 5835 . 2 ran 𝐴 = ran 𝑥𝐴 𝑥
3 rniun 6040 . 2 ran 𝑥𝐴 𝑥 = 𝑥𝐴 ran 𝑥
42, 3eqtri 2766 1 ran 𝐴 = 𝑥𝐴 ran 𝑥
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539   cuni 4836   ciun 4921  ran crn 5581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-cnv 5588  df-dm 5590  df-rn 5591
This theorem is referenced by:  ackbij2  9930  axdc3lem2  10138  unirnmap  42637  unirnmapsn  42643
  Copyright terms: Public domain W3C validator