![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnuni | Structured version Visualization version GIF version |
Description: The range of a union. Part of Exercise 8 of [Enderton] p. 41. (Contributed by NM, 17-Mar-2004.) (Revised by Mario Carneiro, 29-May-2015.) |
Ref | Expression |
---|---|
rnuni | ⊢ ran ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 ran 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniiun 5066 | . . 3 ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 | |
2 | 1 | rneqi 5955 | . 2 ⊢ ran ∪ 𝐴 = ran ∪ 𝑥 ∈ 𝐴 𝑥 |
3 | rniun 6175 | . 2 ⊢ ran ∪ 𝑥 ∈ 𝐴 𝑥 = ∪ 𝑥 ∈ 𝐴 ran 𝑥 | |
4 | 2, 3 | eqtri 2765 | 1 ⊢ ran ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 ran 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cuni 4915 ∪ ciun 4999 ran crn 5694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2157 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-cnv 5701 df-dm 5703 df-rn 5704 |
This theorem is referenced by: ackbij2 10289 axdc3lem2 10498 unirnmap 45180 unirnmapsn 45186 |
Copyright terms: Public domain | W3C validator |