Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rnuni | Structured version Visualization version GIF version |
Description: The range of a union. Part of Exercise 8 of [Enderton] p. 41. (Contributed by NM, 17-Mar-2004.) (Revised by Mario Carneiro, 29-May-2015.) |
Ref | Expression |
---|---|
rnuni | ⊢ ran ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 ran 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniiun 4984 | . . 3 ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 | |
2 | 1 | rneqi 5835 | . 2 ⊢ ran ∪ 𝐴 = ran ∪ 𝑥 ∈ 𝐴 𝑥 |
3 | rniun 6040 | . 2 ⊢ ran ∪ 𝑥 ∈ 𝐴 𝑥 = ∪ 𝑥 ∈ 𝐴 ran 𝑥 | |
4 | 2, 3 | eqtri 2766 | 1 ⊢ ran ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 ran 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cuni 4836 ∪ ciun 4921 ran crn 5581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-cnv 5588 df-dm 5590 df-rn 5591 |
This theorem is referenced by: ackbij2 9930 axdc3lem2 10138 unirnmap 42637 unirnmapsn 42643 |
Copyright terms: Public domain | W3C validator |