Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unirnmap Structured version   Visualization version   GIF version

Theorem unirnmap 45150
Description: Given a subset of a set exponentiation, the base set can be restricted. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
unirnmap.a (𝜑𝐴𝑉)
unirnmap.x (𝜑𝑋 ⊆ (𝐵m 𝐴))
Assertion
Ref Expression
unirnmap (𝜑𝑋 ⊆ (ran 𝑋m 𝐴))

Proof of Theorem unirnmap
Dummy variables 𝑔 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unirnmap.x . . . . . . . 8 (𝜑𝑋 ⊆ (𝐵m 𝐴))
21sselda 3994 . . . . . . 7 ((𝜑𝑔𝑋) → 𝑔 ∈ (𝐵m 𝐴))
3 elmapfn 8903 . . . . . . 7 (𝑔 ∈ (𝐵m 𝐴) → 𝑔 Fn 𝐴)
42, 3syl 17 . . . . . 6 ((𝜑𝑔𝑋) → 𝑔 Fn 𝐴)
5 simplr 769 . . . . . . . . . 10 (((𝜑𝑔𝑋) ∧ 𝑥𝐴) → 𝑔𝑋)
6 dffn3 6748 . . . . . . . . . . . 12 (𝑔 Fn 𝐴𝑔:𝐴⟶ran 𝑔)
74, 6sylib 218 . . . . . . . . . . 11 ((𝜑𝑔𝑋) → 𝑔:𝐴⟶ran 𝑔)
87ffvelcdmda 7103 . . . . . . . . . 10 (((𝜑𝑔𝑋) ∧ 𝑥𝐴) → (𝑔𝑥) ∈ ran 𝑔)
9 rneq 5949 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ran 𝑓 = ran 𝑔)
109eleq2d 2824 . . . . . . . . . . 11 (𝑓 = 𝑔 → ((𝑔𝑥) ∈ ran 𝑓 ↔ (𝑔𝑥) ∈ ran 𝑔))
1110rspcev 3621 . . . . . . . . . 10 ((𝑔𝑋 ∧ (𝑔𝑥) ∈ ran 𝑔) → ∃𝑓𝑋 (𝑔𝑥) ∈ ran 𝑓)
125, 8, 11syl2anc 584 . . . . . . . . 9 (((𝜑𝑔𝑋) ∧ 𝑥𝐴) → ∃𝑓𝑋 (𝑔𝑥) ∈ ran 𝑓)
13 eliun 4999 . . . . . . . . 9 ((𝑔𝑥) ∈ 𝑓𝑋 ran 𝑓 ↔ ∃𝑓𝑋 (𝑔𝑥) ∈ ran 𝑓)
1412, 13sylibr 234 . . . . . . . 8 (((𝜑𝑔𝑋) ∧ 𝑥𝐴) → (𝑔𝑥) ∈ 𝑓𝑋 ran 𝑓)
15 rnuni 6170 . . . . . . . 8 ran 𝑋 = 𝑓𝑋 ran 𝑓
1614, 15eleqtrrdi 2849 . . . . . . 7 (((𝜑𝑔𝑋) ∧ 𝑥𝐴) → (𝑔𝑥) ∈ ran 𝑋)
1716ralrimiva 3143 . . . . . 6 ((𝜑𝑔𝑋) → ∀𝑥𝐴 (𝑔𝑥) ∈ ran 𝑋)
184, 17jca 511 . . . . 5 ((𝜑𝑔𝑋) → (𝑔 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ ran 𝑋))
19 ffnfv 7138 . . . . 5 (𝑔:𝐴⟶ran 𝑋 ↔ (𝑔 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ ran 𝑋))
2018, 19sylibr 234 . . . 4 ((𝜑𝑔𝑋) → 𝑔:𝐴⟶ran 𝑋)
21 ovexd 7465 . . . . . . . . 9 (𝜑 → (𝐵m 𝐴) ∈ V)
2221, 1ssexd 5329 . . . . . . . 8 (𝜑𝑋 ∈ V)
2322uniexd 7760 . . . . . . 7 (𝜑 𝑋 ∈ V)
24 rnexg 7924 . . . . . . 7 ( 𝑋 ∈ V → ran 𝑋 ∈ V)
2523, 24syl 17 . . . . . 6 (𝜑 → ran 𝑋 ∈ V)
26 unirnmap.a . . . . . 6 (𝜑𝐴𝑉)
2725, 26elmapd 8878 . . . . 5 (𝜑 → (𝑔 ∈ (ran 𝑋m 𝐴) ↔ 𝑔:𝐴⟶ran 𝑋))
2827adantr 480 . . . 4 ((𝜑𝑔𝑋) → (𝑔 ∈ (ran 𝑋m 𝐴) ↔ 𝑔:𝐴⟶ran 𝑋))
2920, 28mpbird 257 . . 3 ((𝜑𝑔𝑋) → 𝑔 ∈ (ran 𝑋m 𝐴))
3029ralrimiva 3143 . 2 (𝜑 → ∀𝑔𝑋 𝑔 ∈ (ran 𝑋m 𝐴))
31 dfss3 3983 . 2 (𝑋 ⊆ (ran 𝑋m 𝐴) ↔ ∀𝑔𝑋 𝑔 ∈ (ran 𝑋m 𝐴))
3230, 31sylibr 234 1 (𝜑𝑋 ⊆ (ran 𝑋m 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wral 3058  wrex 3067  Vcvv 3477  wss 3962   cuni 4911   ciun 4995  ran crn 5689   Fn wfn 6557  wf 6558  cfv 6562  (class class class)co 7430  m cmap 8864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-1st 8012  df-2nd 8013  df-map 8866
This theorem is referenced by:  unirnmapsn  45156
  Copyright terms: Public domain W3C validator