Step | Hyp | Ref
| Expression |
1 | | unirnmap.x |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ⊆ (𝐵 ↑m 𝐴)) |
2 | 1 | sselda 3921 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑋) → 𝑔 ∈ (𝐵 ↑m 𝐴)) |
3 | | elmapfn 8653 |
. . . . . . 7
⊢ (𝑔 ∈ (𝐵 ↑m 𝐴) → 𝑔 Fn 𝐴) |
4 | 2, 3 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑋) → 𝑔 Fn 𝐴) |
5 | | simplr 766 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ 𝑋) ∧ 𝑥 ∈ 𝐴) → 𝑔 ∈ 𝑋) |
6 | | dffn3 6613 |
. . . . . . . . . . . 12
⊢ (𝑔 Fn 𝐴 ↔ 𝑔:𝐴⟶ran 𝑔) |
7 | 4, 6 | sylib 217 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑋) → 𝑔:𝐴⟶ran 𝑔) |
8 | 7 | ffvelrnda 6961 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ 𝑋) ∧ 𝑥 ∈ 𝐴) → (𝑔‘𝑥) ∈ ran 𝑔) |
9 | | rneq 5845 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → ran 𝑓 = ran 𝑔) |
10 | 9 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑔 → ((𝑔‘𝑥) ∈ ran 𝑓 ↔ (𝑔‘𝑥) ∈ ran 𝑔)) |
11 | 10 | rspcev 3561 |
. . . . . . . . . 10
⊢ ((𝑔 ∈ 𝑋 ∧ (𝑔‘𝑥) ∈ ran 𝑔) → ∃𝑓 ∈ 𝑋 (𝑔‘𝑥) ∈ ran 𝑓) |
12 | 5, 8, 11 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 ∈ 𝑋) ∧ 𝑥 ∈ 𝐴) → ∃𝑓 ∈ 𝑋 (𝑔‘𝑥) ∈ ran 𝑓) |
13 | | eliun 4928 |
. . . . . . . . 9
⊢ ((𝑔‘𝑥) ∈ ∪
𝑓 ∈ 𝑋 ran 𝑓 ↔ ∃𝑓 ∈ 𝑋 (𝑔‘𝑥) ∈ ran 𝑓) |
14 | 12, 13 | sylibr 233 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑔 ∈ 𝑋) ∧ 𝑥 ∈ 𝐴) → (𝑔‘𝑥) ∈ ∪
𝑓 ∈ 𝑋 ran 𝑓) |
15 | | rnuni 6052 |
. . . . . . . 8
⊢ ran ∪ 𝑋 =
∪ 𝑓 ∈ 𝑋 ran 𝑓 |
16 | 14, 15 | eleqtrrdi 2850 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ 𝑋) ∧ 𝑥 ∈ 𝐴) → (𝑔‘𝑥) ∈ ran ∪
𝑋) |
17 | 16 | ralrimiva 3103 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑋) → ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ ran ∪
𝑋) |
18 | 4, 17 | jca 512 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑋) → (𝑔 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ ran ∪
𝑋)) |
19 | | ffnfv 6992 |
. . . . 5
⊢ (𝑔:𝐴⟶ran ∪
𝑋 ↔ (𝑔 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ ran ∪
𝑋)) |
20 | 18, 19 | sylibr 233 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑋) → 𝑔:𝐴⟶ran ∪
𝑋) |
21 | | ovexd 7310 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 ↑m 𝐴) ∈ V) |
22 | 21, 1 | ssexd 5248 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ V) |
23 | 22 | uniexd 7595 |
. . . . . . 7
⊢ (𝜑 → ∪ 𝑋
∈ V) |
24 | | rnexg 7751 |
. . . . . . 7
⊢ (∪ 𝑋
∈ V → ran ∪ 𝑋 ∈ V) |
25 | 23, 24 | syl 17 |
. . . . . 6
⊢ (𝜑 → ran ∪ 𝑋
∈ V) |
26 | | unirnmap.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
27 | 25, 26 | elmapd 8629 |
. . . . 5
⊢ (𝜑 → (𝑔 ∈ (ran ∪
𝑋 ↑m 𝐴) ↔ 𝑔:𝐴⟶ran ∪
𝑋)) |
28 | 27 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑋) → (𝑔 ∈ (ran ∪
𝑋 ↑m 𝐴) ↔ 𝑔:𝐴⟶ran ∪
𝑋)) |
29 | 20, 28 | mpbird 256 |
. . 3
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑋) → 𝑔 ∈ (ran ∪
𝑋 ↑m 𝐴)) |
30 | 29 | ralrimiva 3103 |
. 2
⊢ (𝜑 → ∀𝑔 ∈ 𝑋 𝑔 ∈ (ran ∪
𝑋 ↑m 𝐴)) |
31 | | dfss3 3909 |
. 2
⊢ (𝑋 ⊆ (ran ∪ 𝑋
↑m 𝐴)
↔ ∀𝑔 ∈
𝑋 𝑔 ∈ (ran ∪
𝑋 ↑m 𝐴)) |
32 | 30, 31 | sylibr 233 |
1
⊢ (𝜑 → 𝑋 ⊆ (ran ∪
𝑋 ↑m 𝐴)) |