Step | Hyp | Ref
| Expression |
1 | | unirnmap.x |
. . . . . . . 8
β’ (π β π β (π΅ βm π΄)) |
2 | 1 | sselda 3981 |
. . . . . . 7
β’ ((π β§ π β π) β π β (π΅ βm π΄)) |
3 | | elmapfn 8855 |
. . . . . . 7
β’ (π β (π΅ βm π΄) β π Fn π΄) |
4 | 2, 3 | syl 17 |
. . . . . 6
β’ ((π β§ π β π) β π Fn π΄) |
5 | | simplr 767 |
. . . . . . . . . 10
β’ (((π β§ π β π) β§ π₯ β π΄) β π β π) |
6 | | dffn3 6727 |
. . . . . . . . . . . 12
β’ (π Fn π΄ β π:π΄βΆran π) |
7 | 4, 6 | sylib 217 |
. . . . . . . . . . 11
β’ ((π β§ π β π) β π:π΄βΆran π) |
8 | 7 | ffvelcdmda 7083 |
. . . . . . . . . 10
β’ (((π β§ π β π) β§ π₯ β π΄) β (πβπ₯) β ran π) |
9 | | rneq 5933 |
. . . . . . . . . . . 12
β’ (π = π β ran π = ran π) |
10 | 9 | eleq2d 2819 |
. . . . . . . . . . 11
β’ (π = π β ((πβπ₯) β ran π β (πβπ₯) β ran π)) |
11 | 10 | rspcev 3612 |
. . . . . . . . . 10
β’ ((π β π β§ (πβπ₯) β ran π) β βπ β π (πβπ₯) β ran π) |
12 | 5, 8, 11 | syl2anc 584 |
. . . . . . . . 9
β’ (((π β§ π β π) β§ π₯ β π΄) β βπ β π (πβπ₯) β ran π) |
13 | | eliun 5000 |
. . . . . . . . 9
β’ ((πβπ₯) β βͺ
π β π ran π β βπ β π (πβπ₯) β ran π) |
14 | 12, 13 | sylibr 233 |
. . . . . . . 8
β’ (((π β§ π β π) β§ π₯ β π΄) β (πβπ₯) β βͺ
π β π ran π) |
15 | | rnuni 6145 |
. . . . . . . 8
β’ ran βͺ π =
βͺ π β π ran π |
16 | 14, 15 | eleqtrrdi 2844 |
. . . . . . 7
β’ (((π β§ π β π) β§ π₯ β π΄) β (πβπ₯) β ran βͺ
π) |
17 | 16 | ralrimiva 3146 |
. . . . . 6
β’ ((π β§ π β π) β βπ₯ β π΄ (πβπ₯) β ran βͺ
π) |
18 | 4, 17 | jca 512 |
. . . . 5
β’ ((π β§ π β π) β (π Fn π΄ β§ βπ₯ β π΄ (πβπ₯) β ran βͺ
π)) |
19 | | ffnfv 7114 |
. . . . 5
β’ (π:π΄βΆran βͺ
π β (π Fn π΄ β§ βπ₯ β π΄ (πβπ₯) β ran βͺ
π)) |
20 | 18, 19 | sylibr 233 |
. . . 4
β’ ((π β§ π β π) β π:π΄βΆran βͺ
π) |
21 | | ovexd 7440 |
. . . . . . . . 9
β’ (π β (π΅ βm π΄) β V) |
22 | 21, 1 | ssexd 5323 |
. . . . . . . 8
β’ (π β π β V) |
23 | 22 | uniexd 7728 |
. . . . . . 7
β’ (π β βͺ π
β V) |
24 | | rnexg 7891 |
. . . . . . 7
β’ (βͺ π
β V β ran βͺ π β V) |
25 | 23, 24 | syl 17 |
. . . . . 6
β’ (π β ran βͺ π
β V) |
26 | | unirnmap.a |
. . . . . 6
β’ (π β π΄ β π) |
27 | 25, 26 | elmapd 8830 |
. . . . 5
β’ (π β (π β (ran βͺ
π βm π΄) β π:π΄βΆran βͺ
π)) |
28 | 27 | adantr 481 |
. . . 4
β’ ((π β§ π β π) β (π β (ran βͺ
π βm π΄) β π:π΄βΆran βͺ
π)) |
29 | 20, 28 | mpbird 256 |
. . 3
β’ ((π β§ π β π) β π β (ran βͺ
π βm π΄)) |
30 | 29 | ralrimiva 3146 |
. 2
β’ (π β βπ β π π β (ran βͺ
π βm π΄)) |
31 | | dfss3 3969 |
. 2
β’ (π β (ran βͺ π
βm π΄)
β βπ β
π π β (ran βͺ
π βm π΄)) |
32 | 30, 31 | sylibr 233 |
1
β’ (π β π β (ran βͺ
π βm π΄)) |