Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unirnmap Structured version   Visualization version   GIF version

Theorem unirnmap 43892
Description: Given a subset of a set exponentiation, the base set can be restricted. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
unirnmap.a (πœ‘ β†’ 𝐴 ∈ 𝑉)
unirnmap.x (πœ‘ β†’ 𝑋 βŠ† (𝐡 ↑m 𝐴))
Assertion
Ref Expression
unirnmap (πœ‘ β†’ 𝑋 βŠ† (ran βˆͺ 𝑋 ↑m 𝐴))

Proof of Theorem unirnmap
Dummy variables 𝑔 π‘₯ 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unirnmap.x . . . . . . . 8 (πœ‘ β†’ 𝑋 βŠ† (𝐡 ↑m 𝐴))
21sselda 3981 . . . . . . 7 ((πœ‘ ∧ 𝑔 ∈ 𝑋) β†’ 𝑔 ∈ (𝐡 ↑m 𝐴))
3 elmapfn 8855 . . . . . . 7 (𝑔 ∈ (𝐡 ↑m 𝐴) β†’ 𝑔 Fn 𝐴)
42, 3syl 17 . . . . . 6 ((πœ‘ ∧ 𝑔 ∈ 𝑋) β†’ 𝑔 Fn 𝐴)
5 simplr 767 . . . . . . . . . 10 (((πœ‘ ∧ 𝑔 ∈ 𝑋) ∧ π‘₯ ∈ 𝐴) β†’ 𝑔 ∈ 𝑋)
6 dffn3 6727 . . . . . . . . . . . 12 (𝑔 Fn 𝐴 ↔ 𝑔:𝐴⟢ran 𝑔)
74, 6sylib 217 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑔 ∈ 𝑋) β†’ 𝑔:𝐴⟢ran 𝑔)
87ffvelcdmda 7083 . . . . . . . . . 10 (((πœ‘ ∧ 𝑔 ∈ 𝑋) ∧ π‘₯ ∈ 𝐴) β†’ (π‘”β€˜π‘₯) ∈ ran 𝑔)
9 rneq 5933 . . . . . . . . . . . 12 (𝑓 = 𝑔 β†’ ran 𝑓 = ran 𝑔)
109eleq2d 2819 . . . . . . . . . . 11 (𝑓 = 𝑔 β†’ ((π‘”β€˜π‘₯) ∈ ran 𝑓 ↔ (π‘”β€˜π‘₯) ∈ ran 𝑔))
1110rspcev 3612 . . . . . . . . . 10 ((𝑔 ∈ 𝑋 ∧ (π‘”β€˜π‘₯) ∈ ran 𝑔) β†’ βˆƒπ‘“ ∈ 𝑋 (π‘”β€˜π‘₯) ∈ ran 𝑓)
125, 8, 11syl2anc 584 . . . . . . . . 9 (((πœ‘ ∧ 𝑔 ∈ 𝑋) ∧ π‘₯ ∈ 𝐴) β†’ βˆƒπ‘“ ∈ 𝑋 (π‘”β€˜π‘₯) ∈ ran 𝑓)
13 eliun 5000 . . . . . . . . 9 ((π‘”β€˜π‘₯) ∈ βˆͺ 𝑓 ∈ 𝑋 ran 𝑓 ↔ βˆƒπ‘“ ∈ 𝑋 (π‘”β€˜π‘₯) ∈ ran 𝑓)
1412, 13sylibr 233 . . . . . . . 8 (((πœ‘ ∧ 𝑔 ∈ 𝑋) ∧ π‘₯ ∈ 𝐴) β†’ (π‘”β€˜π‘₯) ∈ βˆͺ 𝑓 ∈ 𝑋 ran 𝑓)
15 rnuni 6145 . . . . . . . 8 ran βˆͺ 𝑋 = βˆͺ 𝑓 ∈ 𝑋 ran 𝑓
1614, 15eleqtrrdi 2844 . . . . . . 7 (((πœ‘ ∧ 𝑔 ∈ 𝑋) ∧ π‘₯ ∈ 𝐴) β†’ (π‘”β€˜π‘₯) ∈ ran βˆͺ 𝑋)
1716ralrimiva 3146 . . . . . 6 ((πœ‘ ∧ 𝑔 ∈ 𝑋) β†’ βˆ€π‘₯ ∈ 𝐴 (π‘”β€˜π‘₯) ∈ ran βˆͺ 𝑋)
184, 17jca 512 . . . . 5 ((πœ‘ ∧ 𝑔 ∈ 𝑋) β†’ (𝑔 Fn 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 (π‘”β€˜π‘₯) ∈ ran βˆͺ 𝑋))
19 ffnfv 7114 . . . . 5 (𝑔:𝐴⟢ran βˆͺ 𝑋 ↔ (𝑔 Fn 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 (π‘”β€˜π‘₯) ∈ ran βˆͺ 𝑋))
2018, 19sylibr 233 . . . 4 ((πœ‘ ∧ 𝑔 ∈ 𝑋) β†’ 𝑔:𝐴⟢ran βˆͺ 𝑋)
21 ovexd 7440 . . . . . . . . 9 (πœ‘ β†’ (𝐡 ↑m 𝐴) ∈ V)
2221, 1ssexd 5323 . . . . . . . 8 (πœ‘ β†’ 𝑋 ∈ V)
2322uniexd 7728 . . . . . . 7 (πœ‘ β†’ βˆͺ 𝑋 ∈ V)
24 rnexg 7891 . . . . . . 7 (βˆͺ 𝑋 ∈ V β†’ ran βˆͺ 𝑋 ∈ V)
2523, 24syl 17 . . . . . 6 (πœ‘ β†’ ran βˆͺ 𝑋 ∈ V)
26 unirnmap.a . . . . . 6 (πœ‘ β†’ 𝐴 ∈ 𝑉)
2725, 26elmapd 8830 . . . . 5 (πœ‘ β†’ (𝑔 ∈ (ran βˆͺ 𝑋 ↑m 𝐴) ↔ 𝑔:𝐴⟢ran βˆͺ 𝑋))
2827adantr 481 . . . 4 ((πœ‘ ∧ 𝑔 ∈ 𝑋) β†’ (𝑔 ∈ (ran βˆͺ 𝑋 ↑m 𝐴) ↔ 𝑔:𝐴⟢ran βˆͺ 𝑋))
2920, 28mpbird 256 . . 3 ((πœ‘ ∧ 𝑔 ∈ 𝑋) β†’ 𝑔 ∈ (ran βˆͺ 𝑋 ↑m 𝐴))
3029ralrimiva 3146 . 2 (πœ‘ β†’ βˆ€π‘” ∈ 𝑋 𝑔 ∈ (ran βˆͺ 𝑋 ↑m 𝐴))
31 dfss3 3969 . 2 (𝑋 βŠ† (ran βˆͺ 𝑋 ↑m 𝐴) ↔ βˆ€π‘” ∈ 𝑋 𝑔 ∈ (ran βˆͺ 𝑋 ↑m 𝐴))
3230, 31sylibr 233 1 (πœ‘ β†’ 𝑋 βŠ† (ran βˆͺ 𝑋 ↑m 𝐴))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  βˆƒwrex 3070  Vcvv 3474   βŠ† wss 3947  βˆͺ cuni 4907  βˆͺ ciun 4996  ran crn 5676   Fn wfn 6535  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405   ↑m cmap 8816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-map 8818
This theorem is referenced by:  unirnmapsn  43898
  Copyright terms: Public domain W3C validator