Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrextnrg Structured version   Visualization version   GIF version

Theorem rrextnrg 33267
Description: An extension of ℝ is a normed ring. (Contributed by Thierry Arnoux, 2-May-2018.)
Assertion
Ref Expression
rrextnrg (𝑅 ∈ ℝExt β†’ 𝑅 ∈ NrmRing)

Proof of Theorem rrextnrg
StepHypRef Expression
1 eqid 2732 . . . 4 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
2 eqid 2732 . . . 4 ((distβ€˜π‘…) β†Ύ ((Baseβ€˜π‘…) Γ— (Baseβ€˜π‘…))) = ((distβ€˜π‘…) β†Ύ ((Baseβ€˜π‘…) Γ— (Baseβ€˜π‘…)))
3 eqid 2732 . . . 4 (β„€Modβ€˜π‘…) = (β„€Modβ€˜π‘…)
41, 2, 3isrrext 33266 . . 3 (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ ((β„€Modβ€˜π‘…) ∈ NrmMod ∧ (chrβ€˜π‘…) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifStβ€˜π‘…) = (metUnifβ€˜((distβ€˜π‘…) β†Ύ ((Baseβ€˜π‘…) Γ— (Baseβ€˜π‘…)))))))
54simp1bi 1145 . 2 (𝑅 ∈ ℝExt β†’ (𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing))
65simpld 495 1 (𝑅 ∈ ℝExt β†’ 𝑅 ∈ NrmRing)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106   Γ— cxp 5674   β†Ύ cres 5678  β€˜cfv 6543  0cc0 11112  Basecbs 17148  distcds 17210  DivRingcdr 20500  metUnifcmetu 21135  β„€Modczlm 21269  chrcchr 21270  UnifStcuss 23978  CUnifSpccusp 24022  NrmRingcnrg 24308  NrmModcnlm 24309   ℝExt crrext 33260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-xp 5682  df-res 5688  df-iota 6495  df-fv 6551  df-rrext 33265
This theorem is referenced by:  rrexttps  33272  rrexthaus  33273  rrhfe  33278  rrhcne  33279  rrhqima  33280  sitgclg  33627
  Copyright terms: Public domain W3C validator