![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrextnrg | Structured version Visualization version GIF version |
Description: An extension of β is a normed ring. (Contributed by Thierry Arnoux, 2-May-2018.) |
Ref | Expression |
---|---|
rrextnrg | β’ (π β βExt β π β NrmRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . 4 β’ (Baseβπ ) = (Baseβπ ) | |
2 | eqid 2732 | . . . 4 β’ ((distβπ ) βΎ ((Baseβπ ) Γ (Baseβπ ))) = ((distβπ ) βΎ ((Baseβπ ) Γ (Baseβπ ))) | |
3 | eqid 2732 | . . . 4 β’ (β€Modβπ ) = (β€Modβπ ) | |
4 | 1, 2, 3 | isrrext 33266 | . . 3 β’ (π β βExt β ((π β NrmRing β§ π β DivRing) β§ ((β€Modβπ ) β NrmMod β§ (chrβπ ) = 0) β§ (π β CUnifSp β§ (UnifStβπ ) = (metUnifβ((distβπ ) βΎ ((Baseβπ ) Γ (Baseβπ ))))))) |
5 | 4 | simp1bi 1145 | . 2 β’ (π β βExt β (π β NrmRing β§ π β DivRing)) |
6 | 5 | simpld 495 | 1 β’ (π β βExt β π β NrmRing) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 Γ cxp 5674 βΎ cres 5678 βcfv 6543 0cc0 11112 Basecbs 17148 distcds 17210 DivRingcdr 20500 metUnifcmetu 21135 β€Modczlm 21269 chrcchr 21270 UnifStcuss 23978 CUnifSpccusp 24022 NrmRingcnrg 24308 NrmModcnlm 24309 βExt crrext 33260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5682 df-res 5688 df-iota 6495 df-fv 6551 df-rrext 33265 |
This theorem is referenced by: rrexttps 33272 rrexthaus 33273 rrhfe 33278 rrhcne 33279 rrhqima 33280 sitgclg 33627 |
Copyright terms: Public domain | W3C validator |