MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isusgr Structured version   Visualization version   GIF version

Theorem isusgr 26340
Description: The property of being a simple graph. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 13-Oct-2020.)
Hypotheses
Ref Expression
isuspgr.v 𝑉 = (Vtx‘𝐺)
isuspgr.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
isusgr (𝐺𝑈 → (𝐺 ∈ USGraph ↔ 𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}))
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉
Allowed substitution hints:   𝑈(𝑥)   𝐸(𝑥)

Proof of Theorem isusgr
Dummy variables 𝑒 𝑔 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-usgr 26338 . . 3 USGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}}
21eleq2i 2836 . 2 (𝐺 ∈ USGraph ↔ 𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}})
3 fveq2 6379 . . . . 5 ( = 𝐺 → (iEdg‘) = (iEdg‘𝐺))
4 isuspgr.e . . . . 5 𝐸 = (iEdg‘𝐺)
53, 4syl6eqr 2817 . . . 4 ( = 𝐺 → (iEdg‘) = 𝐸)
63dmeqd 5496 . . . . 5 ( = 𝐺 → dom (iEdg‘) = dom (iEdg‘𝐺))
74eqcomi 2774 . . . . . 6 (iEdg‘𝐺) = 𝐸
87dmeqi 5495 . . . . 5 dom (iEdg‘𝐺) = dom 𝐸
96, 8syl6eq 2815 . . . 4 ( = 𝐺 → dom (iEdg‘) = dom 𝐸)
10 fveq2 6379 . . . . . . . 8 ( = 𝐺 → (Vtx‘) = (Vtx‘𝐺))
11 isuspgr.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
1210, 11syl6eqr 2817 . . . . . . 7 ( = 𝐺 → (Vtx‘) = 𝑉)
1312pweqd 4322 . . . . . 6 ( = 𝐺 → 𝒫 (Vtx‘) = 𝒫 𝑉)
1413difeq1d 3891 . . . . 5 ( = 𝐺 → (𝒫 (Vtx‘) ∖ {∅}) = (𝒫 𝑉 ∖ {∅}))
1514rabeqdv 3343 . . . 4 ( = 𝐺 → {𝑥 ∈ (𝒫 (Vtx‘) ∖ {∅}) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2})
165, 9, 15f1eq123d 6318 . . 3 ( = 𝐺 → ((iEdg‘):dom (iEdg‘)–1-1→{𝑥 ∈ (𝒫 (Vtx‘) ∖ {∅}) ∣ (♯‘𝑥) = 2} ↔ 𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}))
17 fvexd 6394 . . . . 5 (𝑔 = → (Vtx‘𝑔) ∈ V)
18 fveq2 6379 . . . . 5 (𝑔 = → (Vtx‘𝑔) = (Vtx‘))
19 fvexd 6394 . . . . . 6 ((𝑔 = 𝑣 = (Vtx‘)) → (iEdg‘𝑔) ∈ V)
20 fveq2 6379 . . . . . . 7 (𝑔 = → (iEdg‘𝑔) = (iEdg‘))
2120adantr 472 . . . . . 6 ((𝑔 = 𝑣 = (Vtx‘)) → (iEdg‘𝑔) = (iEdg‘))
22 simpr 477 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → 𝑒 = (iEdg‘))
2322dmeqd 5496 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → dom 𝑒 = dom (iEdg‘))
24 pweq 4320 . . . . . . . . . 10 (𝑣 = (Vtx‘) → 𝒫 𝑣 = 𝒫 (Vtx‘))
2524ad2antlr 718 . . . . . . . . 9 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → 𝒫 𝑣 = 𝒫 (Vtx‘))
2625difeq1d 3891 . . . . . . . 8 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → (𝒫 𝑣 ∖ {∅}) = (𝒫 (Vtx‘) ∖ {∅}))
2726rabeqdv 3343 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → {𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ (𝒫 (Vtx‘) ∖ {∅}) ∣ (♯‘𝑥) = 2})
2822, 23, 27f1eq123d 6318 . . . . . 6 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → (𝑒:dom 𝑒1-1→{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2} ↔ (iEdg‘):dom (iEdg‘)–1-1→{𝑥 ∈ (𝒫 (Vtx‘) ∖ {∅}) ∣ (♯‘𝑥) = 2}))
2919, 21, 28sbcied2 3636 . . . . 5 ((𝑔 = 𝑣 = (Vtx‘)) → ([(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2} ↔ (iEdg‘):dom (iEdg‘)–1-1→{𝑥 ∈ (𝒫 (Vtx‘) ∖ {∅}) ∣ (♯‘𝑥) = 2}))
3017, 18, 29sbcied2 3636 . . . 4 (𝑔 = → ([(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2} ↔ (iEdg‘):dom (iEdg‘)–1-1→{𝑥 ∈ (𝒫 (Vtx‘) ∖ {∅}) ∣ (♯‘𝑥) = 2}))
3130cbvabv 2890 . . 3 {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}} = { ∣ (iEdg‘):dom (iEdg‘)–1-1→{𝑥 ∈ (𝒫 (Vtx‘) ∖ {∅}) ∣ (♯‘𝑥) = 2}}
3216, 31elab2g 3510 . 2 (𝐺𝑈 → (𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}} ↔ 𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}))
332, 32syl5bb 274 1 (𝐺𝑈 → (𝐺 ∈ USGraph ↔ 𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  {cab 2751  {crab 3059  Vcvv 3350  [wsbc 3598  cdif 3731  c0 4081  𝒫 cpw 4317  {csn 4336  dom cdm 5279  1-1wf1 6067  cfv 6070  2c2 11331  chash 13326  Vtxcvtx 26179  iEdgciedg 26180  USGraphcusgr 26336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-nul 4951
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3599  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-op 4343  df-uni 4597  df-br 4812  df-opab 4874  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fv 6078  df-usgr 26338
This theorem is referenced by:  usgrf  26342  isusgrs  26343  usgruspgr  26365  usgrumgruspgr  26367  usgrislfuspgr  26371  usgr0e  26421  usgr0  26428
  Copyright terms: Public domain W3C validator