| Step | Hyp | Ref
| Expression |
| 1 | | df-uspgr 29167 |
. . 3
⊢ USPGraph
= {𝑔 ∣
[(Vtx‘𝑔) /
𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣
(♯‘𝑥) ≤
2}} |
| 2 | 1 | eleq2i 2833 |
. 2
⊢ (𝐺 ∈ USPGraph ↔ 𝐺 ∈ {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣
(♯‘𝑥) ≤
2}}) |
| 3 | | fveq2 6906 |
. . . . 5
⊢ (ℎ = 𝐺 → (iEdg‘ℎ) = (iEdg‘𝐺)) |
| 4 | | isuspgr.e |
. . . . 5
⊢ 𝐸 = (iEdg‘𝐺) |
| 5 | 3, 4 | eqtr4di 2795 |
. . . 4
⊢ (ℎ = 𝐺 → (iEdg‘ℎ) = 𝐸) |
| 6 | 3 | dmeqd 5916 |
. . . . 5
⊢ (ℎ = 𝐺 → dom (iEdg‘ℎ) = dom (iEdg‘𝐺)) |
| 7 | 4 | eqcomi 2746 |
. . . . . 6
⊢
(iEdg‘𝐺) =
𝐸 |
| 8 | 7 | dmeqi 5915 |
. . . . 5
⊢ dom
(iEdg‘𝐺) = dom 𝐸 |
| 9 | 6, 8 | eqtrdi 2793 |
. . . 4
⊢ (ℎ = 𝐺 → dom (iEdg‘ℎ) = dom 𝐸) |
| 10 | | fveq2 6906 |
. . . . . . . 8
⊢ (ℎ = 𝐺 → (Vtx‘ℎ) = (Vtx‘𝐺)) |
| 11 | | isuspgr.v |
. . . . . . . 8
⊢ 𝑉 = (Vtx‘𝐺) |
| 12 | 10, 11 | eqtr4di 2795 |
. . . . . . 7
⊢ (ℎ = 𝐺 → (Vtx‘ℎ) = 𝑉) |
| 13 | 12 | pweqd 4617 |
. . . . . 6
⊢ (ℎ = 𝐺 → 𝒫 (Vtx‘ℎ) = 𝒫 𝑉) |
| 14 | 13 | difeq1d 4125 |
. . . . 5
⊢ (ℎ = 𝐺 → (𝒫 (Vtx‘ℎ) ∖ {∅}) = (𝒫
𝑉 ∖
{∅})) |
| 15 | 14 | rabeqdv 3452 |
. . . 4
⊢ (ℎ = 𝐺 → {𝑥 ∈ (𝒫 (Vtx‘ℎ) ∖ {∅}) ∣
(♯‘𝑥) ≤ 2} =
{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣
(♯‘𝑥) ≤
2}) |
| 16 | 5, 9, 15 | f1eq123d 6840 |
. . 3
⊢ (ℎ = 𝐺 → ((iEdg‘ℎ):dom (iEdg‘ℎ)–1-1→{𝑥 ∈ (𝒫 (Vtx‘ℎ) ∖ {∅}) ∣
(♯‘𝑥) ≤ 2}
↔ 𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣
(♯‘𝑥) ≤
2})) |
| 17 | | fvexd 6921 |
. . . . 5
⊢ (𝑔 = ℎ → (Vtx‘𝑔) ∈ V) |
| 18 | | fveq2 6906 |
. . . . 5
⊢ (𝑔 = ℎ → (Vtx‘𝑔) = (Vtx‘ℎ)) |
| 19 | | fvexd 6921 |
. . . . . 6
⊢ ((𝑔 = ℎ ∧ 𝑣 = (Vtx‘ℎ)) → (iEdg‘𝑔) ∈ V) |
| 20 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑔 = ℎ → (iEdg‘𝑔) = (iEdg‘ℎ)) |
| 21 | 20 | adantr 480 |
. . . . . 6
⊢ ((𝑔 = ℎ ∧ 𝑣 = (Vtx‘ℎ)) → (iEdg‘𝑔) = (iEdg‘ℎ)) |
| 22 | | simpr 484 |
. . . . . . 7
⊢ (((𝑔 = ℎ ∧ 𝑣 = (Vtx‘ℎ)) ∧ 𝑒 = (iEdg‘ℎ)) → 𝑒 = (iEdg‘ℎ)) |
| 23 | 22 | dmeqd 5916 |
. . . . . . 7
⊢ (((𝑔 = ℎ ∧ 𝑣 = (Vtx‘ℎ)) ∧ 𝑒 = (iEdg‘ℎ)) → dom 𝑒 = dom (iEdg‘ℎ)) |
| 24 | | pweq 4614 |
. . . . . . . . . 10
⊢ (𝑣 = (Vtx‘ℎ) → 𝒫 𝑣 = 𝒫 (Vtx‘ℎ)) |
| 25 | 24 | ad2antlr 727 |
. . . . . . . . 9
⊢ (((𝑔 = ℎ ∧ 𝑣 = (Vtx‘ℎ)) ∧ 𝑒 = (iEdg‘ℎ)) → 𝒫 𝑣 = 𝒫 (Vtx‘ℎ)) |
| 26 | 25 | difeq1d 4125 |
. . . . . . . 8
⊢ (((𝑔 = ℎ ∧ 𝑣 = (Vtx‘ℎ)) ∧ 𝑒 = (iEdg‘ℎ)) → (𝒫 𝑣 ∖ {∅}) = (𝒫
(Vtx‘ℎ) ∖
{∅})) |
| 27 | 26 | rabeqdv 3452 |
. . . . . . 7
⊢ (((𝑔 = ℎ ∧ 𝑣 = (Vtx‘ℎ)) ∧ 𝑒 = (iEdg‘ℎ)) → {𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣
(♯‘𝑥) ≤ 2} =
{𝑥 ∈ (𝒫
(Vtx‘ℎ) ∖
{∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 28 | 22, 23, 27 | f1eq123d 6840 |
. . . . . 6
⊢ (((𝑔 = ℎ ∧ 𝑣 = (Vtx‘ℎ)) ∧ 𝑒 = (iEdg‘ℎ)) → (𝑒:dom 𝑒–1-1→{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣
(♯‘𝑥) ≤ 2}
↔ (iEdg‘ℎ):dom
(iEdg‘ℎ)–1-1→{𝑥 ∈ (𝒫 (Vtx‘ℎ) ∖ {∅}) ∣
(♯‘𝑥) ≤
2})) |
| 29 | 19, 21, 28 | sbcied2 3833 |
. . . . 5
⊢ ((𝑔 = ℎ ∧ 𝑣 = (Vtx‘ℎ)) → ([(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣
(♯‘𝑥) ≤ 2}
↔ (iEdg‘ℎ):dom
(iEdg‘ℎ)–1-1→{𝑥 ∈ (𝒫 (Vtx‘ℎ) ∖ {∅}) ∣
(♯‘𝑥) ≤
2})) |
| 30 | 17, 18, 29 | sbcied2 3833 |
. . . 4
⊢ (𝑔 = ℎ → ([(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣
(♯‘𝑥) ≤ 2}
↔ (iEdg‘ℎ):dom
(iEdg‘ℎ)–1-1→{𝑥 ∈ (𝒫 (Vtx‘ℎ) ∖ {∅}) ∣
(♯‘𝑥) ≤
2})) |
| 31 | 30 | cbvabv 2812 |
. . 3
⊢ {𝑔 ∣
[(Vtx‘𝑔) /
𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣
(♯‘𝑥) ≤ 2}}
= {ℎ ∣
(iEdg‘ℎ):dom
(iEdg‘ℎ)–1-1→{𝑥 ∈ (𝒫 (Vtx‘ℎ) ∖ {∅}) ∣
(♯‘𝑥) ≤
2}} |
| 32 | 16, 31 | elab2g 3680 |
. 2
⊢ (𝐺 ∈ 𝑈 → (𝐺 ∈ {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣
(♯‘𝑥) ≤ 2}}
↔ 𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣
(♯‘𝑥) ≤
2})) |
| 33 | 2, 32 | bitrid 283 |
1
⊢ (𝐺 ∈ 𝑈 → (𝐺 ∈ USPGraph ↔ 𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣
(♯‘𝑥) ≤
2})) |