![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isarep1OLD | Structured version Visualization version GIF version |
Description: Obsolete version of isarep1 6638 as of 19-Dec-2024. (Contributed by NM, 26-Oct-2006.) (Proof shortened by Mario Carneiro, 4-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
isarep1OLD | ⊢ (𝑏 ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 [𝑏 / 𝑦]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3479 | . . 3 ⊢ 𝑏 ∈ V | |
2 | 1 | elima 6065 | . 2 ⊢ (𝑏 ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴) ↔ ∃𝑧 ∈ 𝐴 𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑏) |
3 | df-br 5150 | . . . 4 ⊢ (𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑏 ↔ ⟨𝑧, 𝑏⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) | |
4 | opelopabsb 5531 | . . . 4 ⊢ (⟨𝑧, 𝑏⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑧 / 𝑥][𝑏 / 𝑦]𝜑) | |
5 | sbsbc 3782 | . . . . . 6 ⊢ ([𝑏 / 𝑦]𝜑 ↔ [𝑏 / 𝑦]𝜑) | |
6 | 5 | sbbii 2080 | . . . . 5 ⊢ ([𝑧 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑧 / 𝑥][𝑏 / 𝑦]𝜑) |
7 | sbsbc 3782 | . . . . 5 ⊢ ([𝑧 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑧 / 𝑥][𝑏 / 𝑦]𝜑) | |
8 | 6, 7 | bitr2i 276 | . . . 4 ⊢ ([𝑧 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑧 / 𝑥][𝑏 / 𝑦]𝜑) |
9 | 3, 4, 8 | 3bitri 297 | . . 3 ⊢ (𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑏 ↔ [𝑧 / 𝑥][𝑏 / 𝑦]𝜑) |
10 | 9 | rexbii 3095 | . 2 ⊢ (∃𝑧 ∈ 𝐴 𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑏 ↔ ∃𝑧 ∈ 𝐴 [𝑧 / 𝑥][𝑏 / 𝑦]𝜑) |
11 | nfs1v 2154 | . . 3 ⊢ Ⅎ𝑥[𝑧 / 𝑥][𝑏 / 𝑦]𝜑 | |
12 | nfv 1918 | . . 3 ⊢ Ⅎ𝑧[𝑏 / 𝑦]𝜑 | |
13 | sbequ12r 2245 | . . 3 ⊢ (𝑧 = 𝑥 → ([𝑧 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑏 / 𝑦]𝜑)) | |
14 | 11, 12, 13 | cbvrexw 3305 | . 2 ⊢ (∃𝑧 ∈ 𝐴 [𝑧 / 𝑥][𝑏 / 𝑦]𝜑 ↔ ∃𝑥 ∈ 𝐴 [𝑏 / 𝑦]𝜑) |
15 | 2, 10, 14 | 3bitri 297 | 1 ⊢ (𝑏 ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 [𝑏 / 𝑦]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 [wsb 2068 ∈ wcel 2107 ∃wrex 3071 [wsbc 3778 ⟨cop 4635 class class class wbr 5149 {copab 5211 “ cima 5680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-cnv 5685 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |