MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  findes Structured version   Visualization version   GIF version

Theorem findes 7838
Description: Finite induction with explicit substitution. The first hypothesis is the basis and the second is the induction step. Theorem Schema 22 of [Suppes] p. 136. See tfindes 7801 for the transfinite version. This is an alternative for Metamath 100 proof #74. (Contributed by Raph Levien, 9-Jul-2003.)
Hypotheses
Ref Expression
findes.1 [∅ / 𝑥]𝜑
findes.2 (𝑥 ∈ ω → (𝜑[suc 𝑥 / 𝑥]𝜑))
Assertion
Ref Expression
findes (𝑥 ∈ ω → 𝜑)

Proof of Theorem findes
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3740 . 2 (𝑧 = ∅ → ([𝑧 / 𝑥]𝜑[∅ / 𝑥]𝜑))
2 sbequ 2088 . 2 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
3 dfsbcq2 3740 . 2 (𝑧 = suc 𝑦 → ([𝑧 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑))
4 sbequ12r 2257 . 2 (𝑧 = 𝑥 → ([𝑧 / 𝑥]𝜑𝜑))
5 findes.1 . 2 [∅ / 𝑥]𝜑
6 nfv 1915 . . . 4 𝑥 𝑦 ∈ ω
7 nfs1v 2161 . . . . 5 𝑥[𝑦 / 𝑥]𝜑
8 nfsbc1v 3757 . . . . 5 𝑥[suc 𝑦 / 𝑥]𝜑
97, 8nfim 1897 . . . 4 𝑥([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑)
106, 9nfim 1897 . . 3 𝑥(𝑦 ∈ ω → ([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑))
11 eleq1w 2816 . . . 4 (𝑥 = 𝑦 → (𝑥 ∈ ω ↔ 𝑦 ∈ ω))
12 sbequ12 2256 . . . . 5 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
13 suceq 6381 . . . . . 6 (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦)
1413sbceq1d 3742 . . . . 5 (𝑥 = 𝑦 → ([suc 𝑥 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑))
1512, 14imbi12d 344 . . . 4 (𝑥 = 𝑦 → ((𝜑[suc 𝑥 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑)))
1611, 15imbi12d 344 . . 3 (𝑥 = 𝑦 → ((𝑥 ∈ ω → (𝜑[suc 𝑥 / 𝑥]𝜑)) ↔ (𝑦 ∈ ω → ([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑))))
17 findes.2 . . 3 (𝑥 ∈ ω → (𝜑[suc 𝑥 / 𝑥]𝜑))
1810, 16, 17chvarfv 2245 . 2 (𝑦 ∈ ω → ([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑))
191, 2, 3, 4, 5, 18finds 7834 1 (𝑥 ∈ ω → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  [wsb 2067  wcel 2113  [wsbc 3737  c0 4282  suc csuc 6315  ωcom 7804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-tr 5203  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-om 7805
This theorem is referenced by:  rdgeqoa  37437
  Copyright terms: Public domain W3C validator