Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  findes Structured version   Visualization version   GIF version

Theorem findes 7587
 Description: Finite induction with explicit substitution. The first hypothesis is the basis and the second is the induction step. Theorem Schema 22 of [Suppes] p. 136. See tfindes 7552 for the transfinite version. This is an alternative for Metamath 100 proof #74. (Contributed by Raph Levien, 9-Jul-2003.)
Hypotheses
Ref Expression
findes.1 [∅ / 𝑥]𝜑
findes.2 (𝑥 ∈ ω → (𝜑[suc 𝑥 / 𝑥]𝜑))
Assertion
Ref Expression
findes (𝑥 ∈ ω → 𝜑)

Proof of Theorem findes
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3752 . 2 (𝑧 = ∅ → ([𝑧 / 𝑥]𝜑[∅ / 𝑥]𝜑))
2 sbequ 2091 . 2 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
3 dfsbcq2 3752 . 2 (𝑧 = suc 𝑦 → ([𝑧 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑))
4 sbequ12r 2255 . 2 (𝑧 = 𝑥 → ([𝑧 / 𝑥]𝜑𝜑))
5 findes.1 . 2 [∅ / 𝑥]𝜑
6 nfv 1916 . . . 4 𝑥 𝑦 ∈ ω
7 nfs1v 2161 . . . . 5 𝑥[𝑦 / 𝑥]𝜑
8 nfsbc1v 3769 . . . . 5 𝑥[suc 𝑦 / 𝑥]𝜑
97, 8nfim 1898 . . . 4 𝑥([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑)
106, 9nfim 1898 . . 3 𝑥(𝑦 ∈ ω → ([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑))
11 eleq1w 2894 . . . 4 (𝑥 = 𝑦 → (𝑥 ∈ ω ↔ 𝑦 ∈ ω))
12 sbequ12 2254 . . . . 5 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
13 suceq 6229 . . . . . 6 (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦)
1413sbceq1d 3754 . . . . 5 (𝑥 = 𝑦 → ([suc 𝑥 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑))
1512, 14imbi12d 348 . . . 4 (𝑥 = 𝑦 → ((𝜑[suc 𝑥 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑)))
1611, 15imbi12d 348 . . 3 (𝑥 = 𝑦 → ((𝑥 ∈ ω → (𝜑[suc 𝑥 / 𝑥]𝜑)) ↔ (𝑦 ∈ ω → ([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑))))
17 findes.2 . . 3 (𝑥 ∈ ω → (𝜑[suc 𝑥 / 𝑥]𝜑))
1810, 16, 17chvarfv 2243 . 2 (𝑦 ∈ ω → ([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑))
191, 2, 3, 4, 5, 18finds 7583 1 (𝑥 ∈ ω → 𝜑)
 Colors of variables: wff setvar class Syntax hints:   → wi 4  [wsb 2070   ∈ wcel 2115  [wsbc 3749  ∅c0 4266  suc csuc 6166  ωcom 7555 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pr 5303  ax-un 7436 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-ral 3131  df-rex 3132  df-rab 3135  df-v 3473  df-sbc 3750  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-br 5040  df-opab 5102  df-tr 5146  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-om 7556 This theorem is referenced by:  rdgeqoa  34675
 Copyright terms: Public domain W3C validator