| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > findes | Structured version Visualization version GIF version | ||
| Description: Finite induction with explicit substitution. The first hypothesis is the basis and the second is the induction step. Theorem Schema 22 of [Suppes] p. 136. See tfindes 7842 for the transfinite version. This is an alternative for Metamath 100 proof #74. (Contributed by Raph Levien, 9-Jul-2003.) |
| Ref | Expression |
|---|---|
| findes.1 | ⊢ [∅ / 𝑥]𝜑 |
| findes.2 | ⊢ (𝑥 ∈ ω → (𝜑 → [suc 𝑥 / 𝑥]𝜑)) |
| Ref | Expression |
|---|---|
| findes | ⊢ (𝑥 ∈ ω → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq2 3759 | . 2 ⊢ (𝑧 = ∅ → ([𝑧 / 𝑥]𝜑 ↔ [∅ / 𝑥]𝜑)) | |
| 2 | sbequ 2084 | . 2 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
| 3 | dfsbcq2 3759 | . 2 ⊢ (𝑧 = suc 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [suc 𝑦 / 𝑥]𝜑)) | |
| 4 | sbequ12r 2253 | . 2 ⊢ (𝑧 = 𝑥 → ([𝑧 / 𝑥]𝜑 ↔ 𝜑)) | |
| 5 | findes.1 | . 2 ⊢ [∅ / 𝑥]𝜑 | |
| 6 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ ω | |
| 7 | nfs1v 2157 | . . . . 5 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | |
| 8 | nfsbc1v 3776 | . . . . 5 ⊢ Ⅎ𝑥[suc 𝑦 / 𝑥]𝜑 | |
| 9 | 7, 8 | nfim 1896 | . . . 4 ⊢ Ⅎ𝑥([𝑦 / 𝑥]𝜑 → [suc 𝑦 / 𝑥]𝜑) |
| 10 | 6, 9 | nfim 1896 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ ω → ([𝑦 / 𝑥]𝜑 → [suc 𝑦 / 𝑥]𝜑)) |
| 11 | eleq1w 2812 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ ω ↔ 𝑦 ∈ ω)) | |
| 12 | sbequ12 2252 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
| 13 | suceq 6403 | . . . . . 6 ⊢ (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦) | |
| 14 | 13 | sbceq1d 3761 | . . . . 5 ⊢ (𝑥 = 𝑦 → ([suc 𝑥 / 𝑥]𝜑 ↔ [suc 𝑦 / 𝑥]𝜑)) |
| 15 | 12, 14 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝜑 → [suc 𝑥 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜑 → [suc 𝑦 / 𝑥]𝜑))) |
| 16 | 11, 15 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ ω → (𝜑 → [suc 𝑥 / 𝑥]𝜑)) ↔ (𝑦 ∈ ω → ([𝑦 / 𝑥]𝜑 → [suc 𝑦 / 𝑥]𝜑)))) |
| 17 | findes.2 | . . 3 ⊢ (𝑥 ∈ ω → (𝜑 → [suc 𝑥 / 𝑥]𝜑)) | |
| 18 | 10, 16, 17 | chvarfv 2241 | . 2 ⊢ (𝑦 ∈ ω → ([𝑦 / 𝑥]𝜑 → [suc 𝑦 / 𝑥]𝜑)) |
| 19 | 1, 2, 3, 4, 5, 18 | finds 7875 | 1 ⊢ (𝑥 ∈ ω → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 [wsb 2065 ∈ wcel 2109 [wsbc 3756 ∅c0 4299 suc csuc 6337 ωcom 7845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-om 7846 |
| This theorem is referenced by: rdgeqoa 37365 |
| Copyright terms: Public domain | W3C validator |