HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shelii Structured version   Visualization version   GIF version

Theorem shelii 31201
Description: A member of a subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
shssi.1 𝐻S
sheli.1 𝐴𝐻
Assertion
Ref Expression
shelii 𝐴 ∈ ℋ

Proof of Theorem shelii
StepHypRef Expression
1 shssi.1 . . 3 𝐻S
21shssii 31199 . 2 𝐻 ⊆ ℋ
3 sheli.1 . 2 𝐴𝐻
42, 3sselii 3960 1 𝐴 ∈ ℋ
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  chba 30905   S csh 30914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-hilex 30985
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-xp 5665  df-cnv 5667  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-sh 31193
This theorem is referenced by:  omlsilem  31388
  Copyright terms: Public domain W3C validator