Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > shelii | Structured version Visualization version GIF version |
Description: A member of a subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shssi.1 | ⊢ 𝐻 ∈ Sℋ |
sheli.1 | ⊢ 𝐴 ∈ 𝐻 |
Ref | Expression |
---|---|
shelii | ⊢ 𝐴 ∈ ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shssi.1 | . . 3 ⊢ 𝐻 ∈ Sℋ | |
2 | 1 | shssii 29684 | . 2 ⊢ 𝐻 ⊆ ℋ |
3 | sheli.1 | . 2 ⊢ 𝐴 ∈ 𝐻 | |
4 | 2, 3 | sselii 3928 | 1 ⊢ 𝐴 ∈ ℋ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 ℋchba 29390 Sℋ csh 29399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 ax-sep 5238 ax-hilex 29470 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-br 5088 df-opab 5150 df-xp 5613 df-cnv 5615 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-sh 29678 |
This theorem is referenced by: omlsilem 29873 |
Copyright terms: Public domain | W3C validator |