| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shelii | Structured version Visualization version GIF version | ||
| Description: A member of a subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shssi.1 | ⊢ 𝐻 ∈ Sℋ |
| sheli.1 | ⊢ 𝐴 ∈ 𝐻 |
| Ref | Expression |
|---|---|
| shelii | ⊢ 𝐴 ∈ ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shssi.1 | . . 3 ⊢ 𝐻 ∈ Sℋ | |
| 2 | 1 | shssii 31115 | . 2 ⊢ 𝐻 ⊆ ℋ |
| 3 | sheli.1 | . 2 ⊢ 𝐴 ∈ 𝐻 | |
| 4 | 2, 3 | sselii 3940 | 1 ⊢ 𝐴 ∈ ℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ℋchba 30821 Sℋ csh 30830 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-hilex 30901 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-cnv 5639 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-sh 31109 |
| This theorem is referenced by: omlsilem 31304 |
| Copyright terms: Public domain | W3C validator |