HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shelii Structured version   Visualization version   GIF version

Theorem shelii 29686
Description: A member of a subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
shssi.1 𝐻S
sheli.1 𝐴𝐻
Assertion
Ref Expression
shelii 𝐴 ∈ ℋ

Proof of Theorem shelii
StepHypRef Expression
1 shssi.1 . . 3 𝐻S
21shssii 29684 . 2 𝐻 ⊆ ℋ
3 sheli.1 . 2 𝐴𝐻
42, 3sselii 3928 1 𝐴 ∈ ℋ
Colors of variables: wff setvar class
Syntax hints:  wcel 2105  chba 29390   S csh 29399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2708  ax-sep 5238  ax-hilex 29470
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2715  df-cleq 2729  df-clel 2815  df-rab 3405  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-br 5088  df-opab 5150  df-xp 5613  df-cnv 5615  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-sh 29678
This theorem is referenced by:  omlsilem  29873
  Copyright terms: Public domain W3C validator