HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shelii Structured version   Visualization version   GIF version

Theorem shelii 29577
Description: A member of a subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
shssi.1 𝐻S
sheli.1 𝐴𝐻
Assertion
Ref Expression
shelii 𝐴 ∈ ℋ

Proof of Theorem shelii
StepHypRef Expression
1 shssi.1 . . 3 𝐻S
21shssii 29575 . 2 𝐻 ⊆ ℋ
3 sheli.1 . 2 𝐴𝐻
42, 3sselii 3918 1 𝐴 ∈ ℋ
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  chba 29281   S csh 29290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-hilex 29361
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-sh 29569
This theorem is referenced by:  omlsilem  29764
  Copyright terms: Public domain W3C validator