| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > sheli | Structured version Visualization version GIF version | ||
| Description: A member of a subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shssi.1 | ⊢ 𝐻 ∈ Sℋ |
| Ref | Expression |
|---|---|
| sheli | ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shssi.1 | . . 3 ⊢ 𝐻 ∈ Sℋ | |
| 2 | 1 | shssii 31161 | . 2 ⊢ 𝐻 ⊆ ℋ |
| 3 | 2 | sseli 3931 | 1 ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ℋchba 30867 Sℋ csh 30876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-hilex 30947 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-sh 31155 |
| This theorem is referenced by: norm1exi 31198 hhssabloi 31210 hhssnv 31212 shscli 31265 shunssi 31316 shmodsi 31337 omlsii 31351 5oalem1 31602 5oalem2 31603 5oalem3 31604 5oalem5 31606 imaelshi 32006 pjimai 32124 shatomici 32306 shatomistici 32309 cdjreui 32380 cdj1i 32381 cdj3lem1 32382 cdj3lem2b 32385 cdj3lem3 32386 cdj3lem3b 32388 cdj3i 32389 |
| Copyright terms: Public domain | W3C validator |