![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > sheli | Structured version Visualization version GIF version |
Description: A member of a subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shssi.1 | ⊢ 𝐻 ∈ Sℋ |
Ref | Expression |
---|---|
sheli | ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shssi.1 | . . 3 ⊢ 𝐻 ∈ Sℋ | |
2 | 1 | shssii 28595 | . 2 ⊢ 𝐻 ⊆ ℋ |
3 | 2 | sseli 3794 | 1 ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 ℋchba 28301 Sℋ csh 28310 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-hilex 28381 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-br 4844 df-opab 4906 df-xp 5318 df-cnv 5320 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-sh 28589 |
This theorem is referenced by: norm1exi 28632 hhssabloi 28644 hhssnv 28646 shscli 28701 shunssi 28752 shmodsi 28773 omlsii 28787 5oalem1 29038 5oalem2 29039 5oalem3 29040 5oalem5 29042 imaelshi 29442 pjimai 29560 shatomici 29742 shatomistici 29745 cdjreui 29816 cdj1i 29817 cdj3lem1 29818 cdj3lem2b 29821 cdj3lem3 29822 cdj3lem3b 29824 cdj3i 29825 |
Copyright terms: Public domain | W3C validator |