HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  sheli Structured version   Visualization version   GIF version

Theorem sheli 31150
Description: A member of a subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
shssi.1 𝐻S
Assertion
Ref Expression
sheli (𝐴𝐻𝐴 ∈ ℋ)

Proof of Theorem sheli
StepHypRef Expression
1 shssi.1 . . 3 𝐻S
21shssii 31149 . 2 𝐻 ⊆ ℋ
32sseli 3945 1 (𝐴𝐻𝐴 ∈ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  chba 30855   S csh 30864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-hilex 30935
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-sh 31143
This theorem is referenced by:  norm1exi  31186  hhssabloi  31198  hhssnv  31200  shscli  31253  shunssi  31304  shmodsi  31325  omlsii  31339  5oalem1  31590  5oalem2  31591  5oalem3  31592  5oalem5  31594  imaelshi  31994  pjimai  32112  shatomici  32294  shatomistici  32297  cdjreui  32368  cdj1i  32369  cdj3lem1  32370  cdj3lem2b  32373  cdj3lem3  32374  cdj3lem3b  32376  cdj3i  32377
  Copyright terms: Public domain W3C validator