| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > sheli | Structured version Visualization version GIF version | ||
| Description: A member of a subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shssi.1 | ⊢ 𝐻 ∈ Sℋ |
| Ref | Expression |
|---|---|
| sheli | ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shssi.1 | . . 3 ⊢ 𝐻 ∈ Sℋ | |
| 2 | 1 | shssii 31192 | . 2 ⊢ 𝐻 ⊆ ℋ |
| 3 | 2 | sseli 3939 | 1 ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ℋchba 30898 Sℋ csh 30907 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-hilex 30978 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-cnv 5639 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-sh 31186 |
| This theorem is referenced by: norm1exi 31229 hhssabloi 31241 hhssnv 31243 shscli 31296 shunssi 31347 shmodsi 31368 omlsii 31382 5oalem1 31633 5oalem2 31634 5oalem3 31635 5oalem5 31637 imaelshi 32037 pjimai 32155 shatomici 32337 shatomistici 32340 cdjreui 32411 cdj1i 32412 cdj3lem1 32413 cdj3lem2b 32416 cdj3lem3 32417 cdj3lem3b 32419 cdj3i 32420 |
| Copyright terms: Public domain | W3C validator |