![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > sheli | Structured version Visualization version GIF version |
Description: A member of a subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shssi.1 | ⊢ 𝐻 ∈ Sℋ |
Ref | Expression |
---|---|
sheli | ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shssi.1 | . . 3 ⊢ 𝐻 ∈ Sℋ | |
2 | 1 | shssii 31245 | . 2 ⊢ 𝐻 ⊆ ℋ |
3 | 2 | sseli 4004 | 1 ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ℋchba 30951 Sℋ csh 30960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-hilex 31031 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-sh 31239 |
This theorem is referenced by: norm1exi 31282 hhssabloi 31294 hhssnv 31296 shscli 31349 shunssi 31400 shmodsi 31421 omlsii 31435 5oalem1 31686 5oalem2 31687 5oalem3 31688 5oalem5 31690 imaelshi 32090 pjimai 32208 shatomici 32390 shatomistici 32393 cdjreui 32464 cdj1i 32465 cdj3lem1 32466 cdj3lem2b 32469 cdj3lem3 32470 cdj3lem3b 32472 cdj3i 32473 |
Copyright terms: Public domain | W3C validator |