Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > sheli | Structured version Visualization version GIF version |
Description: A member of a subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shssi.1 | ⊢ 𝐻 ∈ Sℋ |
Ref | Expression |
---|---|
sheli | ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shssi.1 | . . 3 ⊢ 𝐻 ∈ Sℋ | |
2 | 1 | shssii 29476 | . 2 ⊢ 𝐻 ⊆ ℋ |
3 | 2 | sseli 3913 | 1 ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ℋchba 29182 Sℋ csh 29191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-hilex 29262 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-sh 29470 |
This theorem is referenced by: norm1exi 29513 hhssabloi 29525 hhssnv 29527 shscli 29580 shunssi 29631 shmodsi 29652 omlsii 29666 5oalem1 29917 5oalem2 29918 5oalem3 29919 5oalem5 29921 imaelshi 30321 pjimai 30439 shatomici 30621 shatomistici 30624 cdjreui 30695 cdj1i 30696 cdj3lem1 30697 cdj3lem2b 30700 cdj3lem3 30701 cdj3lem3b 30703 cdj3i 30704 |
Copyright terms: Public domain | W3C validator |