HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  sheli Structured version   Visualization version   GIF version

Theorem sheli 29096
Description: A member of a subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
shssi.1 𝐻S
Assertion
Ref Expression
sheli (𝐴𝐻𝐴 ∈ ℋ)

Proof of Theorem sheli
StepHypRef Expression
1 shssi.1 . . 3 𝐻S
21shssii 29095 . 2 𝐻 ⊆ ℋ
32sseli 3888 1 (𝐴𝐻𝐴 ∈ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  chba 28801   S csh 28810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-hilex 28881
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-rab 3079  df-v 3411  df-un 3863  df-in 3865  df-ss 3875  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-br 5033  df-opab 5095  df-xp 5530  df-cnv 5532  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-sh 29089
This theorem is referenced by:  norm1exi  29132  hhssabloi  29144  hhssnv  29146  shscli  29199  shunssi  29250  shmodsi  29271  omlsii  29285  5oalem1  29536  5oalem2  29537  5oalem3  29538  5oalem5  29540  imaelshi  29940  pjimai  30058  shatomici  30240  shatomistici  30243  cdjreui  30314  cdj1i  30315  cdj3lem1  30316  cdj3lem2b  30319  cdj3lem3  30320  cdj3lem3b  30322  cdj3i  30323
  Copyright terms: Public domain W3C validator