HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  sheli Structured version   Visualization version   GIF version

Theorem sheli 31193
Description: A member of a subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
shssi.1 𝐻S
Assertion
Ref Expression
sheli (𝐴𝐻𝐴 ∈ ℋ)

Proof of Theorem sheli
StepHypRef Expression
1 shssi.1 . . 3 𝐻S
21shssii 31192 . 2 𝐻 ⊆ ℋ
32sseli 3939 1 (𝐴𝐻𝐴 ∈ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  chba 30898   S csh 30907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-hilex 30978
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-cnv 5639  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-sh 31186
This theorem is referenced by:  norm1exi  31229  hhssabloi  31241  hhssnv  31243  shscli  31296  shunssi  31347  shmodsi  31368  omlsii  31382  5oalem1  31633  5oalem2  31634  5oalem3  31635  5oalem5  31637  imaelshi  32037  pjimai  32155  shatomici  32337  shatomistici  32340  cdjreui  32411  cdj1i  32412  cdj3lem1  32413  cdj3lem2b  32416  cdj3lem3  32417  cdj3lem3b  32419  cdj3i  32420
  Copyright terms: Public domain W3C validator