Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > sheli | Structured version Visualization version GIF version |
Description: A member of a subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shssi.1 | ⊢ 𝐻 ∈ Sℋ |
Ref | Expression |
---|---|
sheli | ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shssi.1 | . . 3 ⊢ 𝐻 ∈ Sℋ | |
2 | 1 | shssii 29095 | . 2 ⊢ 𝐻 ⊆ ℋ |
3 | 2 | sseli 3888 | 1 ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 ℋchba 28801 Sℋ csh 28810 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-hilex 28881 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-rab 3079 df-v 3411 df-un 3863 df-in 3865 df-ss 3875 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-br 5033 df-opab 5095 df-xp 5530 df-cnv 5532 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-sh 29089 |
This theorem is referenced by: norm1exi 29132 hhssabloi 29144 hhssnv 29146 shscli 29199 shunssi 29250 shmodsi 29271 omlsii 29285 5oalem1 29536 5oalem2 29537 5oalem3 29538 5oalem5 29540 imaelshi 29940 pjimai 30058 shatomici 30240 shatomistici 30243 cdjreui 30314 cdj1i 30315 cdj3lem1 30316 cdj3lem2b 30319 cdj3lem3 30320 cdj3lem3b 30322 cdj3i 30323 |
Copyright terms: Public domain | W3C validator |