| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > sheli | Structured version Visualization version GIF version | ||
| Description: A member of a subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shssi.1 | ⊢ 𝐻 ∈ Sℋ |
| Ref | Expression |
|---|---|
| sheli | ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shssi.1 | . . 3 ⊢ 𝐻 ∈ Sℋ | |
| 2 | 1 | shssii 31149 | . 2 ⊢ 𝐻 ⊆ ℋ |
| 3 | 2 | sseli 3945 | 1 ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ℋchba 30855 Sℋ csh 30864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-hilex 30935 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-sh 31143 |
| This theorem is referenced by: norm1exi 31186 hhssabloi 31198 hhssnv 31200 shscli 31253 shunssi 31304 shmodsi 31325 omlsii 31339 5oalem1 31590 5oalem2 31591 5oalem3 31592 5oalem5 31594 imaelshi 31994 pjimai 32112 shatomici 32294 shatomistici 32297 cdjreui 32368 cdj1i 32369 cdj3lem1 32370 cdj3lem2b 32373 cdj3lem3 32374 cdj3lem3b 32376 cdj3i 32377 |
| Copyright terms: Public domain | W3C validator |