| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shssii | Structured version Visualization version GIF version | ||
| Description: A closed subspace of a Hilbert space is a subset of Hilbert space. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shssi.1 | ⊢ 𝐻 ∈ Sℋ |
| Ref | Expression |
|---|---|
| shssii | ⊢ 𝐻 ⊆ ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shssi.1 | . 2 ⊢ 𝐻 ∈ Sℋ | |
| 2 | shss 31146 | . 2 ⊢ (𝐻 ∈ Sℋ → 𝐻 ⊆ ℋ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐻 ⊆ ℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⊆ wss 3917 ℋchba 30855 Sℋ csh 30864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-hilex 30935 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-sh 31143 |
| This theorem is referenced by: sheli 31150 shelii 31151 chssii 31167 hhssabloilem 31197 hhssabloi 31198 hhssnv 31200 hhssba 31207 shunssji 31305 shsval3i 31324 shjshsi 31428 span0 31478 spanuni 31480 imaelshi 31994 nlelchi 31997 hmopidmchi 32087 pjimai 32112 shatomistici 32297 |
| Copyright terms: Public domain | W3C validator |