Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > shssii | Structured version Visualization version GIF version |
Description: A closed subspace of a Hilbert space is a subset of Hilbert space. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shssi.1 | ⊢ 𝐻 ∈ Sℋ |
Ref | Expression |
---|---|
shssii | ⊢ 𝐻 ⊆ ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shssi.1 | . 2 ⊢ 𝐻 ∈ Sℋ | |
2 | shss 29559 | . 2 ⊢ (𝐻 ∈ Sℋ → 𝐻 ⊆ ℋ) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐻 ⊆ ℋ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ⊆ wss 3888 ℋchba 29268 Sℋ csh 29277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-hilex 29348 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3433 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-br 5076 df-opab 5138 df-xp 5592 df-cnv 5594 df-dm 5596 df-rn 5597 df-res 5598 df-ima 5599 df-sh 29556 |
This theorem is referenced by: sheli 29563 shelii 29564 chssii 29580 hhssabloilem 29610 hhssabloi 29611 hhssnv 29613 hhssba 29620 shunssji 29718 shsval3i 29737 shjshsi 29841 span0 29891 spanuni 29893 imaelshi 30407 nlelchi 30410 hmopidmchi 30500 pjimai 30525 shatomistici 30710 |
Copyright terms: Public domain | W3C validator |