Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > shssii | Structured version Visualization version GIF version |
Description: A closed subspace of a Hilbert space is a subset of Hilbert space. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shssi.1 | ⊢ 𝐻 ∈ Sℋ |
Ref | Expression |
---|---|
shssii | ⊢ 𝐻 ⊆ ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shssi.1 | . 2 ⊢ 𝐻 ∈ Sℋ | |
2 | shss 29572 | . 2 ⊢ (𝐻 ∈ Sℋ → 𝐻 ⊆ ℋ) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐻 ⊆ ℋ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ⊆ wss 3887 ℋchba 29281 Sℋ csh 29290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-hilex 29361 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-sh 29569 |
This theorem is referenced by: sheli 29576 shelii 29577 chssii 29593 hhssabloilem 29623 hhssabloi 29624 hhssnv 29626 hhssba 29633 shunssji 29731 shsval3i 29750 shjshsi 29854 span0 29904 spanuni 29906 imaelshi 30420 nlelchi 30423 hmopidmchi 30513 pjimai 30538 shatomistici 30723 |
Copyright terms: Public domain | W3C validator |