| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shssii | Structured version Visualization version GIF version | ||
| Description: A closed subspace of a Hilbert space is a subset of Hilbert space. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shssi.1 | ⊢ 𝐻 ∈ Sℋ |
| Ref | Expression |
|---|---|
| shssii | ⊢ 𝐻 ⊆ ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shssi.1 | . 2 ⊢ 𝐻 ∈ Sℋ | |
| 2 | shss 31182 | . 2 ⊢ (𝐻 ∈ Sℋ → 𝐻 ⊆ ℋ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐻 ⊆ ℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ⊆ wss 3897 ℋchba 30891 Sℋ csh 30900 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-hilex 30971 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-xp 5617 df-cnv 5619 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-sh 31179 |
| This theorem is referenced by: sheli 31186 shelii 31187 chssii 31203 hhssabloilem 31233 hhssabloi 31234 hhssnv 31236 hhssba 31243 shunssji 31341 shsval3i 31360 shjshsi 31464 span0 31514 spanuni 31516 imaelshi 32030 nlelchi 32033 hmopidmchi 32123 pjimai 32148 shatomistici 32333 |
| Copyright terms: Public domain | W3C validator |