| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shssii | Structured version Visualization version GIF version | ||
| Description: A closed subspace of a Hilbert space is a subset of Hilbert space. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shssi.1 | ⊢ 𝐻 ∈ Sℋ |
| Ref | Expression |
|---|---|
| shssii | ⊢ 𝐻 ⊆ ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shssi.1 | . 2 ⊢ 𝐻 ∈ Sℋ | |
| 2 | shss 31154 | . 2 ⊢ (𝐻 ∈ Sℋ → 𝐻 ⊆ ℋ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐻 ⊆ ℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⊆ wss 3903 ℋchba 30863 Sℋ csh 30872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-hilex 30943 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-sh 31151 |
| This theorem is referenced by: sheli 31158 shelii 31159 chssii 31175 hhssabloilem 31205 hhssabloi 31206 hhssnv 31208 hhssba 31215 shunssji 31313 shsval3i 31332 shjshsi 31436 span0 31486 spanuni 31488 imaelshi 32002 nlelchi 32005 hmopidmchi 32095 pjimai 32120 shatomistici 32305 |
| Copyright terms: Public domain | W3C validator |