HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shssii Structured version   Visualization version   GIF version

Theorem shssii 31157
Description: A closed subspace of a Hilbert space is a subset of Hilbert space. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
shssi.1 𝐻S
Assertion
Ref Expression
shssii 𝐻 ⊆ ℋ

Proof of Theorem shssii
StepHypRef Expression
1 shssi.1 . 2 𝐻S
2 shss 31154 . 2 (𝐻S𝐻 ⊆ ℋ)
31, 2ax-mp 5 1 𝐻 ⊆ ℋ
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  wss 3903  chba 30863   S csh 30872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-hilex 30943
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-xp 5625  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-sh 31151
This theorem is referenced by:  sheli  31158  shelii  31159  chssii  31175  hhssabloilem  31205  hhssabloi  31206  hhssnv  31208  hhssba  31215  shunssji  31313  shsval3i  31332  shjshsi  31436  span0  31486  spanuni  31488  imaelshi  32002  nlelchi  32005  hmopidmchi  32095  pjimai  32120  shatomistici  32305
  Copyright terms: Public domain W3C validator