HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shssii Structured version   Visualization version   GIF version

Theorem shssii 31115
Description: A closed subspace of a Hilbert space is a subset of Hilbert space. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
shssi.1 𝐻S
Assertion
Ref Expression
shssii 𝐻 ⊆ ℋ

Proof of Theorem shssii
StepHypRef Expression
1 shssi.1 . 2 𝐻S
2 shss 31112 . 2 (𝐻S𝐻 ⊆ ℋ)
31, 2ax-mp 5 1 𝐻 ⊆ ℋ
Colors of variables: wff setvar class
Syntax hints:  wcel 2098  wss 3944  chba 30821   S csh 30830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5300  ax-hilex 30901
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-br 5150  df-opab 5212  df-xp 5684  df-cnv 5686  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-sh 31109
This theorem is referenced by:  sheli  31116  shelii  31117  chssii  31133  hhssabloilem  31163  hhssabloi  31164  hhssnv  31166  hhssba  31173  shunssji  31271  shsval3i  31290  shjshsi  31394  span0  31444  spanuni  31446  imaelshi  31960  nlelchi  31963  hmopidmchi  32053  pjimai  32078  shatomistici  32263
  Copyright terms: Public domain W3C validator