![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shssii | Structured version Visualization version GIF version |
Description: A closed subspace of a Hilbert space is a subset of Hilbert space. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shssi.1 | ⊢ 𝐻 ∈ Sℋ |
Ref | Expression |
---|---|
shssii | ⊢ 𝐻 ⊆ ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shssi.1 | . 2 ⊢ 𝐻 ∈ Sℋ | |
2 | shss 31242 | . 2 ⊢ (𝐻 ∈ Sℋ → 𝐻 ⊆ ℋ) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐻 ⊆ ℋ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ⊆ wss 3976 ℋchba 30951 Sℋ csh 30960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-hilex 31031 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-sh 31239 |
This theorem is referenced by: sheli 31246 shelii 31247 chssii 31263 hhssabloilem 31293 hhssabloi 31294 hhssnv 31296 hhssba 31303 shunssji 31401 shsval3i 31420 shjshsi 31524 span0 31574 spanuni 31576 imaelshi 32090 nlelchi 32093 hmopidmchi 32183 pjimai 32208 shatomistici 32393 |
Copyright terms: Public domain | W3C validator |