| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shssii | Structured version Visualization version GIF version | ||
| Description: A closed subspace of a Hilbert space is a subset of Hilbert space. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shssi.1 | ⊢ 𝐻 ∈ Sℋ |
| Ref | Expression |
|---|---|
| shssii | ⊢ 𝐻 ⊆ ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shssi.1 | . 2 ⊢ 𝐻 ∈ Sℋ | |
| 2 | shss 31139 | . 2 ⊢ (𝐻 ∈ Sℋ → 𝐻 ⊆ ℋ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐻 ⊆ ℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⊆ wss 3914 ℋchba 30848 Sℋ csh 30857 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-hilex 30928 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-sh 31136 |
| This theorem is referenced by: sheli 31143 shelii 31144 chssii 31160 hhssabloilem 31190 hhssabloi 31191 hhssnv 31193 hhssba 31200 shunssji 31298 shsval3i 31317 shjshsi 31421 span0 31471 spanuni 31473 imaelshi 31987 nlelchi 31990 hmopidmchi 32080 pjimai 32105 shatomistici 32290 |
| Copyright terms: Public domain | W3C validator |