| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > sh0 | Structured version Visualization version GIF version | ||
| Description: The zero vector belongs to any subspace of a Hilbert space. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sh0 | ⊢ (𝐻 ∈ Sℋ → 0ℎ ∈ 𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issh 31180 | . . 3 ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻))) | |
| 2 | 1 | simplbi 497 | . 2 ⊢ (𝐻 ∈ Sℋ → (𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻)) |
| 3 | 2 | simprd 495 | 1 ⊢ (𝐻 ∈ Sℋ → 0ℎ ∈ 𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ⊆ wss 3897 × cxp 5609 “ cima 5614 ℂcc 10999 ℋchba 30891 +ℎ cva 30892 ·ℎ csm 30893 0ℎc0v 30896 Sℋ csh 30900 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-hilex 30971 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-xp 5617 df-cnv 5619 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-sh 31179 |
| This theorem is referenced by: ch0 31200 hhssabloilem 31233 hhssnv 31236 oc0 31262 ocin 31268 shscli 31289 shsel1 31293 shintcli 31301 shunssi 31340 omlsii 31375 sh0le 31412 imaelshi 32030 shatomistici 32333 |
| Copyright terms: Public domain | W3C validator |