HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  sh0 Structured version   Visualization version   GIF version

Theorem sh0 31188
Description: The zero vector belongs to any subspace of a Hilbert space. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
sh0 (𝐻S → 0𝐻)

Proof of Theorem sh0
StepHypRef Expression
1 issh 31180 . . 3 (𝐻S ↔ ((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻)))
21simplbi 497 . 2 (𝐻S → (𝐻 ⊆ ℋ ∧ 0𝐻))
32simprd 495 1 (𝐻S → 0𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  wss 3897   × cxp 5609  cima 5614  cc 10999  chba 30891   + cva 30892   · csm 30893  0c0v 30896   S csh 30900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-hilex 30971
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-xp 5617  df-cnv 5619  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-sh 31179
This theorem is referenced by:  ch0  31200  hhssabloilem  31233  hhssnv  31236  oc0  31262  ocin  31268  shscli  31289  shsel1  31293  shintcli  31301  shunssi  31340  omlsii  31375  sh0le  31412  imaelshi  32030  shatomistici  32333
  Copyright terms: Public domain W3C validator