HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  sh0 Structured version   Visualization version   GIF version

Theorem sh0 29866
Description: The zero vector belongs to any subspace of a Hilbert space. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
sh0 (𝐻S → 0𝐻)

Proof of Theorem sh0
StepHypRef Expression
1 issh 29858 . . 3 (𝐻S ↔ ((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻)))
21simplbi 498 . 2 (𝐻S → (𝐻 ⊆ ℋ ∧ 0𝐻))
32simprd 496 1 (𝐻S → 0𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2105  wss 3898   × cxp 5618  cima 5623  cc 10970  chba 29569   + cva 29570   · csm 29571  0c0v 29574   S csh 29578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707  ax-sep 5243  ax-hilex 29649
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-br 5093  df-opab 5155  df-xp 5626  df-cnv 5628  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-sh 29857
This theorem is referenced by:  ch0  29878  hhssabloilem  29911  hhssnv  29914  oc0  29940  ocin  29946  shscli  29967  shsel1  29971  shintcli  29979  shunssi  30018  omlsii  30053  sh0le  30090  imaelshi  30708  shatomistici  31011
  Copyright terms: Public domain W3C validator