![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > sh0 | Structured version Visualization version GIF version |
Description: The zero vector belongs to any subspace of a Hilbert space. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sh0 | ⊢ (𝐻 ∈ Sℋ → 0ℎ ∈ 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issh 31240 | . . 3 ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻))) | |
2 | 1 | simplbi 497 | . 2 ⊢ (𝐻 ∈ Sℋ → (𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻)) |
3 | 2 | simprd 495 | 1 ⊢ (𝐻 ∈ Sℋ → 0ℎ ∈ 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3976 × cxp 5698 “ cima 5703 ℂcc 11182 ℋchba 30951 +ℎ cva 30952 ·ℎ csm 30953 0ℎc0v 30956 Sℋ csh 30960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-hilex 31031 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-sh 31239 |
This theorem is referenced by: ch0 31260 hhssabloilem 31293 hhssnv 31296 oc0 31322 ocin 31328 shscli 31349 shsel1 31353 shintcli 31361 shunssi 31400 omlsii 31435 sh0le 31472 imaelshi 32090 shatomistici 32393 |
Copyright terms: Public domain | W3C validator |