Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > sh0 | Structured version Visualization version GIF version |
Description: The zero vector belongs to any subspace of a Hilbert space. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sh0 | ⊢ (𝐻 ∈ Sℋ → 0ℎ ∈ 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issh 29858 | . . 3 ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻))) | |
2 | 1 | simplbi 498 | . 2 ⊢ (𝐻 ∈ Sℋ → (𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻)) |
3 | 2 | simprd 496 | 1 ⊢ (𝐻 ∈ Sℋ → 0ℎ ∈ 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2105 ⊆ wss 3898 × cxp 5618 “ cima 5623 ℂcc 10970 ℋchba 29569 +ℎ cva 29570 ·ℎ csm 29571 0ℎc0v 29574 Sℋ csh 29578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5243 ax-hilex 29649 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-br 5093 df-opab 5155 df-xp 5626 df-cnv 5628 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-sh 29857 |
This theorem is referenced by: ch0 29878 hhssabloilem 29911 hhssnv 29914 oc0 29940 ocin 29946 shscli 29967 shsel1 29971 shintcli 29979 shunssi 30018 omlsii 30053 sh0le 30090 imaelshi 30708 shatomistici 31011 |
Copyright terms: Public domain | W3C validator |