![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > sh0 | Structured version Visualization version GIF version |
Description: The zero vector belongs to any subspace of a Hilbert space. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sh0 | ⊢ (𝐻 ∈ Sℋ → 0ℎ ∈ 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issh 28590 | . . 3 ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻))) | |
2 | 1 | simplbi 492 | . 2 ⊢ (𝐻 ∈ Sℋ → (𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻)) |
3 | 2 | simprd 490 | 1 ⊢ (𝐻 ∈ Sℋ → 0ℎ ∈ 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∈ wcel 2157 ⊆ wss 3769 × cxp 5310 “ cima 5315 ℂcc 10222 ℋchba 28301 +ℎ cva 28302 ·ℎ csm 28303 0ℎc0v 28306 Sℋ csh 28310 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-hilex 28381 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-br 4844 df-opab 4906 df-xp 5318 df-cnv 5320 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-sh 28589 |
This theorem is referenced by: ch0 28610 hhssabloilem 28643 hhssnv 28646 oc0 28674 ocin 28680 shscli 28701 shsel1 28705 shintcli 28713 shunssi 28752 omlsii 28787 sh0le 28824 imaelshi 29442 shatomistici 29745 |
Copyright terms: Public domain | W3C validator |