| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > sh0 | Structured version Visualization version GIF version | ||
| Description: The zero vector belongs to any subspace of a Hilbert space. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sh0 | ⊢ (𝐻 ∈ Sℋ → 0ℎ ∈ 𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issh 31110 | . . 3 ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻))) | |
| 2 | 1 | simplbi 497 | . 2 ⊢ (𝐻 ∈ Sℋ → (𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻)) |
| 3 | 2 | simprd 495 | 1 ⊢ (𝐻 ∈ Sℋ → 0ℎ ∈ 𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3911 × cxp 5629 “ cima 5634 ℂcc 11042 ℋchba 30821 +ℎ cva 30822 ·ℎ csm 30823 0ℎc0v 30826 Sℋ csh 30830 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-hilex 30901 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-cnv 5639 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-sh 31109 |
| This theorem is referenced by: ch0 31130 hhssabloilem 31163 hhssnv 31166 oc0 31192 ocin 31198 shscli 31219 shsel1 31223 shintcli 31231 shunssi 31270 omlsii 31305 sh0le 31342 imaelshi 31960 shatomistici 32263 |
| Copyright terms: Public domain | W3C validator |