Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trisegint Structured version   Visualization version   GIF version

Theorem trisegint 33597
Description: A line segment between two sides of a triange intersects a segment crossing from the remaining side to the opposite vertex. Theorem 3.17 of [Schwabhauser] p. 33. (Contributed by Scott Fenton, 24-Sep-2013.)
Assertion
Ref Expression
trisegint ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩) → ∃𝑞 ∈ (𝔼‘𝑁)(𝑞 Btwn ⟨𝑃, 𝐶⟩ ∧ 𝑞 Btwn ⟨𝐵, 𝐸⟩)))
Distinct variable groups:   𝐴,𝑞   𝐵,𝑞   𝐶,𝑞   𝐷,𝑞   𝐸,𝑞   𝑁,𝑞   𝑃,𝑞

Proof of Theorem trisegint
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1188 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → 𝑁 ∈ ℕ)
2 simpl23 1250 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → 𝐶 ∈ (𝔼‘𝑁))
3 simpl21 1248 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → 𝐴 ∈ (𝔼‘𝑁))
4 simpl31 1251 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → 𝐷 ∈ (𝔼‘𝑁))
52, 3, 43jca 1125 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))
6 simpl32 1252 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → 𝐸 ∈ (𝔼‘𝑁))
7 simpl33 1253 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → 𝑃 ∈ (𝔼‘𝑁))
86, 7jca 515 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → (𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)))
91, 5, 83jca 1125 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → (𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))))
10 simpr2 1192 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → 𝐸 Btwn ⟨𝐷, 𝐶⟩)
11 btwncom 33583 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐸 Btwn ⟨𝐷, 𝐶⟩ ↔ 𝐸 Btwn ⟨𝐶, 𝐷⟩))
121, 6, 4, 2, 11syl13anc 1369 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → (𝐸 Btwn ⟨𝐷, 𝐶⟩ ↔ 𝐸 Btwn ⟨𝐶, 𝐷⟩))
1310, 12mpbid 235 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → 𝐸 Btwn ⟨𝐶, 𝐷⟩)
14 simpr3 1193 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → 𝑃 Btwn ⟨𝐴, 𝐷⟩)
1513, 14jca 515 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → (𝐸 Btwn ⟨𝐶, 𝐷⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩))
16 axpasch 26738 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → ((𝐸 Btwn ⟨𝐶, 𝐷⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩) → ∃𝑟 ∈ (𝔼‘𝑁)(𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)))
179, 15, 16sylc 65 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → ∃𝑟 ∈ (𝔼‘𝑁)(𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩))
18 simp1l1 1263 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → 𝑁 ∈ ℕ)
1963ad2ant1 1130 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → 𝐸 ∈ (𝔼‘𝑁))
2023ad2ant1 1130 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → 𝐶 ∈ (𝔼‘𝑁))
2133ad2ant1 1130 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → 𝐴 ∈ (𝔼‘𝑁))
2219, 20, 213jca 1125 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)))
23 simp2 1134 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → 𝑟 ∈ (𝔼‘𝑁))
24 simpl22 1249 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → 𝐵 ∈ (𝔼‘𝑁))
25243ad2ant1 1130 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → 𝐵 ∈ (𝔼‘𝑁))
2623, 25jca 515 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → (𝑟 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)))
2718, 22, 263jca 1125 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → (𝑁 ∈ ℕ ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))))
28 simp3l 1198 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → 𝑟 Btwn ⟨𝐸, 𝐴⟩)
29 simp1r1 1266 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)
30 btwncom 33583 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ 𝐵 Btwn ⟨𝐶, 𝐴⟩))
3118, 25, 21, 20, 30syl13anc 1369 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ 𝐵 Btwn ⟨𝐶, 𝐴⟩))
3229, 31mpbid 235 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → 𝐵 Btwn ⟨𝐶, 𝐴⟩)
3328, 32jca 515 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝐵 Btwn ⟨𝐶, 𝐴⟩))
34 axpasch 26738 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → ((𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝐵 Btwn ⟨𝐶, 𝐴⟩) → ∃𝑞 ∈ (𝔼‘𝑁)(𝑞 Btwn ⟨𝑟, 𝐶⟩ ∧ 𝑞 Btwn ⟨𝐵, 𝐸⟩)))
3527, 33, 34sylc 65 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → ∃𝑞 ∈ (𝔼‘𝑁)(𝑞 Btwn ⟨𝑟, 𝐶⟩ ∧ 𝑞 Btwn ⟨𝐵, 𝐸⟩))
36 simpll1 1209 . . . . . . . . . . 11 ((((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) ∧ 𝑞 ∈ (𝔼‘𝑁)) ∧ 𝑞 Btwn ⟨𝑟, 𝐶⟩) → ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)))
3736, 1syl 17 . . . . . . . . . 10 ((((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) ∧ 𝑞 ∈ (𝔼‘𝑁)) ∧ 𝑞 Btwn ⟨𝑟, 𝐶⟩) → 𝑁 ∈ ℕ)
3836, 7syl 17 . . . . . . . . . . 11 ((((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) ∧ 𝑞 ∈ (𝔼‘𝑁)) ∧ 𝑞 Btwn ⟨𝑟, 𝐶⟩) → 𝑃 ∈ (𝔼‘𝑁))
39 simpll2 1210 . . . . . . . . . . 11 ((((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) ∧ 𝑞 ∈ (𝔼‘𝑁)) ∧ 𝑞 Btwn ⟨𝑟, 𝐶⟩) → 𝑟 ∈ (𝔼‘𝑁))
4038, 39jca 515 . . . . . . . . . 10 ((((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) ∧ 𝑞 ∈ (𝔼‘𝑁)) ∧ 𝑞 Btwn ⟨𝑟, 𝐶⟩) → (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑟 ∈ (𝔼‘𝑁)))
41 simplr 768 . . . . . . . . . . 11 ((((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) ∧ 𝑞 ∈ (𝔼‘𝑁)) ∧ 𝑞 Btwn ⟨𝑟, 𝐶⟩) → 𝑞 ∈ (𝔼‘𝑁))
4236, 2syl 17 . . . . . . . . . . 11 ((((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) ∧ 𝑞 ∈ (𝔼‘𝑁)) ∧ 𝑞 Btwn ⟨𝑟, 𝐶⟩) → 𝐶 ∈ (𝔼‘𝑁))
4341, 42jca 515 . . . . . . . . . 10 ((((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) ∧ 𝑞 ∈ (𝔼‘𝑁)) ∧ 𝑞 Btwn ⟨𝑟, 𝐶⟩) → (𝑞 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)))
4437, 40, 433jca 1125 . . . . . . . . 9 ((((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) ∧ 𝑞 ∈ (𝔼‘𝑁)) ∧ 𝑞 Btwn ⟨𝑟, 𝐶⟩) → (𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑟 ∈ (𝔼‘𝑁)) ∧ (𝑞 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))))
45 simpl3r 1226 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) ∧ 𝑞 ∈ (𝔼‘𝑁)) → 𝑟 Btwn ⟨𝑃, 𝐶⟩)
4645anim1i 617 . . . . . . . . 9 ((((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) ∧ 𝑞 ∈ (𝔼‘𝑁)) ∧ 𝑞 Btwn ⟨𝑟, 𝐶⟩) → (𝑟 Btwn ⟨𝑃, 𝐶⟩ ∧ 𝑞 Btwn ⟨𝑟, 𝐶⟩))
47 btwnexch2 33592 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑟 ∈ (𝔼‘𝑁)) ∧ (𝑞 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((𝑟 Btwn ⟨𝑃, 𝐶⟩ ∧ 𝑞 Btwn ⟨𝑟, 𝐶⟩) → 𝑞 Btwn ⟨𝑃, 𝐶⟩))
4844, 46, 47sylc 65 . . . . . . . 8 ((((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) ∧ 𝑞 ∈ (𝔼‘𝑁)) ∧ 𝑞 Btwn ⟨𝑟, 𝐶⟩) → 𝑞 Btwn ⟨𝑃, 𝐶⟩)
4948ex 416 . . . . . . 7 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) ∧ 𝑞 ∈ (𝔼‘𝑁)) → (𝑞 Btwn ⟨𝑟, 𝐶⟩ → 𝑞 Btwn ⟨𝑃, 𝐶⟩))
5049anim1d 613 . . . . . 6 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) ∧ 𝑞 ∈ (𝔼‘𝑁)) → ((𝑞 Btwn ⟨𝑟, 𝐶⟩ ∧ 𝑞 Btwn ⟨𝐵, 𝐸⟩) → (𝑞 Btwn ⟨𝑃, 𝐶⟩ ∧ 𝑞 Btwn ⟨𝐵, 𝐸⟩)))
5150reximdva 3236 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → (∃𝑞 ∈ (𝔼‘𝑁)(𝑞 Btwn ⟨𝑟, 𝐶⟩ ∧ 𝑞 Btwn ⟨𝐵, 𝐸⟩) → ∃𝑞 ∈ (𝔼‘𝑁)(𝑞 Btwn ⟨𝑃, 𝐶⟩ ∧ 𝑞 Btwn ⟨𝐵, 𝐸⟩)))
5235, 51mpd 15 . . . 4 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → ∃𝑞 ∈ (𝔼‘𝑁)(𝑞 Btwn ⟨𝑃, 𝐶⟩ ∧ 𝑞 Btwn ⟨𝐵, 𝐸⟩))
5352rexlimdv3a 3248 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → (∃𝑟 ∈ (𝔼‘𝑁)(𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩) → ∃𝑞 ∈ (𝔼‘𝑁)(𝑞 Btwn ⟨𝑃, 𝐶⟩ ∧ 𝑞 Btwn ⟨𝐵, 𝐸⟩)))
5417, 53mpd 15 . 2 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → ∃𝑞 ∈ (𝔼‘𝑁)(𝑞 Btwn ⟨𝑃, 𝐶⟩ ∧ 𝑞 Btwn ⟨𝐵, 𝐸⟩))
5554ex 416 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩) → ∃𝑞 ∈ (𝔼‘𝑁)(𝑞 Btwn ⟨𝑃, 𝐶⟩ ∧ 𝑞 Btwn ⟨𝐵, 𝐸⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084  wcel 2112  wrex 3110  cop 4534   class class class wbr 5033  cfv 6328  cn 11629  𝔼cee 26685   Btwn cbtwn 26686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-seq 13369  df-exp 13430  df-hash 13691  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840  df-sum 15038  df-ee 26688  df-btwn 26689  df-cgr 26690  df-ofs 33552
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator