Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trisegint Structured version   Visualization version   GIF version

Theorem trisegint 34988
Description: A line segment between two sides of a triange intersects a segment crossing from the remaining side to the opposite vertex. Theorem 3.17 of [Schwabhauser] p. 33. (Contributed by Scott Fenton, 24-Sep-2013.)
Assertion
Ref Expression
trisegint ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) β†’ ((𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩) β†’ βˆƒπ‘ž ∈ (π”Όβ€˜π‘)(π‘ž Btwn βŸ¨π‘ƒ, 𝐢⟩ ∧ π‘ž Btwn ⟨𝐡, 𝐸⟩)))
Distinct variable groups:   𝐴,π‘ž   𝐡,π‘ž   𝐢,π‘ž   𝐷,π‘ž   𝐸,π‘ž   𝑁,π‘ž   𝑃,π‘ž

Proof of Theorem trisegint
Dummy variable π‘Ÿ is distinct from all other variables.
StepHypRef Expression
1 simpl1 1191 . . . . 5 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) β†’ 𝑁 ∈ β„•)
2 simpl23 1253 . . . . . 6 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) β†’ 𝐢 ∈ (π”Όβ€˜π‘))
3 simpl21 1251 . . . . . 6 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) β†’ 𝐴 ∈ (π”Όβ€˜π‘))
4 simpl31 1254 . . . . . 6 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) β†’ 𝐷 ∈ (π”Όβ€˜π‘))
52, 3, 43jca 1128 . . . . 5 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) β†’ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐷 ∈ (π”Όβ€˜π‘)))
6 simpl32 1255 . . . . . 6 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) β†’ 𝐸 ∈ (π”Όβ€˜π‘))
7 simpl33 1256 . . . . . 6 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) β†’ 𝑃 ∈ (π”Όβ€˜π‘))
86, 7jca 512 . . . . 5 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) β†’ (𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘)))
91, 5, 83jca 1128 . . . 4 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) β†’ (𝑁 ∈ β„• ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐷 ∈ (π”Όβ€˜π‘)) ∧ (𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))))
10 simpr2 1195 . . . . . 6 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) β†’ 𝐸 Btwn ⟨𝐷, 𝐢⟩)
11 btwncom 34974 . . . . . . 7 ((𝑁 ∈ β„• ∧ (𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) β†’ (𝐸 Btwn ⟨𝐷, 𝐢⟩ ↔ 𝐸 Btwn ⟨𝐢, 𝐷⟩))
121, 6, 4, 2, 11syl13anc 1372 . . . . . 6 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) β†’ (𝐸 Btwn ⟨𝐷, 𝐢⟩ ↔ 𝐸 Btwn ⟨𝐢, 𝐷⟩))
1310, 12mpbid 231 . . . . 5 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) β†’ 𝐸 Btwn ⟨𝐢, 𝐷⟩)
14 simpr3 1196 . . . . 5 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) β†’ 𝑃 Btwn ⟨𝐴, 𝐷⟩)
1513, 14jca 512 . . . 4 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) β†’ (𝐸 Btwn ⟨𝐢, 𝐷⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩))
16 axpasch 28188 . . . 4 ((𝑁 ∈ β„• ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐷 ∈ (π”Όβ€˜π‘)) ∧ (𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) β†’ ((𝐸 Btwn ⟨𝐢, 𝐷⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩) β†’ βˆƒπ‘Ÿ ∈ (π”Όβ€˜π‘)(π‘Ÿ Btwn ⟨𝐸, 𝐴⟩ ∧ π‘Ÿ Btwn βŸ¨π‘ƒ, 𝐢⟩)))
179, 15, 16sylc 65 . . 3 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) β†’ βˆƒπ‘Ÿ ∈ (π”Όβ€˜π‘)(π‘Ÿ Btwn ⟨𝐸, 𝐴⟩ ∧ π‘Ÿ Btwn βŸ¨π‘ƒ, 𝐢⟩))
18 simp1l1 1266 . . . . . . 7 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ π‘Ÿ ∈ (π”Όβ€˜π‘) ∧ (π‘Ÿ Btwn ⟨𝐸, 𝐴⟩ ∧ π‘Ÿ Btwn βŸ¨π‘ƒ, 𝐢⟩)) β†’ 𝑁 ∈ β„•)
1963ad2ant1 1133 . . . . . . . 8 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ π‘Ÿ ∈ (π”Όβ€˜π‘) ∧ (π‘Ÿ Btwn ⟨𝐸, 𝐴⟩ ∧ π‘Ÿ Btwn βŸ¨π‘ƒ, 𝐢⟩)) β†’ 𝐸 ∈ (π”Όβ€˜π‘))
2023ad2ant1 1133 . . . . . . . 8 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ π‘Ÿ ∈ (π”Όβ€˜π‘) ∧ (π‘Ÿ Btwn ⟨𝐸, 𝐴⟩ ∧ π‘Ÿ Btwn βŸ¨π‘ƒ, 𝐢⟩)) β†’ 𝐢 ∈ (π”Όβ€˜π‘))
2133ad2ant1 1133 . . . . . . . 8 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ π‘Ÿ ∈ (π”Όβ€˜π‘) ∧ (π‘Ÿ Btwn ⟨𝐸, 𝐴⟩ ∧ π‘Ÿ Btwn βŸ¨π‘ƒ, 𝐢⟩)) β†’ 𝐴 ∈ (π”Όβ€˜π‘))
2219, 20, 213jca 1128 . . . . . . 7 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ π‘Ÿ ∈ (π”Όβ€˜π‘) ∧ (π‘Ÿ Btwn ⟨𝐸, 𝐴⟩ ∧ π‘Ÿ Btwn βŸ¨π‘ƒ, 𝐢⟩)) β†’ (𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘)))
23 simp2 1137 . . . . . . . 8 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ π‘Ÿ ∈ (π”Όβ€˜π‘) ∧ (π‘Ÿ Btwn ⟨𝐸, 𝐴⟩ ∧ π‘Ÿ Btwn βŸ¨π‘ƒ, 𝐢⟩)) β†’ π‘Ÿ ∈ (π”Όβ€˜π‘))
24 simpl22 1252 . . . . . . . . 9 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) β†’ 𝐡 ∈ (π”Όβ€˜π‘))
25243ad2ant1 1133 . . . . . . . 8 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ π‘Ÿ ∈ (π”Όβ€˜π‘) ∧ (π‘Ÿ Btwn ⟨𝐸, 𝐴⟩ ∧ π‘Ÿ Btwn βŸ¨π‘ƒ, 𝐢⟩)) β†’ 𝐡 ∈ (π”Όβ€˜π‘))
2623, 25jca 512 . . . . . . 7 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ π‘Ÿ ∈ (π”Όβ€˜π‘) ∧ (π‘Ÿ Btwn ⟨𝐸, 𝐴⟩ ∧ π‘Ÿ Btwn βŸ¨π‘ƒ, 𝐢⟩)) β†’ (π‘Ÿ ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)))
2718, 22, 263jca 1128 . . . . . 6 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ π‘Ÿ ∈ (π”Όβ€˜π‘) ∧ (π‘Ÿ Btwn ⟨𝐸, 𝐴⟩ ∧ π‘Ÿ Btwn βŸ¨π‘ƒ, 𝐢⟩)) β†’ (𝑁 ∈ β„• ∧ (𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘)) ∧ (π‘Ÿ ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))))
28 simp3l 1201 . . . . . . 7 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ π‘Ÿ ∈ (π”Όβ€˜π‘) ∧ (π‘Ÿ Btwn ⟨𝐸, 𝐴⟩ ∧ π‘Ÿ Btwn βŸ¨π‘ƒ, 𝐢⟩)) β†’ π‘Ÿ Btwn ⟨𝐸, 𝐴⟩)
29 simp1r1 1269 . . . . . . . 8 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ π‘Ÿ ∈ (π”Όβ€˜π‘) ∧ (π‘Ÿ Btwn ⟨𝐸, 𝐴⟩ ∧ π‘Ÿ Btwn βŸ¨π‘ƒ, 𝐢⟩)) β†’ 𝐡 Btwn ⟨𝐴, 𝐢⟩)
30 btwncom 34974 . . . . . . . . 9 ((𝑁 ∈ β„• ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) β†’ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ↔ 𝐡 Btwn ⟨𝐢, 𝐴⟩))
3118, 25, 21, 20, 30syl13anc 1372 . . . . . . . 8 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ π‘Ÿ ∈ (π”Όβ€˜π‘) ∧ (π‘Ÿ Btwn ⟨𝐸, 𝐴⟩ ∧ π‘Ÿ Btwn βŸ¨π‘ƒ, 𝐢⟩)) β†’ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ↔ 𝐡 Btwn ⟨𝐢, 𝐴⟩))
3229, 31mpbid 231 . . . . . . 7 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ π‘Ÿ ∈ (π”Όβ€˜π‘) ∧ (π‘Ÿ Btwn ⟨𝐸, 𝐴⟩ ∧ π‘Ÿ Btwn βŸ¨π‘ƒ, 𝐢⟩)) β†’ 𝐡 Btwn ⟨𝐢, 𝐴⟩)
3328, 32jca 512 . . . . . 6 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ π‘Ÿ ∈ (π”Όβ€˜π‘) ∧ (π‘Ÿ Btwn ⟨𝐸, 𝐴⟩ ∧ π‘Ÿ Btwn βŸ¨π‘ƒ, 𝐢⟩)) β†’ (π‘Ÿ Btwn ⟨𝐸, 𝐴⟩ ∧ 𝐡 Btwn ⟨𝐢, 𝐴⟩))
34 axpasch 28188 . . . . . 6 ((𝑁 ∈ β„• ∧ (𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘)) ∧ (π‘Ÿ ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) β†’ ((π‘Ÿ Btwn ⟨𝐸, 𝐴⟩ ∧ 𝐡 Btwn ⟨𝐢, 𝐴⟩) β†’ βˆƒπ‘ž ∈ (π”Όβ€˜π‘)(π‘ž Btwn βŸ¨π‘Ÿ, 𝐢⟩ ∧ π‘ž Btwn ⟨𝐡, 𝐸⟩)))
3527, 33, 34sylc 65 . . . . 5 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ π‘Ÿ ∈ (π”Όβ€˜π‘) ∧ (π‘Ÿ Btwn ⟨𝐸, 𝐴⟩ ∧ π‘Ÿ Btwn βŸ¨π‘ƒ, 𝐢⟩)) β†’ βˆƒπ‘ž ∈ (π”Όβ€˜π‘)(π‘ž Btwn βŸ¨π‘Ÿ, 𝐢⟩ ∧ π‘ž Btwn ⟨𝐡, 𝐸⟩))
36 simpll1 1212 . . . . . . . . . . 11 ((((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ π‘Ÿ ∈ (π”Όβ€˜π‘) ∧ (π‘Ÿ Btwn ⟨𝐸, 𝐴⟩ ∧ π‘Ÿ Btwn βŸ¨π‘ƒ, 𝐢⟩)) ∧ π‘ž ∈ (π”Όβ€˜π‘)) ∧ π‘ž Btwn βŸ¨π‘Ÿ, 𝐢⟩) β†’ ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)))
3736, 1syl 17 . . . . . . . . . 10 ((((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ π‘Ÿ ∈ (π”Όβ€˜π‘) ∧ (π‘Ÿ Btwn ⟨𝐸, 𝐴⟩ ∧ π‘Ÿ Btwn βŸ¨π‘ƒ, 𝐢⟩)) ∧ π‘ž ∈ (π”Όβ€˜π‘)) ∧ π‘ž Btwn βŸ¨π‘Ÿ, 𝐢⟩) β†’ 𝑁 ∈ β„•)
3836, 7syl 17 . . . . . . . . . . 11 ((((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ π‘Ÿ ∈ (π”Όβ€˜π‘) ∧ (π‘Ÿ Btwn ⟨𝐸, 𝐴⟩ ∧ π‘Ÿ Btwn βŸ¨π‘ƒ, 𝐢⟩)) ∧ π‘ž ∈ (π”Όβ€˜π‘)) ∧ π‘ž Btwn βŸ¨π‘Ÿ, 𝐢⟩) β†’ 𝑃 ∈ (π”Όβ€˜π‘))
39 simpll2 1213 . . . . . . . . . . 11 ((((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ π‘Ÿ ∈ (π”Όβ€˜π‘) ∧ (π‘Ÿ Btwn ⟨𝐸, 𝐴⟩ ∧ π‘Ÿ Btwn βŸ¨π‘ƒ, 𝐢⟩)) ∧ π‘ž ∈ (π”Όβ€˜π‘)) ∧ π‘ž Btwn βŸ¨π‘Ÿ, 𝐢⟩) β†’ π‘Ÿ ∈ (π”Όβ€˜π‘))
4038, 39jca 512 . . . . . . . . . 10 ((((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ π‘Ÿ ∈ (π”Όβ€˜π‘) ∧ (π‘Ÿ Btwn ⟨𝐸, 𝐴⟩ ∧ π‘Ÿ Btwn βŸ¨π‘ƒ, 𝐢⟩)) ∧ π‘ž ∈ (π”Όβ€˜π‘)) ∧ π‘ž Btwn βŸ¨π‘Ÿ, 𝐢⟩) β†’ (𝑃 ∈ (π”Όβ€˜π‘) ∧ π‘Ÿ ∈ (π”Όβ€˜π‘)))
41 simplr 767 . . . . . . . . . . 11 ((((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ π‘Ÿ ∈ (π”Όβ€˜π‘) ∧ (π‘Ÿ Btwn ⟨𝐸, 𝐴⟩ ∧ π‘Ÿ Btwn βŸ¨π‘ƒ, 𝐢⟩)) ∧ π‘ž ∈ (π”Όβ€˜π‘)) ∧ π‘ž Btwn βŸ¨π‘Ÿ, 𝐢⟩) β†’ π‘ž ∈ (π”Όβ€˜π‘))
4236, 2syl 17 . . . . . . . . . . 11 ((((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ π‘Ÿ ∈ (π”Όβ€˜π‘) ∧ (π‘Ÿ Btwn ⟨𝐸, 𝐴⟩ ∧ π‘Ÿ Btwn βŸ¨π‘ƒ, 𝐢⟩)) ∧ π‘ž ∈ (π”Όβ€˜π‘)) ∧ π‘ž Btwn βŸ¨π‘Ÿ, 𝐢⟩) β†’ 𝐢 ∈ (π”Όβ€˜π‘))
4341, 42jca 512 . . . . . . . . . 10 ((((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ π‘Ÿ ∈ (π”Όβ€˜π‘) ∧ (π‘Ÿ Btwn ⟨𝐸, 𝐴⟩ ∧ π‘Ÿ Btwn βŸ¨π‘ƒ, 𝐢⟩)) ∧ π‘ž ∈ (π”Όβ€˜π‘)) ∧ π‘ž Btwn βŸ¨π‘Ÿ, 𝐢⟩) β†’ (π‘ž ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)))
4437, 40, 433jca 1128 . . . . . . . . 9 ((((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ π‘Ÿ ∈ (π”Όβ€˜π‘) ∧ (π‘Ÿ Btwn ⟨𝐸, 𝐴⟩ ∧ π‘Ÿ Btwn βŸ¨π‘ƒ, 𝐢⟩)) ∧ π‘ž ∈ (π”Όβ€˜π‘)) ∧ π‘ž Btwn βŸ¨π‘Ÿ, 𝐢⟩) β†’ (𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ π‘Ÿ ∈ (π”Όβ€˜π‘)) ∧ (π‘ž ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))))
45 simpl3r 1229 . . . . . . . . . 10 (((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ π‘Ÿ ∈ (π”Όβ€˜π‘) ∧ (π‘Ÿ Btwn ⟨𝐸, 𝐴⟩ ∧ π‘Ÿ Btwn βŸ¨π‘ƒ, 𝐢⟩)) ∧ π‘ž ∈ (π”Όβ€˜π‘)) β†’ π‘Ÿ Btwn βŸ¨π‘ƒ, 𝐢⟩)
4645anim1i 615 . . . . . . . . 9 ((((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ π‘Ÿ ∈ (π”Όβ€˜π‘) ∧ (π‘Ÿ Btwn ⟨𝐸, 𝐴⟩ ∧ π‘Ÿ Btwn βŸ¨π‘ƒ, 𝐢⟩)) ∧ π‘ž ∈ (π”Όβ€˜π‘)) ∧ π‘ž Btwn βŸ¨π‘Ÿ, 𝐢⟩) β†’ (π‘Ÿ Btwn βŸ¨π‘ƒ, 𝐢⟩ ∧ π‘ž Btwn βŸ¨π‘Ÿ, 𝐢⟩))
47 btwnexch2 34983 . . . . . . . . 9 ((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ π‘Ÿ ∈ (π”Όβ€˜π‘)) ∧ (π‘ž ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) β†’ ((π‘Ÿ Btwn βŸ¨π‘ƒ, 𝐢⟩ ∧ π‘ž Btwn βŸ¨π‘Ÿ, 𝐢⟩) β†’ π‘ž Btwn βŸ¨π‘ƒ, 𝐢⟩))
4844, 46, 47sylc 65 . . . . . . . 8 ((((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ π‘Ÿ ∈ (π”Όβ€˜π‘) ∧ (π‘Ÿ Btwn ⟨𝐸, 𝐴⟩ ∧ π‘Ÿ Btwn βŸ¨π‘ƒ, 𝐢⟩)) ∧ π‘ž ∈ (π”Όβ€˜π‘)) ∧ π‘ž Btwn βŸ¨π‘Ÿ, 𝐢⟩) β†’ π‘ž Btwn βŸ¨π‘ƒ, 𝐢⟩)
4948ex 413 . . . . . . 7 (((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ π‘Ÿ ∈ (π”Όβ€˜π‘) ∧ (π‘Ÿ Btwn ⟨𝐸, 𝐴⟩ ∧ π‘Ÿ Btwn βŸ¨π‘ƒ, 𝐢⟩)) ∧ π‘ž ∈ (π”Όβ€˜π‘)) β†’ (π‘ž Btwn βŸ¨π‘Ÿ, 𝐢⟩ β†’ π‘ž Btwn βŸ¨π‘ƒ, 𝐢⟩))
5049anim1d 611 . . . . . 6 (((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ π‘Ÿ ∈ (π”Όβ€˜π‘) ∧ (π‘Ÿ Btwn ⟨𝐸, 𝐴⟩ ∧ π‘Ÿ Btwn βŸ¨π‘ƒ, 𝐢⟩)) ∧ π‘ž ∈ (π”Όβ€˜π‘)) β†’ ((π‘ž Btwn βŸ¨π‘Ÿ, 𝐢⟩ ∧ π‘ž Btwn ⟨𝐡, 𝐸⟩) β†’ (π‘ž Btwn βŸ¨π‘ƒ, 𝐢⟩ ∧ π‘ž Btwn ⟨𝐡, 𝐸⟩)))
5150reximdva 3168 . . . . 5 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ π‘Ÿ ∈ (π”Όβ€˜π‘) ∧ (π‘Ÿ Btwn ⟨𝐸, 𝐴⟩ ∧ π‘Ÿ Btwn βŸ¨π‘ƒ, 𝐢⟩)) β†’ (βˆƒπ‘ž ∈ (π”Όβ€˜π‘)(π‘ž Btwn βŸ¨π‘Ÿ, 𝐢⟩ ∧ π‘ž Btwn ⟨𝐡, 𝐸⟩) β†’ βˆƒπ‘ž ∈ (π”Όβ€˜π‘)(π‘ž Btwn βŸ¨π‘ƒ, 𝐢⟩ ∧ π‘ž Btwn ⟨𝐡, 𝐸⟩)))
5235, 51mpd 15 . . . 4 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ π‘Ÿ ∈ (π”Όβ€˜π‘) ∧ (π‘Ÿ Btwn ⟨𝐸, 𝐴⟩ ∧ π‘Ÿ Btwn βŸ¨π‘ƒ, 𝐢⟩)) β†’ βˆƒπ‘ž ∈ (π”Όβ€˜π‘)(π‘ž Btwn βŸ¨π‘ƒ, 𝐢⟩ ∧ π‘ž Btwn ⟨𝐡, 𝐸⟩))
5352rexlimdv3a 3159 . . 3 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) β†’ (βˆƒπ‘Ÿ ∈ (π”Όβ€˜π‘)(π‘Ÿ Btwn ⟨𝐸, 𝐴⟩ ∧ π‘Ÿ Btwn βŸ¨π‘ƒ, 𝐢⟩) β†’ βˆƒπ‘ž ∈ (π”Όβ€˜π‘)(π‘ž Btwn βŸ¨π‘ƒ, 𝐢⟩ ∧ π‘ž Btwn ⟨𝐡, 𝐸⟩)))
5417, 53mpd 15 . 2 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) β†’ βˆƒπ‘ž ∈ (π”Όβ€˜π‘)(π‘ž Btwn βŸ¨π‘ƒ, 𝐢⟩ ∧ π‘ž Btwn ⟨𝐡, 𝐸⟩))
5554ex 413 1 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) β†’ ((𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩) β†’ βˆƒπ‘ž ∈ (π”Όβ€˜π‘)(π‘ž Btwn βŸ¨π‘ƒ, 𝐢⟩ ∧ π‘ž Btwn ⟨𝐡, 𝐸⟩)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   ∈ wcel 2106  βˆƒwrex 3070  βŸ¨cop 4633   class class class wbr 5147  β€˜cfv 6540  β„•cn 12208  π”Όcee 28135   Btwn cbtwn 28136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-sum 15629  df-ee 28138  df-btwn 28139  df-cgr 28140  df-ofs 34943
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator