Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trisegint Structured version   Visualization version   GIF version

Theorem trisegint 32461
Description: A line segment between two sides of a triange intersects a segment crossing from the remaining side to the opposite vertex. Theorem 3.17 of [Schwabhauser] p. 33. (Contributed by Scott Fenton, 24-Sep-2013.)
Assertion
Ref Expression
trisegint ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩) → ∃𝑞 ∈ (𝔼‘𝑁)(𝑞 Btwn ⟨𝑃, 𝐶⟩ ∧ 𝑞 Btwn ⟨𝐵, 𝐸⟩)))
Distinct variable groups:   𝐴,𝑞   𝐵,𝑞   𝐶,𝑞   𝐷,𝑞   𝐸,𝑞   𝑁,𝑞   𝑃,𝑞

Proof of Theorem trisegint
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1235 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → 𝑁 ∈ ℕ)
2 simpl23 1332 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → 𝐶 ∈ (𝔼‘𝑁))
3 simpl21 1328 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → 𝐴 ∈ (𝔼‘𝑁))
4 simpl31 1334 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → 𝐷 ∈ (𝔼‘𝑁))
52, 3, 43jca 1151 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))
6 simpl32 1336 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → 𝐸 ∈ (𝔼‘𝑁))
7 simpl33 1338 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → 𝑃 ∈ (𝔼‘𝑁))
86, 7jca 503 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → (𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)))
91, 5, 83jca 1151 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → (𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))))
10 simpr2 1243 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → 𝐸 Btwn ⟨𝐷, 𝐶⟩)
11 btwncom 32447 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐸 Btwn ⟨𝐷, 𝐶⟩ ↔ 𝐸 Btwn ⟨𝐶, 𝐷⟩))
121, 6, 4, 2, 11syl13anc 1484 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → (𝐸 Btwn ⟨𝐷, 𝐶⟩ ↔ 𝐸 Btwn ⟨𝐶, 𝐷⟩))
1310, 12mpbid 223 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → 𝐸 Btwn ⟨𝐶, 𝐷⟩)
14 simpr3 1245 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → 𝑃 Btwn ⟨𝐴, 𝐷⟩)
1513, 14jca 503 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → (𝐸 Btwn ⟨𝐶, 𝐷⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩))
16 axpasch 26041 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → ((𝐸 Btwn ⟨𝐶, 𝐷⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩) → ∃𝑟 ∈ (𝔼‘𝑁)(𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)))
179, 15, 16sylc 65 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → ∃𝑟 ∈ (𝔼‘𝑁)(𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩))
18 simp1l1 1358 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → 𝑁 ∈ ℕ)
1963ad2ant1 1156 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → 𝐸 ∈ (𝔼‘𝑁))
2023ad2ant1 1156 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → 𝐶 ∈ (𝔼‘𝑁))
2133ad2ant1 1156 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → 𝐴 ∈ (𝔼‘𝑁))
2219, 20, 213jca 1151 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)))
23 simp2 1160 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → 𝑟 ∈ (𝔼‘𝑁))
24 simpl22 1330 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → 𝐵 ∈ (𝔼‘𝑁))
25243ad2ant1 1156 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → 𝐵 ∈ (𝔼‘𝑁))
2623, 25jca 503 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → (𝑟 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)))
2718, 22, 263jca 1151 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → (𝑁 ∈ ℕ ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))))
28 simp3l 1251 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → 𝑟 Btwn ⟨𝐸, 𝐴⟩)
29 simp1r1 1361 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)
30 btwncom 32447 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ 𝐵 Btwn ⟨𝐶, 𝐴⟩))
3118, 25, 21, 20, 30syl13anc 1484 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ 𝐵 Btwn ⟨𝐶, 𝐴⟩))
3229, 31mpbid 223 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → 𝐵 Btwn ⟨𝐶, 𝐴⟩)
3328, 32jca 503 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝐵 Btwn ⟨𝐶, 𝐴⟩))
34 axpasch 26041 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → ((𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝐵 Btwn ⟨𝐶, 𝐴⟩) → ∃𝑞 ∈ (𝔼‘𝑁)(𝑞 Btwn ⟨𝑟, 𝐶⟩ ∧ 𝑞 Btwn ⟨𝐵, 𝐸⟩)))
3527, 33, 34sylc 65 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → ∃𝑞 ∈ (𝔼‘𝑁)(𝑞 Btwn ⟨𝑟, 𝐶⟩ ∧ 𝑞 Btwn ⟨𝐵, 𝐸⟩))
36 simpll1 1262 . . . . . . . . . . 11 ((((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) ∧ 𝑞 ∈ (𝔼‘𝑁)) ∧ 𝑞 Btwn ⟨𝑟, 𝐶⟩) → ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)))
3736, 1syl 17 . . . . . . . . . 10 ((((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) ∧ 𝑞 ∈ (𝔼‘𝑁)) ∧ 𝑞 Btwn ⟨𝑟, 𝐶⟩) → 𝑁 ∈ ℕ)
3836, 7syl 17 . . . . . . . . . . 11 ((((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) ∧ 𝑞 ∈ (𝔼‘𝑁)) ∧ 𝑞 Btwn ⟨𝑟, 𝐶⟩) → 𝑃 ∈ (𝔼‘𝑁))
39 simpll2 1264 . . . . . . . . . . 11 ((((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) ∧ 𝑞 ∈ (𝔼‘𝑁)) ∧ 𝑞 Btwn ⟨𝑟, 𝐶⟩) → 𝑟 ∈ (𝔼‘𝑁))
4038, 39jca 503 . . . . . . . . . 10 ((((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) ∧ 𝑞 ∈ (𝔼‘𝑁)) ∧ 𝑞 Btwn ⟨𝑟, 𝐶⟩) → (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑟 ∈ (𝔼‘𝑁)))
41 simplr 776 . . . . . . . . . . 11 ((((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) ∧ 𝑞 ∈ (𝔼‘𝑁)) ∧ 𝑞 Btwn ⟨𝑟, 𝐶⟩) → 𝑞 ∈ (𝔼‘𝑁))
4236, 2syl 17 . . . . . . . . . . 11 ((((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) ∧ 𝑞 ∈ (𝔼‘𝑁)) ∧ 𝑞 Btwn ⟨𝑟, 𝐶⟩) → 𝐶 ∈ (𝔼‘𝑁))
4341, 42jca 503 . . . . . . . . . 10 ((((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) ∧ 𝑞 ∈ (𝔼‘𝑁)) ∧ 𝑞 Btwn ⟨𝑟, 𝐶⟩) → (𝑞 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)))
4437, 40, 433jca 1151 . . . . . . . . 9 ((((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) ∧ 𝑞 ∈ (𝔼‘𝑁)) ∧ 𝑞 Btwn ⟨𝑟, 𝐶⟩) → (𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑟 ∈ (𝔼‘𝑁)) ∧ (𝑞 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))))
45 simpl3r 1296 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) ∧ 𝑞 ∈ (𝔼‘𝑁)) → 𝑟 Btwn ⟨𝑃, 𝐶⟩)
4645anim1i 604 . . . . . . . . 9 ((((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) ∧ 𝑞 ∈ (𝔼‘𝑁)) ∧ 𝑞 Btwn ⟨𝑟, 𝐶⟩) → (𝑟 Btwn ⟨𝑃, 𝐶⟩ ∧ 𝑞 Btwn ⟨𝑟, 𝐶⟩))
47 btwnexch2 32456 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑟 ∈ (𝔼‘𝑁)) ∧ (𝑞 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((𝑟 Btwn ⟨𝑃, 𝐶⟩ ∧ 𝑞 Btwn ⟨𝑟, 𝐶⟩) → 𝑞 Btwn ⟨𝑃, 𝐶⟩))
4844, 46, 47sylc 65 . . . . . . . 8 ((((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) ∧ 𝑞 ∈ (𝔼‘𝑁)) ∧ 𝑞 Btwn ⟨𝑟, 𝐶⟩) → 𝑞 Btwn ⟨𝑃, 𝐶⟩)
4948ex 399 . . . . . . 7 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) ∧ 𝑞 ∈ (𝔼‘𝑁)) → (𝑞 Btwn ⟨𝑟, 𝐶⟩ → 𝑞 Btwn ⟨𝑃, 𝐶⟩))
5049anim1d 600 . . . . . 6 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) ∧ 𝑞 ∈ (𝔼‘𝑁)) → ((𝑞 Btwn ⟨𝑟, 𝐶⟩ ∧ 𝑞 Btwn ⟨𝐵, 𝐸⟩) → (𝑞 Btwn ⟨𝑃, 𝐶⟩ ∧ 𝑞 Btwn ⟨𝐵, 𝐸⟩)))
5150reximdva 3211 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → (∃𝑞 ∈ (𝔼‘𝑁)(𝑞 Btwn ⟨𝑟, 𝐶⟩ ∧ 𝑞 Btwn ⟨𝐵, 𝐸⟩) → ∃𝑞 ∈ (𝔼‘𝑁)(𝑞 Btwn ⟨𝑃, 𝐶⟩ ∧ 𝑞 Btwn ⟨𝐵, 𝐸⟩)))
5235, 51mpd 15 . . . 4 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → ∃𝑞 ∈ (𝔼‘𝑁)(𝑞 Btwn ⟨𝑃, 𝐶⟩ ∧ 𝑞 Btwn ⟨𝐵, 𝐸⟩))
5352rexlimdv3a 3228 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → (∃𝑟 ∈ (𝔼‘𝑁)(𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩) → ∃𝑞 ∈ (𝔼‘𝑁)(𝑞 Btwn ⟨𝑃, 𝐶⟩ ∧ 𝑞 Btwn ⟨𝐵, 𝐸⟩)))
5417, 53mpd 15 . 2 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → ∃𝑞 ∈ (𝔼‘𝑁)(𝑞 Btwn ⟨𝑃, 𝐶⟩ ∧ 𝑞 Btwn ⟨𝐵, 𝐸⟩))
5554ex 399 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩) → ∃𝑞 ∈ (𝔼‘𝑁)(𝑞 Btwn ⟨𝑃, 𝐶⟩ ∧ 𝑞 Btwn ⟨𝐵, 𝐸⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1100  wcel 2157  wrex 3104  cop 4383   class class class wbr 4851  cfv 6104  cn 11308  𝔼cee 25988   Btwn cbtwn 25989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2791  ax-rep 4971  ax-sep 4982  ax-nul 4990  ax-pow 5042  ax-pr 5103  ax-un 7182  ax-inf2 8788  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2638  df-clab 2800  df-cleq 2806  df-clel 2809  df-nfc 2944  df-ne 2986  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3400  df-sbc 3641  df-csb 3736  df-dif 3779  df-un 3781  df-in 3783  df-ss 3790  df-pss 3792  df-nul 4124  df-if 4287  df-pw 4360  df-sn 4378  df-pr 4380  df-tp 4382  df-op 4384  df-uni 4638  df-int 4677  df-iun 4721  df-br 4852  df-opab 4914  df-mpt 4931  df-tr 4954  df-id 5226  df-eprel 5231  df-po 5239  df-so 5240  df-fr 5277  df-se 5278  df-we 5279  df-xp 5324  df-rel 5325  df-cnv 5326  df-co 5327  df-dm 5328  df-rn 5329  df-res 5330  df-ima 5331  df-pred 5900  df-ord 5946  df-on 5947  df-lim 5948  df-suc 5949  df-iota 6067  df-fun 6106  df-fn 6107  df-f 6108  df-f1 6109  df-fo 6110  df-f1o 6111  df-fv 6112  df-isom 6113  df-riota 6838  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-om 7299  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-map 8097  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-sup 8590  df-oi 8657  df-card 9051  df-pnf 10364  df-mnf 10365  df-xr 10366  df-ltxr 10367  df-le 10368  df-sub 10556  df-neg 10557  df-div 10973  df-nn 11309  df-2 11367  df-3 11368  df-n0 11563  df-z 11647  df-uz 11908  df-rp 12050  df-ico 12402  df-icc 12403  df-fz 12553  df-fzo 12693  df-seq 13028  df-exp 13087  df-hash 13341  df-cj 14065  df-re 14066  df-im 14067  df-sqrt 14201  df-abs 14202  df-clim 14445  df-sum 14643  df-ee 25991  df-btwn 25992  df-cgr 25993  df-ofs 32416
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator