Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trisegint Structured version   Visualization version   GIF version

Theorem trisegint 35992
Description: A line segment between two sides of a triange intersects a segment crossing from the remaining side to the opposite vertex. Theorem 3.17 of [Schwabhauser] p. 33. (Contributed by Scott Fenton, 24-Sep-2013.)
Assertion
Ref Expression
trisegint ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩) → ∃𝑞 ∈ (𝔼‘𝑁)(𝑞 Btwn ⟨𝑃, 𝐶⟩ ∧ 𝑞 Btwn ⟨𝐵, 𝐸⟩)))
Distinct variable groups:   𝐴,𝑞   𝐵,𝑞   𝐶,𝑞   𝐷,𝑞   𝐸,𝑞   𝑁,𝑞   𝑃,𝑞

Proof of Theorem trisegint
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1191 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → 𝑁 ∈ ℕ)
2 simpl23 1253 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → 𝐶 ∈ (𝔼‘𝑁))
3 simpl21 1251 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → 𝐴 ∈ (𝔼‘𝑁))
4 simpl31 1254 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → 𝐷 ∈ (𝔼‘𝑁))
52, 3, 43jca 1128 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))
6 simpl32 1255 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → 𝐸 ∈ (𝔼‘𝑁))
7 simpl33 1256 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → 𝑃 ∈ (𝔼‘𝑁))
86, 7jca 511 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → (𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)))
91, 5, 83jca 1128 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → (𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))))
10 simpr2 1195 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → 𝐸 Btwn ⟨𝐷, 𝐶⟩)
11 btwncom 35978 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐸 Btwn ⟨𝐷, 𝐶⟩ ↔ 𝐸 Btwn ⟨𝐶, 𝐷⟩))
121, 6, 4, 2, 11syl13anc 1372 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → (𝐸 Btwn ⟨𝐷, 𝐶⟩ ↔ 𝐸 Btwn ⟨𝐶, 𝐷⟩))
1310, 12mpbid 232 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → 𝐸 Btwn ⟨𝐶, 𝐷⟩)
14 simpr3 1196 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → 𝑃 Btwn ⟨𝐴, 𝐷⟩)
1513, 14jca 511 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → (𝐸 Btwn ⟨𝐶, 𝐷⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩))
16 axpasch 28974 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → ((𝐸 Btwn ⟨𝐶, 𝐷⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩) → ∃𝑟 ∈ (𝔼‘𝑁)(𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)))
179, 15, 16sylc 65 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → ∃𝑟 ∈ (𝔼‘𝑁)(𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩))
18 simp1l1 1266 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → 𝑁 ∈ ℕ)
1963ad2ant1 1133 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → 𝐸 ∈ (𝔼‘𝑁))
2023ad2ant1 1133 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → 𝐶 ∈ (𝔼‘𝑁))
2133ad2ant1 1133 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → 𝐴 ∈ (𝔼‘𝑁))
2219, 20, 213jca 1128 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)))
23 simp2 1137 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → 𝑟 ∈ (𝔼‘𝑁))
24 simpl22 1252 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → 𝐵 ∈ (𝔼‘𝑁))
25243ad2ant1 1133 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → 𝐵 ∈ (𝔼‘𝑁))
2623, 25jca 511 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → (𝑟 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)))
2718, 22, 263jca 1128 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → (𝑁 ∈ ℕ ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))))
28 simp3l 1201 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → 𝑟 Btwn ⟨𝐸, 𝐴⟩)
29 simp1r1 1269 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)
30 btwncom 35978 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ 𝐵 Btwn ⟨𝐶, 𝐴⟩))
3118, 25, 21, 20, 30syl13anc 1372 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ 𝐵 Btwn ⟨𝐶, 𝐴⟩))
3229, 31mpbid 232 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → 𝐵 Btwn ⟨𝐶, 𝐴⟩)
3328, 32jca 511 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝐵 Btwn ⟨𝐶, 𝐴⟩))
34 axpasch 28974 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → ((𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝐵 Btwn ⟨𝐶, 𝐴⟩) → ∃𝑞 ∈ (𝔼‘𝑁)(𝑞 Btwn ⟨𝑟, 𝐶⟩ ∧ 𝑞 Btwn ⟨𝐵, 𝐸⟩)))
3527, 33, 34sylc 65 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → ∃𝑞 ∈ (𝔼‘𝑁)(𝑞 Btwn ⟨𝑟, 𝐶⟩ ∧ 𝑞 Btwn ⟨𝐵, 𝐸⟩))
36 simpll1 1212 . . . . . . . . . . 11 ((((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) ∧ 𝑞 ∈ (𝔼‘𝑁)) ∧ 𝑞 Btwn ⟨𝑟, 𝐶⟩) → ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)))
3736, 1syl 17 . . . . . . . . . 10 ((((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) ∧ 𝑞 ∈ (𝔼‘𝑁)) ∧ 𝑞 Btwn ⟨𝑟, 𝐶⟩) → 𝑁 ∈ ℕ)
3836, 7syl 17 . . . . . . . . . . 11 ((((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) ∧ 𝑞 ∈ (𝔼‘𝑁)) ∧ 𝑞 Btwn ⟨𝑟, 𝐶⟩) → 𝑃 ∈ (𝔼‘𝑁))
39 simpll2 1213 . . . . . . . . . . 11 ((((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) ∧ 𝑞 ∈ (𝔼‘𝑁)) ∧ 𝑞 Btwn ⟨𝑟, 𝐶⟩) → 𝑟 ∈ (𝔼‘𝑁))
4038, 39jca 511 . . . . . . . . . 10 ((((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) ∧ 𝑞 ∈ (𝔼‘𝑁)) ∧ 𝑞 Btwn ⟨𝑟, 𝐶⟩) → (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑟 ∈ (𝔼‘𝑁)))
41 simplr 768 . . . . . . . . . . 11 ((((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) ∧ 𝑞 ∈ (𝔼‘𝑁)) ∧ 𝑞 Btwn ⟨𝑟, 𝐶⟩) → 𝑞 ∈ (𝔼‘𝑁))
4236, 2syl 17 . . . . . . . . . . 11 ((((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) ∧ 𝑞 ∈ (𝔼‘𝑁)) ∧ 𝑞 Btwn ⟨𝑟, 𝐶⟩) → 𝐶 ∈ (𝔼‘𝑁))
4341, 42jca 511 . . . . . . . . . 10 ((((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) ∧ 𝑞 ∈ (𝔼‘𝑁)) ∧ 𝑞 Btwn ⟨𝑟, 𝐶⟩) → (𝑞 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)))
4437, 40, 433jca 1128 . . . . . . . . 9 ((((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) ∧ 𝑞 ∈ (𝔼‘𝑁)) ∧ 𝑞 Btwn ⟨𝑟, 𝐶⟩) → (𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑟 ∈ (𝔼‘𝑁)) ∧ (𝑞 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))))
45 simpl3r 1229 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) ∧ 𝑞 ∈ (𝔼‘𝑁)) → 𝑟 Btwn ⟨𝑃, 𝐶⟩)
4645anim1i 614 . . . . . . . . 9 ((((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) ∧ 𝑞 ∈ (𝔼‘𝑁)) ∧ 𝑞 Btwn ⟨𝑟, 𝐶⟩) → (𝑟 Btwn ⟨𝑃, 𝐶⟩ ∧ 𝑞 Btwn ⟨𝑟, 𝐶⟩))
47 btwnexch2 35987 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑟 ∈ (𝔼‘𝑁)) ∧ (𝑞 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((𝑟 Btwn ⟨𝑃, 𝐶⟩ ∧ 𝑞 Btwn ⟨𝑟, 𝐶⟩) → 𝑞 Btwn ⟨𝑃, 𝐶⟩))
4844, 46, 47sylc 65 . . . . . . . 8 ((((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) ∧ 𝑞 ∈ (𝔼‘𝑁)) ∧ 𝑞 Btwn ⟨𝑟, 𝐶⟩) → 𝑞 Btwn ⟨𝑃, 𝐶⟩)
4948ex 412 . . . . . . 7 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) ∧ 𝑞 ∈ (𝔼‘𝑁)) → (𝑞 Btwn ⟨𝑟, 𝐶⟩ → 𝑞 Btwn ⟨𝑃, 𝐶⟩))
5049anim1d 610 . . . . . 6 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) ∧ 𝑞 ∈ (𝔼‘𝑁)) → ((𝑞 Btwn ⟨𝑟, 𝐶⟩ ∧ 𝑞 Btwn ⟨𝐵, 𝐸⟩) → (𝑞 Btwn ⟨𝑃, 𝐶⟩ ∧ 𝑞 Btwn ⟨𝐵, 𝐸⟩)))
5150reximdva 3174 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → (∃𝑞 ∈ (𝔼‘𝑁)(𝑞 Btwn ⟨𝑟, 𝐶⟩ ∧ 𝑞 Btwn ⟨𝐵, 𝐸⟩) → ∃𝑞 ∈ (𝔼‘𝑁)(𝑞 Btwn ⟨𝑃, 𝐶⟩ ∧ 𝑞 Btwn ⟨𝐵, 𝐸⟩)))
5235, 51mpd 15 . . . 4 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩)) → ∃𝑞 ∈ (𝔼‘𝑁)(𝑞 Btwn ⟨𝑃, 𝐶⟩ ∧ 𝑞 Btwn ⟨𝐵, 𝐸⟩))
5352rexlimdv3a 3165 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → (∃𝑟 ∈ (𝔼‘𝑁)(𝑟 Btwn ⟨𝐸, 𝐴⟩ ∧ 𝑟 Btwn ⟨𝑃, 𝐶⟩) → ∃𝑞 ∈ (𝔼‘𝑁)(𝑞 Btwn ⟨𝑃, 𝐶⟩ ∧ 𝑞 Btwn ⟨𝐵, 𝐸⟩)))
5417, 53mpd 15 . 2 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩)) → ∃𝑞 ∈ (𝔼‘𝑁)(𝑞 Btwn ⟨𝑃, 𝐶⟩ ∧ 𝑞 Btwn ⟨𝐵, 𝐸⟩))
5554ex 412 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐷⟩) → ∃𝑞 ∈ (𝔼‘𝑁)(𝑞 Btwn ⟨𝑃, 𝐶⟩ ∧ 𝑞 Btwn ⟨𝐵, 𝐸⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wcel 2108  wrex 3076  cop 4654   class class class wbr 5166  cfv 6573  cn 12293  𝔼cee 28921   Btwn cbtwn 28922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-ee 28924  df-btwn 28925  df-cgr 28926  df-ofs 35947
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator