Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme20d Structured version   Visualization version   GIF version

Theorem cdleme20d 38821
Description: Part of proof of Lemma E in [Crawley] p. 113, last paragraph on p. 114, second line. 𝐷, 𝐹, π‘Œ, 𝐺 represent s2, f(s), t2, f(t). (Contributed by NM, 17-Nov-2012.)
Hypotheses
Ref Expression
cdleme19.l ≀ = (leβ€˜πΎ)
cdleme19.j ∨ = (joinβ€˜πΎ)
cdleme19.m ∧ = (meetβ€˜πΎ)
cdleme19.a 𝐴 = (Atomsβ€˜πΎ)
cdleme19.h 𝐻 = (LHypβ€˜πΎ)
cdleme19.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
cdleme19.f 𝐹 = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))
cdleme19.g 𝐺 = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))
cdleme19.d 𝐷 = ((𝑅 ∨ 𝑆) ∧ π‘Š)
cdleme19.y π‘Œ = ((𝑅 ∨ 𝑇) ∧ π‘Š)
cdleme20.v 𝑉 = ((𝑆 ∨ 𝑇) ∧ π‘Š)
Assertion
Ref Expression
cdleme20d ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ ((𝐹 ∨ 𝐺) ∧ (𝐷 ∨ π‘Œ)) = 𝑉)

Proof of Theorem cdleme20d
StepHypRef Expression
1 simp11l 1285 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝐾 ∈ HL)
2 hlol 37869 . . . 4 (𝐾 ∈ HL β†’ 𝐾 ∈ OL)
31, 2syl 17 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝐾 ∈ OL)
41hllatd 37872 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝐾 ∈ Lat)
5 simp11r 1286 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ π‘Š ∈ 𝐻)
6 simp12l 1287 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑃 ∈ 𝐴)
7 simp13l 1289 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑄 ∈ 𝐴)
8 simp21l 1291 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑆 ∈ 𝐴)
9 cdleme19.l . . . . . 6 ≀ = (leβ€˜πΎ)
10 cdleme19.j . . . . . 6 ∨ = (joinβ€˜πΎ)
11 cdleme19.m . . . . . 6 ∧ = (meetβ€˜πΎ)
12 cdleme19.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
13 cdleme19.h . . . . . 6 𝐻 = (LHypβ€˜πΎ)
14 cdleme19.u . . . . . 6 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
15 cdleme19.f . . . . . 6 𝐹 = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))
16 eqid 2733 . . . . . 6 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
179, 10, 11, 12, 13, 14, 15, 16cdleme1b 38735 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ 𝐹 ∈ (Baseβ€˜πΎ))
181, 5, 6, 7, 8, 17syl23anc 1378 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝐹 ∈ (Baseβ€˜πΎ))
19 simp22l 1293 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑇 ∈ 𝐴)
20 cdleme19.g . . . . . 6 𝐺 = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))
219, 10, 11, 12, 13, 14, 20, 16cdleme1b 38735 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) β†’ 𝐺 ∈ (Baseβ€˜πΎ))
221, 5, 6, 7, 19, 21syl23anc 1378 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝐺 ∈ (Baseβ€˜πΎ))
2316, 10latjcl 18333 . . . 4 ((𝐾 ∈ Lat ∧ 𝐹 ∈ (Baseβ€˜πΎ) ∧ 𝐺 ∈ (Baseβ€˜πΎ)) β†’ (𝐹 ∨ 𝐺) ∈ (Baseβ€˜πΎ))
244, 18, 22, 23syl3anc 1372 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝐹 ∨ 𝐺) ∈ (Baseβ€˜πΎ))
2516, 13lhpbase 38507 . . . 4 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ (Baseβ€˜πΎ))
265, 25syl 17 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ π‘Š ∈ (Baseβ€˜πΎ))
27 simp23l 1295 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑅 ∈ 𝐴)
2816, 10, 12hlatjcl 37875 . . . . 5 ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) β†’ (𝑅 ∨ 𝑆) ∈ (Baseβ€˜πΎ))
291, 27, 8, 28syl3anc 1372 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ∨ 𝑆) ∈ (Baseβ€˜πΎ))
3016, 12atbase 37797 . . . . 5 (𝑇 ∈ 𝐴 β†’ 𝑇 ∈ (Baseβ€˜πΎ))
3119, 30syl 17 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑇 ∈ (Baseβ€˜πΎ))
3216, 10latjcl 18333 . . . 4 ((𝐾 ∈ Lat ∧ (𝑅 ∨ 𝑆) ∈ (Baseβ€˜πΎ) ∧ 𝑇 ∈ (Baseβ€˜πΎ)) β†’ ((𝑅 ∨ 𝑆) ∨ 𝑇) ∈ (Baseβ€˜πΎ))
334, 29, 31, 32syl3anc 1372 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ ((𝑅 ∨ 𝑆) ∨ 𝑇) ∈ (Baseβ€˜πΎ))
3416, 11latmassOLD 37737 . . 3 ((𝐾 ∈ OL ∧ ((𝐹 ∨ 𝐺) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ) ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇) ∈ (Baseβ€˜πΎ))) β†’ (((𝐹 ∨ 𝐺) ∧ π‘Š) ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇)) = ((𝐹 ∨ 𝐺) ∧ (π‘Š ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇))))
353, 24, 26, 33, 34syl13anc 1373 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (((𝐹 ∨ 𝐺) ∧ π‘Š) ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇)) = ((𝐹 ∨ 𝐺) ∧ (π‘Š ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇))))
36 cdleme20.v . . . 4 𝑉 = ((𝑆 ∨ 𝑇) ∧ π‘Š)
379, 10, 12hlatlej2 37884 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) β†’ 𝑆 ≀ (𝑅 ∨ 𝑆))
381, 27, 8, 37syl3anc 1372 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑆 ≀ (𝑅 ∨ 𝑆))
3916, 12atbase 37797 . . . . . . . . 9 (𝑆 ∈ 𝐴 β†’ 𝑆 ∈ (Baseβ€˜πΎ))
408, 39syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑆 ∈ (Baseβ€˜πΎ))
4116, 9, 10latjlej1 18347 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Baseβ€˜πΎ) ∧ (𝑅 ∨ 𝑆) ∈ (Baseβ€˜πΎ) ∧ 𝑇 ∈ (Baseβ€˜πΎ))) β†’ (𝑆 ≀ (𝑅 ∨ 𝑆) β†’ (𝑆 ∨ 𝑇) ≀ ((𝑅 ∨ 𝑆) ∨ 𝑇)))
424, 40, 29, 31, 41syl13anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑆 ≀ (𝑅 ∨ 𝑆) β†’ (𝑆 ∨ 𝑇) ≀ ((𝑅 ∨ 𝑆) ∨ 𝑇)))
4338, 42mpd 15 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑆 ∨ 𝑇) ≀ ((𝑅 ∨ 𝑆) ∨ 𝑇))
4416, 10, 12hlatjcl 37875 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) β†’ (𝑆 ∨ 𝑇) ∈ (Baseβ€˜πΎ))
451, 8, 19, 44syl3anc 1372 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑆 ∨ 𝑇) ∈ (Baseβ€˜πΎ))
4616, 9, 11latleeqm1 18361 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑆 ∨ 𝑇) ∈ (Baseβ€˜πΎ) ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇) ∈ (Baseβ€˜πΎ)) β†’ ((𝑆 ∨ 𝑇) ≀ ((𝑅 ∨ 𝑆) ∨ 𝑇) ↔ ((𝑆 ∨ 𝑇) ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇)) = (𝑆 ∨ 𝑇)))
474, 45, 33, 46syl3anc 1372 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ ((𝑆 ∨ 𝑇) ≀ ((𝑅 ∨ 𝑆) ∨ 𝑇) ↔ ((𝑆 ∨ 𝑇) ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇)) = (𝑆 ∨ 𝑇)))
4843, 47mpbid 231 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ ((𝑆 ∨ 𝑇) ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇)) = (𝑆 ∨ 𝑇))
4948oveq1d 7373 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (((𝑆 ∨ 𝑇) ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇)) ∧ π‘Š) = ((𝑆 ∨ 𝑇) ∧ π‘Š))
5036, 49eqtr4id 2792 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑉 = (((𝑆 ∨ 𝑇) ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇)) ∧ π‘Š))
5116, 11latm32 37739 . . . . 5 ((𝐾 ∈ OL ∧ ((𝑆 ∨ 𝑇) ∈ (Baseβ€˜πΎ) ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ))) β†’ (((𝑆 ∨ 𝑇) ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇)) ∧ π‘Š) = (((𝑆 ∨ 𝑇) ∧ π‘Š) ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇)))
523, 45, 33, 26, 51syl13anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (((𝑆 ∨ 𝑇) ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇)) ∧ π‘Š) = (((𝑆 ∨ 𝑇) ∧ π‘Š) ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇)))
53 simp1 1137 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)))
54 simp21 1207 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š))
55 simp22 1208 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š))
56 simp31 1210 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇))
57 simp32l 1299 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))
58 simp32r 1300 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄))
599, 10, 11, 12, 13, 14, 15, 20cdleme16 38794 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇)) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄))) β†’ ((𝑆 ∨ 𝑇) ∧ π‘Š) = ((𝐹 ∨ 𝐺) ∧ π‘Š))
6053, 54, 55, 56, 57, 58, 59syl132anc 1389 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ ((𝑆 ∨ 𝑇) ∧ π‘Š) = ((𝐹 ∨ 𝐺) ∧ π‘Š))
6160oveq1d 7373 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (((𝑆 ∨ 𝑇) ∧ π‘Š) ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇)) = (((𝐹 ∨ 𝐺) ∧ π‘Š) ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇)))
6252, 61eqtrd 2773 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (((𝑆 ∨ 𝑇) ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇)) ∧ π‘Š) = (((𝐹 ∨ 𝐺) ∧ π‘Š) ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇)))
6350, 62eqtrd 2773 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑉 = (((𝐹 ∨ 𝐺) ∧ π‘Š) ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇)))
64 simp23 1209 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))
65 simp33 1212 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑅 ≀ (𝑃 ∨ 𝑄))
66 cdleme19.d . . . . . 6 𝐷 = ((𝑅 ∨ 𝑆) ∧ π‘Š)
67 cdleme19.y . . . . . 6 π‘Œ = ((𝑅 ∨ 𝑇) ∧ π‘Š)
689, 10, 11, 12, 13, 14, 15, 20, 66, 67, 36cdleme20c 38820 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝐷 ∨ π‘Œ) = (((𝑅 ∨ 𝑆) ∨ 𝑇) ∧ π‘Š))
691, 5, 64, 54, 19, 57, 65, 68syl232anc 1398 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝐷 ∨ π‘Œ) = (((𝑅 ∨ 𝑆) ∨ 𝑇) ∧ π‘Š))
7016, 11latmcom 18357 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) β†’ (((𝑅 ∨ 𝑆) ∨ 𝑇) ∧ π‘Š) = (π‘Š ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇)))
714, 33, 26, 70syl3anc 1372 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (((𝑅 ∨ 𝑆) ∨ 𝑇) ∧ π‘Š) = (π‘Š ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇)))
7269, 71eqtrd 2773 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝐷 ∨ π‘Œ) = (π‘Š ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇)))
7372oveq2d 7374 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ ((𝐹 ∨ 𝐺) ∧ (𝐷 ∨ π‘Œ)) = ((𝐹 ∨ 𝐺) ∧ (π‘Š ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇))))
7435, 63, 733eqtr4rd 2784 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ ((𝐹 ∨ 𝐺) ∧ (𝐷 ∨ π‘Œ)) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2940   class class class wbr 5106  β€˜cfv 6497  (class class class)co 7358  Basecbs 17088  lecple 17145  joincjn 18205  meetcmee 18206  Latclat 18325  OLcol 37682  Atomscatm 37771  HLchlt 37858  LHypclh 38493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-iin 4958  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-1st 7922  df-2nd 7923  df-proset 18189  df-poset 18207  df-plt 18224  df-lub 18240  df-glb 18241  df-join 18242  df-meet 18243  df-p0 18319  df-p1 18320  df-lat 18326  df-clat 18393  df-oposet 37684  df-ol 37686  df-oml 37687  df-covers 37774  df-ats 37775  df-atl 37806  df-cvlat 37830  df-hlat 37859  df-llines 38007  df-lplanes 38008  df-lvols 38009  df-lines 38010  df-psubsp 38012  df-pmap 38013  df-padd 38305  df-lhyp 38497
This theorem is referenced by:  cdleme20e  38822  cdleme20j  38827  cdleme20l2  38830
  Copyright terms: Public domain W3C validator