Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme20d Structured version   Visualization version   GIF version

Theorem cdleme20d 40011
Description: Part of proof of Lemma E in [Crawley] p. 113, last paragraph on p. 114, second line. 𝐷, 𝐹, 𝑌, 𝐺 represent s2, f(s), t2, f(t). (Contributed by NM, 17-Nov-2012.)
Hypotheses
Ref Expression
cdleme19.l = (le‘𝐾)
cdleme19.j = (join‘𝐾)
cdleme19.m = (meet‘𝐾)
cdleme19.a 𝐴 = (Atoms‘𝐾)
cdleme19.h 𝐻 = (LHyp‘𝐾)
cdleme19.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme19.f 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
cdleme19.g 𝐺 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))
cdleme19.d 𝐷 = ((𝑅 𝑆) 𝑊)
cdleme19.y 𝑌 = ((𝑅 𝑇) 𝑊)
cdleme20.v 𝑉 = ((𝑆 𝑇) 𝑊)
Assertion
Ref Expression
cdleme20d ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → ((𝐹 𝐺) (𝐷 𝑌)) = 𝑉)

Proof of Theorem cdleme20d
StepHypRef Expression
1 simp11l 1281 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → 𝐾 ∈ HL)
2 hlol 39059 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ OL)
31, 2syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → 𝐾 ∈ OL)
41hllatd 39062 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → 𝐾 ∈ Lat)
5 simp11r 1282 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → 𝑊𝐻)
6 simp12l 1283 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → 𝑃𝐴)
7 simp13l 1285 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → 𝑄𝐴)
8 simp21l 1287 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → 𝑆𝐴)
9 cdleme19.l . . . . . 6 = (le‘𝐾)
10 cdleme19.j . . . . . 6 = (join‘𝐾)
11 cdleme19.m . . . . . 6 = (meet‘𝐾)
12 cdleme19.a . . . . . 6 𝐴 = (Atoms‘𝐾)
13 cdleme19.h . . . . . 6 𝐻 = (LHyp‘𝐾)
14 cdleme19.u . . . . . 6 𝑈 = ((𝑃 𝑄) 𝑊)
15 cdleme19.f . . . . . 6 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
16 eqid 2726 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
179, 10, 11, 12, 13, 14, 15, 16cdleme1b 39925 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑆𝐴)) → 𝐹 ∈ (Base‘𝐾))
181, 5, 6, 7, 8, 17syl23anc 1374 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → 𝐹 ∈ (Base‘𝐾))
19 simp22l 1289 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → 𝑇𝐴)
20 cdleme19.g . . . . . 6 𝐺 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))
219, 10, 11, 12, 13, 14, 20, 16cdleme1b 39925 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑇𝐴)) → 𝐺 ∈ (Base‘𝐾))
221, 5, 6, 7, 19, 21syl23anc 1374 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → 𝐺 ∈ (Base‘𝐾))
2316, 10latjcl 18464 . . . 4 ((𝐾 ∈ Lat ∧ 𝐹 ∈ (Base‘𝐾) ∧ 𝐺 ∈ (Base‘𝐾)) → (𝐹 𝐺) ∈ (Base‘𝐾))
244, 18, 22, 23syl3anc 1368 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → (𝐹 𝐺) ∈ (Base‘𝐾))
2516, 13lhpbase 39697 . . . 4 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
265, 25syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → 𝑊 ∈ (Base‘𝐾))
27 simp23l 1291 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → 𝑅𝐴)
2816, 10, 12hlatjcl 39065 . . . . 5 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → (𝑅 𝑆) ∈ (Base‘𝐾))
291, 27, 8, 28syl3anc 1368 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → (𝑅 𝑆) ∈ (Base‘𝐾))
3016, 12atbase 38987 . . . . 5 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
3119, 30syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → 𝑇 ∈ (Base‘𝐾))
3216, 10latjcl 18464 . . . 4 ((𝐾 ∈ Lat ∧ (𝑅 𝑆) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) → ((𝑅 𝑆) 𝑇) ∈ (Base‘𝐾))
334, 29, 31, 32syl3anc 1368 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → ((𝑅 𝑆) 𝑇) ∈ (Base‘𝐾))
3416, 11latmassOLD 38927 . . 3 ((𝐾 ∈ OL ∧ ((𝐹 𝐺) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾) ∧ ((𝑅 𝑆) 𝑇) ∈ (Base‘𝐾))) → (((𝐹 𝐺) 𝑊) ((𝑅 𝑆) 𝑇)) = ((𝐹 𝐺) (𝑊 ((𝑅 𝑆) 𝑇))))
353, 24, 26, 33, 34syl13anc 1369 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → (((𝐹 𝐺) 𝑊) ((𝑅 𝑆) 𝑇)) = ((𝐹 𝐺) (𝑊 ((𝑅 𝑆) 𝑇))))
36 cdleme20.v . . . 4 𝑉 = ((𝑆 𝑇) 𝑊)
379, 10, 12hlatlej2 39074 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → 𝑆 (𝑅 𝑆))
381, 27, 8, 37syl3anc 1368 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → 𝑆 (𝑅 𝑆))
3916, 12atbase 38987 . . . . . . . . 9 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
408, 39syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → 𝑆 ∈ (Base‘𝐾))
4116, 9, 10latjlej1 18478 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ (𝑅 𝑆) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾))) → (𝑆 (𝑅 𝑆) → (𝑆 𝑇) ((𝑅 𝑆) 𝑇)))
424, 40, 29, 31, 41syl13anc 1369 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → (𝑆 (𝑅 𝑆) → (𝑆 𝑇) ((𝑅 𝑆) 𝑇)))
4338, 42mpd 15 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → (𝑆 𝑇) ((𝑅 𝑆) 𝑇))
4416, 10, 12hlatjcl 39065 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 𝑇) ∈ (Base‘𝐾))
451, 8, 19, 44syl3anc 1368 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → (𝑆 𝑇) ∈ (Base‘𝐾))
4616, 9, 11latleeqm1 18492 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑆 𝑇) ∈ (Base‘𝐾) ∧ ((𝑅 𝑆) 𝑇) ∈ (Base‘𝐾)) → ((𝑆 𝑇) ((𝑅 𝑆) 𝑇) ↔ ((𝑆 𝑇) ((𝑅 𝑆) 𝑇)) = (𝑆 𝑇)))
474, 45, 33, 46syl3anc 1368 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → ((𝑆 𝑇) ((𝑅 𝑆) 𝑇) ↔ ((𝑆 𝑇) ((𝑅 𝑆) 𝑇)) = (𝑆 𝑇)))
4843, 47mpbid 231 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → ((𝑆 𝑇) ((𝑅 𝑆) 𝑇)) = (𝑆 𝑇))
4948oveq1d 7439 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → (((𝑆 𝑇) ((𝑅 𝑆) 𝑇)) 𝑊) = ((𝑆 𝑇) 𝑊))
5036, 49eqtr4id 2785 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → 𝑉 = (((𝑆 𝑇) ((𝑅 𝑆) 𝑇)) 𝑊))
5116, 11latm32 38929 . . . . 5 ((𝐾 ∈ OL ∧ ((𝑆 𝑇) ∈ (Base‘𝐾) ∧ ((𝑅 𝑆) 𝑇) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → (((𝑆 𝑇) ((𝑅 𝑆) 𝑇)) 𝑊) = (((𝑆 𝑇) 𝑊) ((𝑅 𝑆) 𝑇)))
523, 45, 33, 26, 51syl13anc 1369 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → (((𝑆 𝑇) ((𝑅 𝑆) 𝑇)) 𝑊) = (((𝑆 𝑇) 𝑊) ((𝑅 𝑆) 𝑇)))
53 simp1 1133 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
54 simp21 1203 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → (𝑆𝐴 ∧ ¬ 𝑆 𝑊))
55 simp22 1204 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → (𝑇𝐴 ∧ ¬ 𝑇 𝑊))
56 simp31 1206 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → (𝑃𝑄𝑆𝑇))
57 simp32l 1295 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → ¬ 𝑆 (𝑃 𝑄))
58 simp32r 1296 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → ¬ 𝑇 (𝑃 𝑄))
599, 10, 11, 12, 13, 14, 15, 20cdleme16 39984 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄))) → ((𝑆 𝑇) 𝑊) = ((𝐹 𝐺) 𝑊))
6053, 54, 55, 56, 57, 58, 59syl132anc 1385 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → ((𝑆 𝑇) 𝑊) = ((𝐹 𝐺) 𝑊))
6160oveq1d 7439 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → (((𝑆 𝑇) 𝑊) ((𝑅 𝑆) 𝑇)) = (((𝐹 𝐺) 𝑊) ((𝑅 𝑆) 𝑇)))
6252, 61eqtrd 2766 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → (((𝑆 𝑇) ((𝑅 𝑆) 𝑇)) 𝑊) = (((𝐹 𝐺) 𝑊) ((𝑅 𝑆) 𝑇)))
6350, 62eqtrd 2766 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → 𝑉 = (((𝐹 𝐺) 𝑊) ((𝑅 𝑆) 𝑇)))
64 simp23 1205 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
65 simp33 1208 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → 𝑅 (𝑃 𝑄))
66 cdleme19.d . . . . . 6 𝐷 = ((𝑅 𝑆) 𝑊)
67 cdleme19.y . . . . . 6 𝑌 = ((𝑅 𝑇) 𝑊)
689, 10, 11, 12, 13, 14, 15, 20, 66, 67, 36cdleme20c 40010 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → (𝐷 𝑌) = (((𝑅 𝑆) 𝑇) 𝑊))
691, 5, 64, 54, 19, 57, 65, 68syl232anc 1394 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → (𝐷 𝑌) = (((𝑅 𝑆) 𝑇) 𝑊))
7016, 11latmcom 18488 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑅 𝑆) 𝑇) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → (((𝑅 𝑆) 𝑇) 𝑊) = (𝑊 ((𝑅 𝑆) 𝑇)))
714, 33, 26, 70syl3anc 1368 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → (((𝑅 𝑆) 𝑇) 𝑊) = (𝑊 ((𝑅 𝑆) 𝑇)))
7269, 71eqtrd 2766 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → (𝐷 𝑌) = (𝑊 ((𝑅 𝑆) 𝑇)))
7372oveq2d 7440 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → ((𝐹 𝐺) (𝐷 𝑌)) = ((𝐹 𝐺) (𝑊 ((𝑅 𝑆) 𝑇))))
7435, 63, 733eqtr4rd 2777 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ 𝑅 (𝑃 𝑄))) → ((𝐹 𝐺) (𝐷 𝑌)) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wne 2930   class class class wbr 5153  cfv 6554  (class class class)co 7424  Basecbs 17213  lecple 17273  joincjn 18336  meetcmee 18337  Latclat 18456  OLcol 38872  Atomscatm 38961  HLchlt 39048  LHypclh 39683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-1st 8003  df-2nd 8004  df-proset 18320  df-poset 18338  df-plt 18355  df-lub 18371  df-glb 18372  df-join 18373  df-meet 18374  df-p0 18450  df-p1 18451  df-lat 18457  df-clat 18524  df-oposet 38874  df-ol 38876  df-oml 38877  df-covers 38964  df-ats 38965  df-atl 38996  df-cvlat 39020  df-hlat 39049  df-llines 39197  df-lplanes 39198  df-lvols 39199  df-lines 39200  df-psubsp 39202  df-pmap 39203  df-padd 39495  df-lhyp 39687
This theorem is referenced by:  cdleme20e  40012  cdleme20j  40017  cdleme20l2  40020
  Copyright terms: Public domain W3C validator