Proof of Theorem cdleme20d
Step | Hyp | Ref
| Expression |
1 | | simp11l 1283 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝐾 ∈ HL) |
2 | | hlol 37375 |
. . . 4
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
3 | 1, 2 | syl 17 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝐾 ∈ OL) |
4 | 1 | hllatd 37378 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝐾 ∈ Lat) |
5 | | simp11r 1284 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑊 ∈ 𝐻) |
6 | | simp12l 1285 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑃 ∈ 𝐴) |
7 | | simp13l 1287 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑄 ∈ 𝐴) |
8 | | simp21l 1289 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑆 ∈ 𝐴) |
9 | | cdleme19.l |
. . . . . 6
⊢ ≤ =
(le‘𝐾) |
10 | | cdleme19.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
11 | | cdleme19.m |
. . . . . 6
⊢ ∧ =
(meet‘𝐾) |
12 | | cdleme19.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
13 | | cdleme19.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
14 | | cdleme19.u |
. . . . . 6
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
15 | | cdleme19.f |
. . . . . 6
⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) |
16 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) |
17 | 9, 10, 11, 12, 13, 14, 15, 16 | cdleme1b 38240 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝐹 ∈ (Base‘𝐾)) |
18 | 1, 5, 6, 7, 8, 17 | syl23anc 1376 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝐹 ∈ (Base‘𝐾)) |
19 | | simp22l 1291 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑇 ∈ 𝐴) |
20 | | cdleme19.g |
. . . . . 6
⊢ 𝐺 = ((𝑇 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ 𝑊))) |
21 | 9, 10, 11, 12, 13, 14, 20, 16 | cdleme1b 38240 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → 𝐺 ∈ (Base‘𝐾)) |
22 | 1, 5, 6, 7, 19, 21 | syl23anc 1376 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝐺 ∈ (Base‘𝐾)) |
23 | 16, 10 | latjcl 18157 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝐹 ∈ (Base‘𝐾) ∧ 𝐺 ∈ (Base‘𝐾)) → (𝐹 ∨ 𝐺) ∈ (Base‘𝐾)) |
24 | 4, 18, 22, 23 | syl3anc 1370 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝐹 ∨ 𝐺) ∈ (Base‘𝐾)) |
25 | 16, 13 | lhpbase 38012 |
. . . 4
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
26 | 5, 25 | syl 17 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑊 ∈ (Base‘𝐾)) |
27 | | simp23l 1293 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑅 ∈ 𝐴) |
28 | 16, 10, 12 | hlatjcl 37381 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑅 ∨ 𝑆) ∈ (Base‘𝐾)) |
29 | 1, 27, 8, 28 | syl3anc 1370 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑅 ∨ 𝑆) ∈ (Base‘𝐾)) |
30 | 16, 12 | atbase 37303 |
. . . . 5
⊢ (𝑇 ∈ 𝐴 → 𝑇 ∈ (Base‘𝐾)) |
31 | 19, 30 | syl 17 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑇 ∈ (Base‘𝐾)) |
32 | 16, 10 | latjcl 18157 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑅 ∨ 𝑆) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) → ((𝑅 ∨ 𝑆) ∨ 𝑇) ∈ (Base‘𝐾)) |
33 | 4, 29, 31, 32 | syl3anc 1370 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → ((𝑅 ∨ 𝑆) ∨ 𝑇) ∈ (Base‘𝐾)) |
34 | 16, 11 | latmassOLD 37243 |
. . 3
⊢ ((𝐾 ∈ OL ∧ ((𝐹 ∨ 𝐺) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾) ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇) ∈ (Base‘𝐾))) → (((𝐹 ∨ 𝐺) ∧ 𝑊) ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇)) = ((𝐹 ∨ 𝐺) ∧ (𝑊 ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇)))) |
35 | 3, 24, 26, 33, 34 | syl13anc 1371 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (((𝐹 ∨ 𝐺) ∧ 𝑊) ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇)) = ((𝐹 ∨ 𝐺) ∧ (𝑊 ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇)))) |
36 | | cdleme20.v |
. . . 4
⊢ 𝑉 = ((𝑆 ∨ 𝑇) ∧ 𝑊) |
37 | 9, 10, 12 | hlatlej2 37390 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → 𝑆 ≤ (𝑅 ∨ 𝑆)) |
38 | 1, 27, 8, 37 | syl3anc 1370 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑆 ≤ (𝑅 ∨ 𝑆)) |
39 | 16, 12 | atbase 37303 |
. . . . . . . . 9
⊢ (𝑆 ∈ 𝐴 → 𝑆 ∈ (Base‘𝐾)) |
40 | 8, 39 | syl 17 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑆 ∈ (Base‘𝐾)) |
41 | 16, 9, 10 | latjlej1 18171 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ (𝑅 ∨ 𝑆) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾))) → (𝑆 ≤ (𝑅 ∨ 𝑆) → (𝑆 ∨ 𝑇) ≤ ((𝑅 ∨ 𝑆) ∨ 𝑇))) |
42 | 4, 40, 29, 31, 41 | syl13anc 1371 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑆 ≤ (𝑅 ∨ 𝑆) → (𝑆 ∨ 𝑇) ≤ ((𝑅 ∨ 𝑆) ∨ 𝑇))) |
43 | 38, 42 | mpd 15 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑆 ∨ 𝑇) ≤ ((𝑅 ∨ 𝑆) ∨ 𝑇)) |
44 | 16, 10, 12 | hlatjcl 37381 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (𝑆 ∨ 𝑇) ∈ (Base‘𝐾)) |
45 | 1, 8, 19, 44 | syl3anc 1370 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑆 ∨ 𝑇) ∈ (Base‘𝐾)) |
46 | 16, 9, 11 | latleeqm1 18185 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑆 ∨ 𝑇) ∈ (Base‘𝐾) ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇) ∈ (Base‘𝐾)) → ((𝑆 ∨ 𝑇) ≤ ((𝑅 ∨ 𝑆) ∨ 𝑇) ↔ ((𝑆 ∨ 𝑇) ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇)) = (𝑆 ∨ 𝑇))) |
47 | 4, 45, 33, 46 | syl3anc 1370 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → ((𝑆 ∨ 𝑇) ≤ ((𝑅 ∨ 𝑆) ∨ 𝑇) ↔ ((𝑆 ∨ 𝑇) ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇)) = (𝑆 ∨ 𝑇))) |
48 | 43, 47 | mpbid 231 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → ((𝑆 ∨ 𝑇) ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇)) = (𝑆 ∨ 𝑇)) |
49 | 48 | oveq1d 7290 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (((𝑆 ∨ 𝑇) ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇)) ∧ 𝑊) = ((𝑆 ∨ 𝑇) ∧ 𝑊)) |
50 | 36, 49 | eqtr4id 2797 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑉 = (((𝑆 ∨ 𝑇) ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇)) ∧ 𝑊)) |
51 | 16, 11 | latm32 37245 |
. . . . 5
⊢ ((𝐾 ∈ OL ∧ ((𝑆 ∨ 𝑇) ∈ (Base‘𝐾) ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → (((𝑆 ∨ 𝑇) ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇)) ∧ 𝑊) = (((𝑆 ∨ 𝑇) ∧ 𝑊) ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇))) |
52 | 3, 45, 33, 26, 51 | syl13anc 1371 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (((𝑆 ∨ 𝑇) ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇)) ∧ 𝑊) = (((𝑆 ∨ 𝑇) ∧ 𝑊) ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇))) |
53 | | simp1 1135 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) |
54 | | simp21 1205 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) |
55 | | simp22 1206 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) |
56 | | simp31 1208 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) |
57 | | simp32l 1297 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) |
58 | | simp32r 1298 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) |
59 | 9, 10, 11, 12, 13, 14, 15, 20 | cdleme16 38299 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄))) → ((𝑆 ∨ 𝑇) ∧ 𝑊) = ((𝐹 ∨ 𝐺) ∧ 𝑊)) |
60 | 53, 54, 55, 56, 57, 58, 59 | syl132anc 1387 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → ((𝑆 ∨ 𝑇) ∧ 𝑊) = ((𝐹 ∨ 𝐺) ∧ 𝑊)) |
61 | 60 | oveq1d 7290 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (((𝑆 ∨ 𝑇) ∧ 𝑊) ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇)) = (((𝐹 ∨ 𝐺) ∧ 𝑊) ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇))) |
62 | 52, 61 | eqtrd 2778 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (((𝑆 ∨ 𝑇) ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇)) ∧ 𝑊) = (((𝐹 ∨ 𝐺) ∧ 𝑊) ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇))) |
63 | 50, 62 | eqtrd 2778 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑉 = (((𝐹 ∨ 𝐺) ∧ 𝑊) ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇))) |
64 | | simp23 1207 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) |
65 | | simp33 1210 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑅 ≤ (𝑃 ∨ 𝑄)) |
66 | | cdleme19.d |
. . . . . 6
⊢ 𝐷 = ((𝑅 ∨ 𝑆) ∧ 𝑊) |
67 | | cdleme19.y |
. . . . . 6
⊢ 𝑌 = ((𝑅 ∨ 𝑇) ∧ 𝑊) |
68 | 9, 10, 11, 12, 13, 14, 15, 20, 66, 67, 36 | cdleme20c 38325 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝐷 ∨ 𝑌) = (((𝑅 ∨ 𝑆) ∨ 𝑇) ∧ 𝑊)) |
69 | 1, 5, 64, 54, 19, 57, 65, 68 | syl232anc 1396 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝐷 ∨ 𝑌) = (((𝑅 ∨ 𝑆) ∨ 𝑇) ∧ 𝑊)) |
70 | 16, 11 | latmcom 18181 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → (((𝑅 ∨ 𝑆) ∨ 𝑇) ∧ 𝑊) = (𝑊 ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇))) |
71 | 4, 33, 26, 70 | syl3anc 1370 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (((𝑅 ∨ 𝑆) ∨ 𝑇) ∧ 𝑊) = (𝑊 ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇))) |
72 | 69, 71 | eqtrd 2778 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝐷 ∨ 𝑌) = (𝑊 ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇))) |
73 | 72 | oveq2d 7291 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → ((𝐹 ∨ 𝐺) ∧ (𝐷 ∨ 𝑌)) = ((𝐹 ∨ 𝐺) ∧ (𝑊 ∧ ((𝑅 ∨ 𝑆) ∨ 𝑇)))) |
74 | 35, 63, 73 | 3eqtr4rd 2789 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → ((𝐹 ∨ 𝐺) ∧ (𝐷 ∨ 𝑌)) = 𝑉) |