Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemkole-2N | Structured version Visualization version GIF version |
Description: Utility lemma. (Contributed by NM, 2-Jul-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cdlemk2.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemk2.l | ⊢ ≤ = (le‘𝐾) |
cdlemk2.j | ⊢ ∨ = (join‘𝐾) |
cdlemk2.m | ⊢ ∧ = (meet‘𝐾) |
cdlemk2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemk2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemk2.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemk2.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
cdlemk2.s | ⊢ 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) |
cdlemk2.q | ⊢ 𝑄 = (𝑆‘𝐶) |
Ref | Expression |
---|---|
cdlemkole-2N | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ ((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝑄‘𝑃) ≤ (𝑃 ∨ (𝑅‘𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp11 1202 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ ((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝐾 ∈ HL) | |
2 | simp12 1203 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ ((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝑊 ∈ 𝐻) | |
3 | 1, 2 | jca 512 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ ((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
4 | simp21 1205 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ ((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝐹 ∈ 𝑇) | |
5 | simp22 1206 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ ((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝐶 ∈ 𝑇) | |
6 | simp23 1207 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ ((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝑁 ∈ 𝑇) | |
7 | simp33 1210 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ ((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | |
8 | simp13 1204 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ ((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝑅‘𝐹) = (𝑅‘𝑁)) | |
9 | simp32l 1297 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ ((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝐹 ≠ ( I ↾ 𝐵)) | |
10 | simp32r 1298 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ ((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝐶 ≠ ( I ↾ 𝐵)) | |
11 | simp31 1208 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ ((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝑅‘𝐶) ≠ (𝑅‘𝐹)) | |
12 | cdlemk2.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
13 | cdlemk2.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
14 | cdlemk2.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
15 | cdlemk2.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
16 | cdlemk2.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
17 | cdlemk2.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
18 | cdlemk2.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
19 | cdlemk2.r | . . 3 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
20 | cdlemk2.s | . . 3 ⊢ 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) | |
21 | cdlemk2.q | . . 3 ⊢ 𝑄 = (𝑆‘𝐶) | |
22 | 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 | cdlemkole 39129 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹))) → (𝑄‘𝑃) ≤ (𝑃 ∨ (𝑅‘𝐶))) |
23 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 22 | syl333anc 1401 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ ((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝑄‘𝑃) ≤ (𝑃 ∨ (𝑅‘𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 class class class wbr 5092 ↦ cmpt 5175 I cid 5517 ◡ccnv 5619 ↾ cres 5622 ∘ ccom 5624 ‘cfv 6479 ℩crio 7292 (class class class)co 7337 Basecbs 17009 lecple 17066 joincjn 18126 meetcmee 18127 Atomscatm 37538 HLchlt 37625 LHypclh 38260 LTrncltrn 38377 trLctrl 38434 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-riotaBAD 37228 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-1st 7899 df-2nd 7900 df-undef 8159 df-map 8688 df-proset 18110 df-poset 18128 df-plt 18145 df-lub 18161 df-glb 18162 df-join 18163 df-meet 18164 df-p0 18240 df-p1 18241 df-lat 18247 df-clat 18314 df-oposet 37451 df-ol 37453 df-oml 37454 df-covers 37541 df-ats 37542 df-atl 37573 df-cvlat 37597 df-hlat 37626 df-llines 37774 df-lplanes 37775 df-lvols 37776 df-lines 37777 df-psubsp 37779 df-pmap 37780 df-padd 38072 df-lhyp 38264 df-laut 38265 df-ldil 38380 df-ltrn 38381 df-trl 38435 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |